DOI: 10.11758/yykxjz.20150521002

http://www.yykxjz.cn/

# 海蜇(*Rhopilema esculentum*)磷脂酶 A<sub>2</sub>基因的 cDNA、基因组克隆与表达分析<sup>\*</sup>

杨 洪<sup>1,2</sup> 朱 玲<sup>1,30</sup> 骆晓蕊<sup>1,2</sup> 周春娅<sup>1,3</sup> 庄志猛<sup>1,3</sup> (1. 中国水产科学研究院黄海水产研究所 青岛 266071; 2. 上海海洋大学水产与生命学院 上海 201306; 3. 青岛海洋科学与技术国家实验室 海洋生物学与生物技术功能实验室 青岛 266071)

**摘要** 本研究利用 RACE 和 RT-PCR 技术克隆了海蜇(*Rhopilema esculentum*)磷脂酶 A<sub>2</sub> 基因 (Re-PLA<sub>2</sub>-1)的 cDNA 及基因组序列,并分析了其 mRNA 在海蜇不同发育阶段的表达。Re-PLA<sub>2</sub>-1 基因的 cDNA 全长为 824 bp,包括了 48 bp 的 5'非编码区、504 bp 的开放阅读框及 272 bp 的 3'非翻 译区。SMART 分析显示, Re-PLA<sub>2</sub>-1 为分泌蛋白,包括了一个由 19 个氨基酸组成的信号肽和一个 由 118 个氨基酸组成的磷脂酶 A<sub>2</sub>结构域。多序列比对和系统进化分析显示,Re-PLA<sub>2</sub>-1 基因与来 自星状海葵(*Nematostella vectensis*)、僧袍芋螺(*Conus magus*)、长牡蛎(*Crassostrea gigas*)等磷脂酶 A<sub>2</sub>的相似性较高,共同聚类为 pfam09056 GIX PLA<sub>2</sub>分支,均包含 pfam09056 家族成员酶活性所必 需的 Ca<sup>2+</sup>结合位点、活性催化位点和 PLA<sub>2</sub>结构域所必需形成二硫键的半胱氨酸。Re-PLA<sub>2</sub>-1 基因 组全长为 2671 bp,由4 个外显子和3 个内含子组成。RT-PCR 结果显示,Re-PLA<sub>2</sub>-1 基因在海蜇 4 个发育阶段均有表达,其中,横裂体阶段的表达量最高,碟状体阶段最低。这些研究结果为进一步 了解海蜇磷脂酶 A<sub>2</sub>毒素的生物功能奠定了基础。

关键词 海蜇;磷脂酶 A<sub>2</sub>; cDNA; 基因组; 表达分析 中图分类号 Q346 文献标识码 A 文章编号 2095-9869(2016)06-0123-08

水母毒素是目前已知的最毒的海洋生物毒素之 一,其毒性是海蛇(Pelamis platuras)毒素的 250 倍, 是河豚毒素的 450 倍(于华华等, 2003)。水母毒素的 研究始于 20 世纪 60 年代,但因获取困难、稳定性差 等因素导致对水母毒素的研究明显滞后于蜂毒、蛇 毒、蝎毒。水母毒素成分复杂,既含有能够溶解细胞、 具有细胞毒性的多肽、酶类等,又含有一些非蛋白类 小分子物质,具有广泛的生物学活性(Martins *et al*, 2009)。磷脂酶 A<sub>2</sub>(Phospholipase A<sub>2</sub>, PLA<sub>2</sub>)是水母毒素 中含量较为丰富的组分之一,能催化甘油磷脂第 2 位 脂酰键的水解生成溶血磷脂和脂肪酸,参与磷脂的代 谢(Glaser *et al*, 1993; Nevalainen *et al*, 2004a、b; Sher *et al*, 2005),具有神经毒性、肌肉毒性、酶活性等多种生物活性。PLA<sub>2</sub>最先发现于哺乳动物胰液中,随后被发现广泛存在于昆虫、软体动物、蛇和海洋无脊椎动物的毒液中(Nevalainen *et al*, 2004a、b;Razpotnik *et al*, 2010)。根据生物来源、分子量、氨基酸序列同源性、Ca<sup>2+</sup>是否依赖性以及生理功能等特性的不同, PLA<sub>2</sub>可以大致分为4类:分泌型PLA<sub>2</sub> (Secreted phospholipase A<sub>2</sub>; sPLA<sub>2</sub>)、胞质型PLA<sub>2</sub> (Cytoplasmic phospholipase A<sub>2</sub>; iPLA<sub>2</sub>)、胞内型PLA<sub>2</sub> (Intracellular phospholipase A<sub>2</sub>; iPLA<sub>2</sub>)和PAF (血小板激活因子)-PLA<sub>2</sub> (Feng *et al*, 2002)。

海蜇(Rhopilema esculentum)隶属于刺胞动物门、

<sup>\*</sup>国家自然科学基金(31372507)、国家重点基础研究发展计划(973)项目(2011CB403605)和上海海洋大学研究生科研基金(A1-0209-14-0900-57)共同资助。杨 洪, E-mail: yang\_hong0317@163.com

① 通讯作者:朱 玲, 副研究员, E-mail: zhuling@ysfri.ac.cn

收稿日期: 2015-05-21, 收修改稿日期: 2016-03-02

钵水母纲、根口水母目、海蜇属,作为一种大型的可 食用经济水母,在我国海洋渔业中占有重要地位。海 蜇基础生物学研究深入,人工繁育、增养殖技术成熟, 是研究水母毒素组成、结构和功能的理想模式生物。 本研究采用转录组 454 GS FLX 测序和 RACE 技术, 首次解析了海蜇 Re-PLA<sub>2</sub>-1 基因的 cDNA 和基因组结 构,分析了其 mRNA 在海蜇不同发育阶段的表达, 这些研究结果将为进一步了解海蜇磷脂酶 A<sub>2</sub> 毒素的 生物功能奠定基础。

# 1 材料与方法

#### 1.1 海蜇转录组 454 GS FLX 测序与 EST 分析

海蜇转录组的构建、454 GS FLX 测序与分析见 周春娅等(2013)。利用生物信息学方法检索海蜇转录 组文库,寻找与已知 PLA<sub>2</sub>基因同源的 EST 序列。

#### 1.2 Re-PLA<sub>2</sub>-1 cDNA 全长的克隆

生物信息学分析发现,海蜇 EST<sub>(isotig15581)</sub>与僧袍 芋螺(*Conus magus*)的 PLA<sub>2</sub> 基因具有高度的相似性。 根据 EST<sub>(isotig15581)</sub>序列,设计特异性引物 Re-PLA<sub>2</sub>-1 F1 和Re-PLA<sub>2</sub>-1 R1 扩增海蜇 Re-PLA<sub>2</sub>-1 cDNA 全长(表1)。 3'-RACE 使用 pBluescript SK(+/-)载体上的通用引物 T7 与 Re-PLA<sub>2</sub>-1 F1,5'-RACE 使用载体通用引物 T3 与 Re-PLA<sub>2</sub>-1 R1。PCR 反应程序为 94℃ 5 min;94℃ 30 s,57℃ 30 s,72℃ 30 s,33 个循环;72℃ 10 min。 PCR 产物经琼脂糖电泳检测后胶回收、连接、转化, 获得的阳性重组子经菌落 PCR 验证后送上海鼎安生物 科技有限公司测序。

# **1.3** 海蜇基因组 DNA 的提取及 Re-PLA<sub>2</sub>-1 的基因组 克隆

海蜇于 2015 年 8 月采自青岛沙子口。液氮保存 返回实验室后,采用酚-氯仿法提取基因组 DNA: 取约 100 mg海蜇伞径进行液氮研磨,然后加入 400 μl 的 DNA 提取液[其中, Tris-HCl (pH 为 8.0) 100 mmol/L, EDTA (pH 为 8.0) 100 mmol/L, 1% SDS 50 μl, 20 mg/ml 蛋白酶 K8 μl],充分混匀,55℃水浴 40 min。待裂解 完全后,加入等体积的酚-氯仿试剂,静置 10 min, 12000 r/min 离心 15 min,去除上清液。再加入 0.6 体 积的异丙醇静置 7 min, 12000 r/min 离心 10 min,除去 上清液。然后加入 400 μl 预冷无水乙醇,沉淀 DNA 约 30 min 后,用 70%乙醇洗涤沉淀 2 次,自然干燥 后,加入 20 μl 超纯水溶解。提取的 DNA 经 1.5%琼 脂糖电泳进行检测。

根据 Re-PLA<sub>2</sub>-1 cDNA 全长设计 5 对特异性引物 进行基因组序列扩增(表 1)。

#### 1.4 Re-PLA<sub>2</sub>-1 mRNA 在不同发育阶段的表达

利用 Trizol 法分别提取海蜇 4 个不同发育阶段: 螅状体 (Scyphistoma)、横裂体 (Strobila)、碟状体 (Ephyra)、水母体(Medusa)的总 RNA,然后反转录分 别合成 cDNA,反应体系及反应条件按说明书要求操 作(Invitrogen,美国)。

|                           |                           | aaj                     |
|---------------------------|---------------------------|-------------------------|
| 引物名称 Name of primer       | 序列 Sequence (5'-3')       | 用途 Application          |
| Re-PLA <sub>2</sub> -1 F1 | CAAGATGCAGACATACAAGGGAG   | 3' Race/genome PCR      |
| Re-PLA <sub>2</sub> -1 R1 | TCTAGTCCAGCCATAGCGATT     | 5' Race Race/genome PCR |
| Re-PLA <sub>2</sub> -1 F2 | TAGGGTGTTTCATTGGTGGTGT    | Genome PCR              |
| Re-PLA <sub>2</sub> -1 R2 | TCTGTTGTTGTATCTGTCGGTGC   | Genome PCR              |
| Re-PLA <sub>2</sub> -1 F3 | TATGTGGAAATCGCTATGGCT     | Genome PCR              |
| Re-PLA <sub>2</sub> -1 R3 | TCTCCACGAATAAAAGGCCAT     | Genome PCR              |
| Re-PLA <sub>2</sub> -1 F4 | CTATTTGGAACGGCATAACGG     | Genome PCR              |
| Re-PLA <sub>2</sub> -1 R4 | CTTTGCACCATTCTGGAGAGC     | Genome PCR              |
| Re-PLA <sub>2</sub> -1 F5 | AGTTACTTTGTTTCAAGCTCTCC   | Genome PCR              |
| Re-PLA <sub>2</sub> -1 R5 | GCTATATTTCTGTCGTCTTCTGTTC | Genome PCR              |
| Re-PLA <sub>2</sub> -1 F  | ACTAACTCAAACTTACGAAAGCGAC | RT-PCR                  |
| Re-PLA <sub>2</sub> -1 R  | ACGCACGGTTTGATAGTAGGC     | RT-PCR                  |
| β-Actin F                 | AACTGGGACGATATGGAGAAGA    | β-Actin PCR             |
| β-Actin R                 | CGACCAGAGGCGTACAATGAG     | β-Actin PCR             |
| Τ7                        | GTAATACGACTCACTATAGGGC    | 3' Race-PCR             |
| Т3                        | AATTAACCCTCACTAAAGGG      | 5' Race-PCR             |

表 1 引物序列 Tab.1 Oligonucleotide primers used in this study

#### 1.5 Re-PLA<sub>2</sub>-1 基因的生物信息学分析

采用实时荧光定量 PCR 方法,检测 Re-PLA<sub>2</sub>-1 在螅状体、横裂体、碟状体和水母体的表达,相关引 物见表 1。RT-PCR 反应在 ABI 7500 Real-time PCR system (Applied Biosystems)上进行。PCR 反应体系和 流程参照 SYBR<sup>®</sup> Premix Ex  $Taq^{TM}$  II 试剂盒操作说 明(TaKaRa)。样品和内参分别设 3 个重复。反应结束 后,采用 2<sup>-ΔΔCt</sup>法和 SPSS 18.0 统计软件进行数据分 析和统计。

用 EditSeq 和 DNAStar 软件对 DNA 序列和推测 的氨基酸序列进行生物信息学分析;用 Bioedit 软件 对所获得的测序结果序列进行全长拼接;ORF Finder 在线程序(http://www.ncbi.nlm.nih.gov/projects/gorf/) 预测开放阅读框,并获得编码的氨基酸序列;用 SMART(http://smart.embl-heidelberg.de/)及SingalP 4.1 信 号肽预测(http://www.cbs.dtu.dk/services/SignalP/)软 件对海蜇 Re-PLA<sub>2</sub>-1 进行蛋白结构域分析及信号肽 预测;用 ClustalW (http://www.ebi.ac.uk/clustalw/)进 行 Re-PLA<sub>2</sub>-1 与其他物种 PLA<sub>2</sub>氨基酸序列的多序列 比对。根据多序列比对结果,用 Mega 4.1 采用邻接法 (Neighbor-joining)构建 PLA<sub>2</sub>的系统进化树(Tamura *et al*, 2007)。

# 2 结果与分析

#### 2.1 Re-PLA<sub>2</sub>-1 基因的全长 cDNA 分析

将 3'-RACE 和 5'-RACE 获得的序列与 EST<sub>(isotig15581)</sub> 序列进行拼接,获得海蜇 Re-PLA<sub>2</sub>-1 基因的 cDNA 全长序列。Re-PLA<sub>2</sub>-1 的 cDNA 全长序列为 824 bp, 包括 48 bp 的 5'非编码区(5'UTR)、504 bp 的开放阅读 框(ORF)以及 272 bp 的 3'非翻译区(3'UTR),其中, 3'UTR 包括一个多腺苷酸 Poly(A)尾和一个多腺苷酸 化加尾信号 AATAAA (图 1)。Re-PLA<sub>2</sub>-1 为分泌蛋白, 信号肽由 19 个氨基酸组成,酶切后的成熟肽预测的 分子量和理论等电点分别为 18.93 kDa 和 7.79。

#### 2.2 Re-PLA<sub>2</sub>-1 的相似性和系统进化分析

BLAST 分析发现,预测的海蜇 Re-PLA<sub>2</sub>-1 与僧 袍芋螺的 PLA<sub>2</sub> 氨基酸序列相似性为 41%,与刺胞动 物门星状海葵(*Nematostella vectensis*)的 PLA<sub>2</sub> 氨基酸 序列 Nv10-Nv12 的相似性在 32%-34%之间。多序列 比对发现, Ca<sup>2+</sup>结合位点和组氨酸-天冬氨酸催化位 点在所有 PLA<sub>2</sub> pfam09056 成员推测的保守结构域严 格保守(图 2)。 1 CAATGCCTAATTGTCATCTGTTGTGGTGTCAAATTCTGAG GTTGTCACAATGCAAAGTTCTG

| 61 ( | GTT                                                             | СТС | CTC | TTT | TCC | ATC | тст | CTG | AAC | TTC | ATA | TTA | ACT | TGT | GGA | TGC | сст | TCG | GAT | ACA   |
|------|-----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| 5    | <u>v</u>                                                        | L   | L   | F   | S   | Ι   | S   | L   | N   | F   | Ι   | L   | Т   | С   | G   | С   | Р   | S   | D   | Т     |
| 121  | ΤT                                                              | GAC | CAA | CGG | TTG | CAG | TGT | ACC | AAT | CAA | TAG | CAC | ATC | GTT | TCC | ATA | CAA | GGT | CTT | CTTC  |
| 25   | L                                                               | Т   | N   | G   | С   | S   | V   | Р   | Ι   | N   | S   | Т   | S   | F,  | Р   | Y   | K   | V   | F   | F     |
| 181  | CA                                                              | TCC | AGC | TTG | CCA | GAG | ACA | TGA | TGT | TTG | СТА | TTC | TTG | cYg | GTC | AAA | TGC | ATA | GCT | GGTCA |
| 45   | Н                                                               | Р   | А   | С   | Q   | R   | Н   | D   | V   | С   | Y   | S   | С   | G   | Q   | M   | Н   | S   | W   | S     |
| 241  | AG                                                              | AGC | AAA | TTG | TGA | TTC | TGG | ATT | TTT | AAA | CGA | CAT | GAT | AGG | CAT | ATG | TAG | GAC | AAC | TAAC  |
| 65   | R                                                               | A   | Ν   | С   | D   | S   | G   | F   | L   | N   | D   | М   | Ι   | G   | Ι   | С   | R   | Т   | Т   | N     |
| 301  | 01 TCAAACTTACGAAAGCGACGCCATATTGAAGACTACATGCCGCTGCTTCGACACAAGCTG |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |       |
| 85   | S                                                               | N   | L   | R   | K   | R   | R   | Н   | Ι   | Е   | D   | Y   | M   | Р   | L   | L   | R   | Н   | K   | L     |
| 361  | AA                                                              | ACG | TAG | TAT | ACG | AGC | CAC | CGA | GCC | TGA | CGA | ТСТ | GGT | CTA | TGC | ATT | GTG | GGG | TAC | AGTG  |
| 105  | K                                                               | R   | S   | Ι   | R   | A   | ,T  | Е   | Р   | D   | D   | L   | V   | Y   | A   | L   | W   | G   | Т   | V     |
| 421  | TG                                                              | TGA | ATG | GGC | CGC | GGY | GAG | ССТ | ACT | ATC | AAA | CCG | TGC | GTT | TGT | TTG | GAA | CAA | AAC | ACTAT |
| 125  | С                                                               | Е   | W   | A   | A   | G   | A   | Y   | Y   | Q   | Т   | V   | R   | L   | F   | G   | Т   | K   | Н   | Y     |
| 481  | GA                                                              | CGA | CGT | TTC | ACC | TGC | CCA | CAT | ATG | CAT | TCA | CCA | ATG | TGC | TAT | AGA | CAA | TGG | TAC | CCCA  |
| 145  | D                                                               | D   | V   | S   | Р   | A   | Н   | Ι   | С   | Ι   | Н   | Q   | С   | A   | Ι   | D   | N   | G   | Т   | Р     |
| 541  | AA                                                              | CAT | CAG | CTG | AAC | TGC | TCA | ATG | TAT | TAT | CAC | AAC | ACT | AGA | AGA | TAA | ATT | AGC | CCA | GCAA  |
| 165  | N                                                               | Ι   | S   | *   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |       |
| 601  | ΤT                                                              | AAG | TGA | GCT | CGA | ТСТ | TGG | TGA | CAT | TAG | TGA | AGA | GCA | GAC | CAA | GAG | GCT | TGA | AGA | GTTT  |

- 661
   TTCAGCCAGAAAGCAAAGATTGGTGAGAATAAAGGATGAGGATTTTGAGACAATTGAAGAT

   721
   TTAGGGGCTGGCAATGGAGGAAGGTGGTGGCGAAAAGTCAGGCATAAGCCTTCAAAAAATTA
- 图 1 海蜇 Re-PLA<sub>2</sub>-1 基因全长 cDNA 及推测的氨基酸序列 Fig.1 Full-length Re-PLA<sub>2</sub>-1 cDNA of *R. esculentum* and the deduced amino acid sequence
- 注:下划实线表示信号肽;终止密码子用\*标出;方框表示 多聚腺苷酸加尾信号;3个内含子插入位点用Y标出 Note: The putative signal peptide was underlined. The asterisk (\*) indicated the stop codon and the classical polyadenylation signal was enclosed in a box. The arrow (Y) marked the insertion site of three introns

marked the insertion site of three

选择来自不同物种的 pfam09056 家族的 PLA<sub>2</sub>结构域,应用 MEGA 4.1 程序,采用邻接法构建系统进 化树见图 3。从图 3 可以看出, Re-PLA<sub>2</sub>-1 与僧袍芋 螺、星状海葵、长牡蛎(*Crassostrea gigas*)毒素 PLA<sub>2</sub> 聚为 GIX PLA<sub>2</sub>一支,与 GX Ⅲ、GX Ⅱ PLA<sub>2</sub>共聚为 pfam-collection,而其他家族共聚为 cd-collection。

#### 2.3 Re-PLA<sub>2</sub>-1 基因组结构分析

利用 5 对特异性引物扩增获得了 5 段首尾重叠的 Re-PLA<sub>2</sub>-1 基因组片段,将这些片段拼接获得了全长 为 2671 bp 的 RePLA<sub>2</sub> 基因组序列。利用 NCBI 上 Splign 内含子在线分析工具将 Re-PLA<sub>2</sub>-1 的 cDNA 与 基因组序列进行比对分析。结果显示,Re-PLA<sub>2</sub>-1 基因 组包含 4 个外显子和 3 个内含子(表 2、图 4)。4 个外显 子大小在 39–388 bp 之间,3 个内含子大小分别为 1003 bp、616 bp、494 bp。内含子的 A+T 含量在 62.15%-

| R.esculentu<br>C.magus<br>H.vulgaris<br>N.vectensis10<br>N.vectensis11<br>N.vectensis12<br>C.gigas1<br>C.gigas2<br>S.violaceoruber | N G<br>N G<br>N G<br>N G<br>N G<br>D G<br>D L | C S<br>C S<br>C S<br>C S<br>C S<br>C S<br>C S<br>C S<br>C S | V<br>V<br>I<br>V<br>V<br>V<br>V<br>Q | P<br>P<br>P<br>P<br>P<br>P<br>A | IN<br>FSLGC<br>GC<br>L-<br>PC | 1 S<br>1 -<br>2 -<br>2 -<br>1 -<br>2 -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | T<br>L<br>L<br>L<br>L<br>L<br>N | S<br>X<br>P<br>P<br>P<br>P<br>H<br>P | F<br>I<br>F<br>F<br>F<br>F<br>F | P<br>P<br>L<br>F<br>F<br>D<br>G | Y 1<br>C (<br>Y 1<br>Y 1<br>Y 1<br>Y 1<br>Y 1<br>Y 1<br>F 2 | K V<br>Q H<br>K I<br>K H<br>K I<br>E Z<br>P | / H | FI<br>KI<br>LI<br>LI<br>LI<br>LI<br>LI<br>LI<br>LI<br>LI<br>LI<br>LI<br>LI<br>LI<br>LI | F   H<br>F   I<br>F   I<br>F   T<br>F   T<br>F   T<br>F   T | H H<br>J A<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | A ()<br>A ()<br>A ()<br>A ()<br>A ()<br>A ()<br>A ()<br>A () |     | R<br>R<br>R<br>M<br>M<br>H<br>K<br>R |     | 0 0 0 0 0 0 0 0 × | V<br>T<br>V<br>V<br>V<br>M<br>V<br>F | C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y | S<br>H<br>R<br>R<br>H<br>D<br>R | -<br>-<br>-<br>N | -<br>-<br>-<br>-<br>Y | -<br>-<br>-<br>K |    | G C K<br>G K<br>F N K F N K<br>F N K F N K F N K<br>F N K F N K F N K<br>F N K F N K<br>F N K F N K F N K<br>F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F N K F | ) M<br>L H<br>L M<br>L V<br>V V<br>V V<br>V V<br>V V<br>I V<br>L R<br>L R | H<br>F<br>H<br>F<br>F<br>F<br>F<br>F | S<br>G<br>N<br>D<br>G<br>G<br>G<br>D | W<br>F<br>W<br>W<br>W<br>I<br>Y<br>A | S<br>K<br>T<br>E<br>K<br>K<br>K<br>D<br>N | R<br>Q<br>R<br>K<br>K<br>K<br>R<br>R<br>K | A<br>D<br>N<br>D<br>A<br>E<br>S<br>S | N Q<br>Q<br>D<br>S<br>P<br>T<br>C<br>R |    |    | G<br>A<br>S<br>K<br>V<br>V<br>I<br>A | F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F | L 4<br>F 4<br>W 4<br>K 4<br>L 4<br>Y 4 | 17<br>15<br>16<br>16<br>16<br>16<br>16<br>16<br>15 |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|--------------------------------------|---------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|---------------------------------|---------------------------------|-------------------------------------------------------------|---------------------------------------------|-----|----------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----|--------------------------------------|-----|-------------------|--------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|------------------|-----------------------|------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|----------------------------------------|----|----|--------------------------------------|-------------------------------------------|----------------------------------------|----------------------------------------------------|
| R esculentum                                                                                                                       | ND                                            | МΙ                                                          | S                                    | П                               | C R                           | т 1                                                                                                     | т                               | N                                    | S                               | N                               | L 1                                                         | RI                                          | C F | s I                                                                                    | εF                                                          | Ŧ                                                                                                         | F                                                                                           | зτ                                                           | ) Y | 'N                                   | ſP  | L                 | L                                    | R                                                                                           | н                                    | к                               | L                | к                     | R                | S  | I R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A                                                                         | т                                    | Е                                    | Р                                    | D                                         | D                                         | Ľ                                    | v                                      | YA | ۱. | w                                    | G                                         | т (                                    | <b>ə</b> 7                                         |
| C.magus                                                                                                                            | RD                                            | ΜТ                                                          | Ă                                    | Ē.                              | C A                           | Ч                                                                                                       | Ĝ                               | т                                    | Ď                               | D                               | E (                                                         | G                                           | 20  | 21                                                                                     | P 3                                                         | ζ.Α                                                                                                       | Ā                                                                                           | ٦<br>١                                                       |     | -                                    |     | -                 | -                                    | -                                                                                           | -                                    | -                               | -                | -                     | -                | -  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                         | -                                    | -                                    | -                                    | -                                         | -                                         | -                                    |                                        |    |    | -                                    | -                                         | - (                                    | 57                                                 |
| H.vulgaris                                                                                                                         | KN                                            | ΜL                                                          | Т                                    | L                               | C C                           | L                                                                                                       | -                               | ĸ                                    | E                               | D                               | FI                                                          | ĸı                                          | 10  | G H                                                                                    | ζC                                                          | ) ]                                                                                                       | r s                                                                                         | Ϋ́́Ν                                                         | ı v | s                                    | -   | -                 | -                                    | -                                                                                           | -                                    | _                               | -                | -                     | -                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                         | -                                    | -                                    | -                                    | _                                         | -                                         | -                                    |                                        |    |    | -                                    | -                                         | - (                                    | 59                                                 |
| N.vectensis10                                                                                                                      | ΕN                                            | МΥ                                                          | F                                    | L                               | CE                            | G                                                                                                       | 0                               | Y                                    | G                               | Т                               | ΡJ                                                          | DI                                          | ) F | HI                                                                                     |                                                             | ) k                                                                                                       | C F                                                                                         | ₹F                                                           | Ľ   | W                                    | / N | K                 | 0                                    | к                                                                                           | -                                    | -                               | -                | -                     | -                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                         | -                                    | -                                    | -                                    | -                                         | -                                         | -                                    |                                        |    |    | -                                    | -                                         | - 1                                    | 74                                                 |
| N.vectensis11                                                                                                                      | A N                                           | мγ                                                          | S                                    | L                               | СК                            | Ε                                                                                                       | ĸ                               | Y                                    | G                               | P                               | s                                                           |                                             |     |                                                                                        | - 5                                                         | 5 1                                                                                                       | / H                                                                                         | FF                                                           | εv  | R                                    | -   | -                 | -                                    | -                                                                                           | -                                    | -                               | -                | -                     | -                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                         | -                                    | -                                    | -                                    | -                                         | -                                         | -                                    |                                        |    |    | -                                    | -                                         | - (                                    | 56                                                 |
| N.vectensis12                                                                                                                      | GN                                            | мγ                                                          | ' I                                  | L                               | CΕ                            | εк                                                                                                      | K                               | Y                                    | ĸ                               | v                               | P                                                           | G                                           | I   | ΕJ                                                                                     | FC                                                          | 3 5                                                                                                       | S F                                                                                         | FF                                                           | εv  | Y                                    | · _ | -                 | -                                    | -                                                                                           | -                                    | -                               | -                | -                     | -                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                         | -                                    | -                                    | -                                    | -                                         | -                                         | -                                    |                                        |    |    | -                                    | -                                         | - 1                                    | 70                                                 |
| C.gigas1                                                                                                                           | ΟN                                            | MR                                                          | Ō                                    | 0                               | C S                           | 5 -                                                                                                     | -                               | I                                    | ĸ                               | H                               | L :                                                         | F S                                         | 5 ( | CH                                                                                     | < 3                                                         | 7                                                                                                         | r s                                                                                         | s -                                                          | _   | -                                    | -   | -                 | -                                    | -                                                                                           | -                                    | -                               | -                | -                     | -                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                         | -                                    | -                                    | -                                    | -                                         | -                                         | -                                    |                                        |    |    | -                                    | -                                         | - (                                    | 55                                                 |
| C.gigas2                                                                                                                           | ŇН                                            | мL                                                          | À                                    | Ť                               | СЛ                            | G                                                                                                       | -                               | K                                    | к                               | R                               | Ľ                                                           | v ı                                         | 10  | с                                                                                      | ЪF                                                          | I S                                                                                                       | 5 A                                                                                         | ٩.                                                           | -   | -                                    | -   | -                 | -                                    | -                                                                                           | -                                    | -                               | -                | -                     | -                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                         | -                                    | -                                    | -                                    | -                                         | -                                         | -                                    |                                        |    |    | -                                    | -                                         | - (                                    | 55                                                 |
| S.violaceoruber                                                                                                                    | ΕD                                            | ΜK                                                          | R                                    | V                               | СI                            | G                                                                                                       | Y                               | Т                                    | G                               | Εl                              | K I                                                         | N I                                         | ſ A | 4 (                                                                                    | Èм                                                          | 1 5                                                                                                       | 5 1                                                                                         | Г-                                                           | -   | -                                    | -   | -                 | -                                    | -                                                                                           | -                                    | -                               | -                | -                     | -                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                         | -                                    | -                                    | -                                    | -                                         | -                                         | -                                    |                                        |    |    | -                                    | -                                         | - (                                    | 58                                                 |
|                                                                                                                                    | -                                             |                                                             |                                      | _                               |                               |                                                                                                         |                                 |                                      |                                 |                                 |                                                             |                                             |     |                                                                                        |                                                             |                                                                                                           |                                                                                             |                                                              |     |                                      |     |                   |                                      |                                                                                             |                                      |                                 |                  |                       |                  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                           |                                      |                                      |                                      |                                           |                                           |                                      |                                        |    |    |                                      |                                           |                                        |                                                    |
| R.esculentum                                                                                                                       | VC                                            | ΕW                                                          | Ι Α                                  | Α                               | GΑ                            | Y                                                                                                       | $ \mathbf{Y} $                  | Q                                    | Т                               | V                               | R I                                                         | LI                                          | 7 ( | 3 C                                                                                    | Γŀ                                                          | Κŀ                                                                                                        | ŦΥ                                                                                          | ΥĽ                                                           | D   | v                                    | 'S  | Р                 | Α                                    | -                                                                                           | -                                    | -                               | -                | -                     | -                | -  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                         | -                                    | -                                    |                                      |                                           |                                           |                                      |                                        |    |    |                                      |                                           |                                        | 124                                                |
| C.magus                                                                                                                            | - C                                           | ΤН                                                          | W                                    | Α                               | LI                            | Y                                                                                                       | F                               | ĸ                                    | Т                               | v                               | Q I                                                         | LI                                          | 7 ( | ΞV                                                                                     | V X                                                         | K F                                                                                                       | ŦŦ                                                                                          | FΝ                                                           | ΙY  | Q                                    | v v | D                 | Α                                    | Т                                                                                           | Y                                    | $\mathbf{C}$                    | Р                | Q                     | F                | QJ | 2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M                                                                         | P                                    | х                                    |                                      |                                           |                                           |                                      |                                        |    |    |                                      |                                           |                                        | 105                                                |
| H.vulgaris                                                                                                                         | IW                                            | ΕK                                                          | L                                    | Κ                               | s١                            | / F                                                                                                     | Y                               | Ι                                    | A                               | S (                             | Q I                                                         | LI                                          | 7.  |                                                                                        |                                                             |                                                                                                           |                                                                                             |                                                              | -   | -                                    | -   | -                 | -                                    | -                                                                                           | -                                    | -                               | -                | -                     | -                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                         | -                                    | -                                    |                                      |                                           |                                           |                                      |                                        |    |    |                                      |                                           | 5                                      | 35                                                 |
| N.vectensis10                                                                                                                      | MCI                                           | ΝK                                                          | V                                    | A                               | DC                            | βY                                                                                                      | Η                               | Т                                    | Α                               | V                               | QI                                                          | M 1                                         | 7 ( | ÷ č                                                                                    |                                                             |                                                                                                           |                                                                                             |                                                              | -   | -                                    | -   | -                 | -                                    | -                                                                                           | -                                    | -                               | -                | -                     | -                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                         | -                                    | -                                    |                                      |                                           |                                           |                                      |                                        |    |    |                                      |                                           | 9                                      | <del>)</del> 1                                     |
| N.vectensis11                                                                                                                      | IC                                            | RR                                                          | A                                    | A I                             | DC                            | βY                                                                                                      | н                               | L                                    | Α                               | V.                              | A 1                                                         | K I                                         | 0   | 3 ·                                                                                    |                                                             |                                                                                                           |                                                                                             |                                                              | -   | -                                    | -   | -                 | -                                    | -                                                                                           | -                                    | -                               | -                | -                     | -                | -  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                         | -                                    | -                                    |                                      |                                           |                                           |                                      |                                        |    |    |                                      |                                           | 5                                      | 33                                                 |
| N.vectensis12                                                                                                                      | LCI                                           | ΚL                                                          | , Α                                  | A                               | D-                            | L                                                                                                       | Υ                               | Т                                    | K                               | V,                              | A I                                                         | K 1                                         | Γ.  |                                                                                        |                                                             |                                                                                                           |                                                                                             |                                                              | -   | -                                    | -   | -                 | -                                    | -                                                                                           | -                                    | -                               | -                | -                     | -                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                         | -                                    | -                                    |                                      |                                           |                                           |                                      |                                        |    |    |                                      |                                           | - 8                                    | 35                                                 |
| C.gigas1                                                                                                                           |                                               |                                                             | -                                    | - ,                             | ΑI                            | . Y                                                                                                     | Y                               | Κ                                    | v                               | V                               | R                                                           |                                             |     |                                                                                        |                                                             |                                                                                                           |                                                                                             |                                                              | -   | -                                    | -   | -                 | -                                    | -                                                                                           | -                                    | -                               | -                | -                     | -                | -  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                         | -                                    | -                                    |                                      |                                           |                                           |                                      |                                        |    |    |                                      |                                           |                                        | 73                                                 |
| C.gigas2                                                                                                                           |                                               |                                                             | -                                    | - 1                             | ΕI                            | F                                                                                                       | W                               | S                                    | Α                               | V I                             | R                                                           | V (                                         | 3 A | <b>A</b> .                                                                             |                                                             |                                                                                                           |                                                                                             |                                                              | -   | -                                    | -   | -                 | -                                    | -                                                                                           | -                                    | -                               | -                | -                     | -                | -  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                         | -                                    | -                                    |                                      |                                           |                                           |                                      |                                        |    |    |                                      |                                           |                                        | 76                                                 |
| S.violaceoruber                                                                                                                    |                                               |                                                             | -                                    | A                               | ТW                            | Y                                                                                                       | $ \mathbf{Y} $                  | Q                                    | Α                               | V I                             | ĸ                                                           | IJ                                          | 5.  |                                                                                        |                                                             |                                                                                                           | • •                                                                                         |                                                              | -   | -                                    | -   | -                 | -                                    | -                                                                                           | -                                    | -                               | -                | -                     | -                |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                         | -                                    | -                                    |                                      |                                           |                                           |                                      |                                        |    |    |                                      |                                           |                                        | 79                                                 |
|                                                                                                                                    |                                               | _                                                           |                                      |                                 |                               | _                                                                                                       |                                 |                                      |                                 |                                 |                                                             |                                             |     |                                                                                        |                                                             |                                                                                                           |                                                                                             |                                                              |     |                                      |     |                   |                                      |                                                                                             |                                      |                                 |                  |                       |                  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                           |                                      |                                      |                                      |                                           |                                           |                                      |                                        |    |    |                                      |                                           |                                        |                                                    |

图 2 海蜇 Re-PLA<sub>2</sub>-1 与其他 pfam09056 家族 PLA<sub>2</sub>s 结构域氨基酸多序列比对 Fig.2 Multiple sequence alignment between *R. esculentum* Re-PLA<sub>2</sub>-1 and PLA<sub>2</sub>s from other species

注: 黑色表示相同氨基酸, 灰色表示相似氨基酸; \*和#分别表示 PLA<sub>2</sub>结构域的 Ca<sup>2+</sup>结合位点和组氨酸-天冬氨酸催化位点 Note: The black shadowing showed identical amino acids and the gray shadowing indicated similar amino acids. The asterisk (\*) and pound sign (#) indicated a calcium-binding site and the His-Asp catalytic active sites of a PLA<sub>2</sub> domain respectively

67.60%之间,而外显子的 A+T 含量在 53.46%-61.08% 之间,明显高于外显子。预测的 PLA<sub>2</sub>结构域活性中 心"组氨酸-天冬氨酸"(HD)二聚体和 Ca<sup>2+</sup>结合位点 天冬氨酸(D)被第 2 个内含子分隔在第 2、3 外显子中。 所有内含子--外显子边界均符合"AT-CG"剪切规则, 按照内含子分型原则,内含子类型分别属于 0 型和 1 型(表 2)。

#### 2.4 Re-PLA<sub>2</sub>-1 mRNA 的表达分析

采用实时荧光定量 PCR 技术分析了 Re-PLA<sub>2</sub>-1 mRNA 在海蜇不同发育阶段的表达见图 5。从图 5 可 以看出, Re-PLA<sub>2</sub>-1 基因在海蜇的螅状体、横裂体、 碟状体和稚水母 4 个发育阶段均有表达, 但存在着明 显的表达差异。其中, 横裂体阶段表达量最高, 碟状 体阶段表达量最低, 横裂体、螅状体和水母体阶段的 表达分别为碟状体阶段表达的 12.2、7.6 和 5.5 倍。

### 3 讨论

分泌型磷脂酶(sPLA<sub>2</sub>s)是一类分子量小(14–17 kDa)、 由二硫键连接的分泌蛋白,其催化活性依赖于微摩尔 的 Ca<sup>2+</sup>存在。根据分子结构的差异, sPLA<sub>2</sub>s 可以分成 15 个组(Groups, G)和许多亚组(Sub-Groups) (Six *et al*, 2000)。近年来, Nevalainen 等(2012)、Punta 等(2011) 根据保守结构域将 sPLA<sub>2</sub>s 分成 cd-collection 和 pfamcollection 两大类群。sPLA<sub>2</sub>s 家族在进化上出现较早, 从低等微生物到高等脊椎动物均有发现,尽管氨基酸 序列差异较大,但 Ca<sup>2+</sup>结合环、催化活性位点在不同 家族 sPLA<sub>2</sub>s 都严格保守,这说明 sPLA<sub>2</sub>s 在不同生物 的生命过程中都起关键作用(Nevalainen *et al*, 2012)。

海蜇 Re-PLA<sub>2</sub>-1 具有 sPLA<sub>2</sub>s 的典型特征:磷脂 酶 Pfam09056 家族严格保守的 Ca<sup>2+</sup>结合位点和催化 活性中心 "HD" 二聚体(图 3)。多序列比对和系统进 化分析结果都表明, Re-PLA<sub>2</sub>-1 不但与僧袍芋螺 PLA<sub>2</sub> 具有较高的相似性(41%),而且与僧袍芋螺、长牡蛎、 水螅等聚类于 GIX 一簇, 说明 Re-PLA<sub>2</sub>-1 也是 pfam09056 GIX PLA2家族成员之一。目前,在僧袍 芋螺中发现的磷脂酶 A2 是唯一确定的 pfam09056 GIX PLA<sub>2</sub>s 的成员, 但其三维结构还未见报道(McIntosh et al, 1995; Nevalainen et al, 2013)。因此, GIX家族磷 脂酶 Ca<sup>2+</sup>结合及催化活性中心结构域均基于已知三 维结构的紫红链霉菌(Streptomyyce violaceoruber) pfam09056 GIV PLA2s 进行预测(Sugiyama et al, 2002)。 紫红链霉菌 PLA2s N 端天冬氨酸(Asp)和亮氨酸(Leu) 共同参与 Ca<sup>2+</sup>的结合, 而刺胞动物 PLA<sub>2</sub>s 则衍变为天 冬酰胺(Asn)和甘氨酸(Gly),这一变化的具体生物学 意义目前还不清楚(Nevalainen et al, 2012)。Re-PLA<sub>2</sub>-1 含有 11 个半胱氨酸(Cys), 能形成 5 对二硫 键。在以"HD"二聚体为核心的催化位点具有 GIX



图 3 基于邻接法的 PLA<sub>2</sub> 氨基酸序列的系统进化树 Fig.3 Phylogenetic tree of PLA<sub>2</sub> based on neighbor-joining method

|      | Tab.2 Intron/exon lengths, splice junctions, and intron types of Re-PLA <sub>2</sub> -1 |           |                |                       |                |  |  |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------|-----------|----------------|-----------------------|----------------|--|--|--|--|--|--|--|--|
| 外显子  | 外显子长度                                                                                   | 剪切位点 S    | plice junction | 内含子长度                 | 内含子类型          |  |  |  |  |  |  |  |  |
| Exon | Length of exon (bp)                                                                     | 3'        | 5'             | Length of intron (bp) | Type of intron |  |  |  |  |  |  |  |  |
| 1    | -39                                                                                     | _         | GAGgtaagt      | 1003                  | _              |  |  |  |  |  |  |  |  |
| 2    | 180                                                                                     | ttgaagGTT | TGCgtacgt      | 616                   | 0              |  |  |  |  |  |  |  |  |
| 3    | 217                                                                                     | ttttagGGT | CGGgtaggt      | 494                   | 1              |  |  |  |  |  |  |  |  |
| 4    | 388                                                                                     | tttcagGAG | _              | -                     | _              |  |  |  |  |  |  |  |  |
|      |                                                                                         |           |                |                       |                |  |  |  |  |  |  |  |  |

表 2 Re-PLA<sub>2</sub>-1 内含子/外显子长度、剪切位点及内含子类型



图 4 海蜇 Re-PLA<sub>2</sub>-1 基因组结构分布 Fig.4 Genomic organization of R. esculentum Re-PLA2-1

注:黑色方块代表外显子,黑色粗线代表内含子;数字代表外显子和内含子的位置和大小(bp)

Note: The black block showed exon and the black thick line indicatd intron. The number marked the site and size of of the exon and intron



developmental stages of R. esculentum

\*\* were considered to be extremely significant differences

PLA<sub>2</sub> pfam09056 家族成员保守氨基酸序列(Ala/ Ser-Cys-X-X-His-Asp-X-Cys-Tyr-X-Cys)的特征,其 中, Ca<sup>2+</sup>结合结构域缺失, Ca<sup>2+</sup>的结合可能也是由 N 端的 Asn 和 Gly 共同介导完成的(Nevalainen et al, 2012)

sPLA<sub>2</sub>在动物中广泛存在,但不同种类的 sPLA<sub>2</sub> 基因组结构差异明显。人的 GⅡA 磷脂酶 A2基因组 中均含 5 个外显子 4 个内含子(Seilhamer et al, 1989), 而 G I B 磷脂酶的基因组中却含有 4 个外显子和 3 个 内含子(Jeyaseelan et al, 2000)。同时,同一家族的 sPLA<sub>2</sub>在不同物种中其基因组结构也不相同。蜜蜂 (Apis mellifera)和蝎子(Anuroctonus phaiodactylus)的

GⅢ磷脂酶的基因组均含有4个外显子,人的则有7个 外显子, 而果蝇(Drosophila melanogaster)的GⅢ磷脂 酶 A<sub>2</sub>具有 2-6 个不等的外显子个数(Valdez-Cruz et al, 2007; Xin et al, 2009)。海蜇 Re-PLA2-1 与 G I B 磷脂 酶基因组结构相似,均具有4个外显子和3个内含子, 说明海蜇 Re-PLA<sub>2</sub>-1 可能具有某些与GI 磷脂酶相似 的基因组进化方式(Jeyaseelan et al, 2000)。

PLA<sub>2</sub>s 种类众多, 其表达模式和分布随着发育过 程发生改变。小鼠(Muroidea sp.)的GIB、GIA、GI D、GIIE、GIIF、GV和GX sPLA<sub>2</sub>s在其胃肠道中 均有表达,但在其他组织中分布不同(Eerola et al, 2006)。意大利蜂毒 PLA<sub>2</sub>的表达随其日龄和季节发生 而变化,如其羽化早期毒囊内表达量很低,羽化后的 8-10d 表达量急剧增加,并在随后的成年期保持不变 (Owen et al, 1990)。本研究发现, Re-PLA<sub>2</sub>-1 在海蜇 生活史各时期均有表达,其中,横裂体阶段表达量最 高,碟状体表达量最低,2个阶段的表达量相差高达 12 倍。不同发育阶段 Re-PLA<sub>2</sub>-1 的表达差异可能与 海蜇在不同发育阶段的摄食方式有关。研究表明,海 蜇不同发育阶段具有不同的摄食方式,螅状体依靠触 手捕获食物,碟状体依靠缘瓣捕获食物,而水母体则 依靠口腕和肩板表面上的吸口完成(刘春洋等, 2011)。 而利用免疫组化的方法定位地中海水母磷脂酶毒素的 分泌部位发现,其磷脂酶毒素是由刺丝囊分泌的(Sher et al, 2005), 而刺丝囊素作为水母的捕食和防御的重 要武器,在其生活史的不同发育阶段均具有重要作

<sup>\*\*</sup> 为差异极显著

用。因此,海蜇 Re-PLA<sub>2</sub>-1 尽管在不同发育阶段的表 达模式不同,但均在海蜇捕食、防御和食物消化中具有 重要作用。

## 参考文献

- 于华华, 刘希光, 刘松, 等. 水母毒素的研究现状. 海洋科学, 2003, 27(11): 27-29
- 刘春洋, 王彬, 李轶平, 等. 海蜇不同生长阶段的摄食方式和 摄食习性. 水产科学, 2011, 30(8): 491-494
- 周春娅,朱玲,潘滢,等. 海蜇(*Rhopilema esculentum*)Wnt5 基因: cDNA 克隆、基因组结构与表达. 海洋与湖沼, 2013, 44(4): 1115-1122
- Eerola LI, Surrel F, Nevalainen TJ, *et al.* Analysis of expression of secreted phospholipases A<sub>2</sub> in mouse tissues at protein and mRNA levels. Biochim Biophys Acta, 2006, 1761(7): 745–756
- Feng L, Manabe K, Shope JC, *et al.* A real-time fluorogenic phospholipase A<sub>2</sub> assay for biochemical and cellular activity measurements. Chem Biol, 2002, 9(7): 795–803
- Glaser KB, Mobilio D, Chang JY, et al. Phospholipase A<sub>2</sub> enzymes: Regulation and inhibition. Trends Pharmacol Sci , 1993, 14(3): 92–98
- Jeyaseelan K, Armugam A, Donghui M, *et al.* Structure and phylogeny of the venom group I phospholipase A<sub>2</sub> gene. Mol Biol Evol, 2000, 17(7): 1010–1021
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the  $2^{-\Delta\Delta Ct}$  method. Methods, 2001, 25(4): 402–408
- Martins RD, Alves RS, Martins AMC, et al. Purification and characterization of the biological effects of phospholipase A<sub>2</sub> from sea anemone *Bunodosoma caissarum*. Toxicon, 2009, 54(4): 413–420
- McIntosh JM, Ghomashchi F, Gelb MH, *et al.* Conodipine-M, a novel phospholipase A<sub>2</sub> isolated from the venom of the marine snail *Conus magus.* J Biol Chem, 1995, 270(8): 3518– 3526
- Nevalainen TJ, Cardoso JCR. Conservation of group XII phospholipase A<sub>2</sub> from bacteria to human. Comp Biochem Phys D: Genomics Proteomics, 2012, 7(4): 340–350
- Nevalainen TJ, Peuravuori HJ, Quinn RJ, *et al.* Phospholipase A<sub>2</sub> in cnidaria. Comp Biochem Phys B: Biochem Mol Biol, 2004a, 139(4): 731–735

Nevalainen TJ, Quinn RJ, Hooper JNA. Phospholipase A2 in

porifera. Comp Biochem Phys B: Biochem Mol Biol, 2004b, 137(3): 413–420

- Nevalainen TJ, Morgado I, Cardoso JCR. Identification of novel phospholipase A<sub>2</sub> group IX members in metazoans. Biochimie, 2013, 95(8): 1534–1543
- Owen MD, Pfaff LA, Reisman RE, *et al.* Phospholipase A<sub>2</sub> in venom extracts from honey bees (*Apis mellifera* L.) of different ages. Toxicon, 1990, 28(7): 813–20
- Punta M, Coggill PC, Eberhardt RY, et al. The Pfam protein families database. Nucleic Acids Res, 2011, 40(D1): 290– 301
- Razpotnik A, Krizaj I, Sribar J, et al. A new phospholipase A<sub>2</sub> isolated from the sea anemone Urticina crassicornis - its primary structure and phylogenetic classification. FEBS J, 2010, 277(12): 2641–2653
- Seilhamer JJ, Pruzanski W, Vadas P, et al. Cloning and recombinant expression of phospholipase A<sub>2</sub> present in rheumatoid arthritic synovial fluid. J Biol Chem, 1989, 264(10): 5335–5338
- Sher D, Knebel A, Bsor T, et al. Toxic polypeptides of the hydra —a bioinformatic approach to cnidarian allomones. Toxicon, 2005, 45(7): 865–879
- Six DA, Dennis EA. The expanding superfamily of phospholipase A<sub>2</sub> enzymes: Classification and characterization. Biochim Biophys Acta, 2000, 1488(1–2): 1–19
- Sugiyama M, Ohtani K, Izuhara M, et al. A novel prokaryotic phospholipase A<sub>2</sub>: Characterization, gene cloning, and solution structure. J Biol Chem, 2002, 277(22): 20051– 20058
- Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24(8): 1596–1599
- Valdez-Cruz NA, Segovia L, Corona M, et al. Sequence analysis and phylogenetic relationship of genes encoding heterodimeric phospholipases A<sub>2</sub> from the venom of the scorpion Anuroctonus phaiodactylus. Gene, 2007, 396(1): 149–158
- Vandesompele J, Preter KD, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 2002, 3(7): 1–11
- Xin Y, Choo YM, Hu ZG, *et al.* Molecular cloning and characterization of a venom phospholipase A<sub>2</sub> from the bumblebee *Bombus ignitus*. Comp Biochem Phys B: Biochem Mol Biol, 2009, 154(2): 195–202

(编辑 陈严)

# cDNA, Genome Cloning, and mRNA Expression of Phospholipase A<sub>2</sub> Gene from the *Rhopilema Esculentum*

YANG Hong<sup>1,2</sup>, ZHU Ling<sup>1,30</sup>, LUO Xiaorui<sup>1,2</sup>, ZHOU Chunya<sup>1,3</sup>, ZHUANG Zhimeng<sup>1,3</sup>

(1. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071; 2. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306; 3. Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071)

Abstract The cDNA and gene of phospholipase A2 (Re-PLA2-1) of Rhopilema esculentum were cloned using RACE, and the mRNA expression was monitored at different developmental stages with quantitative real-time PCR analysis. The full-length cDNA of Re-PLA<sub>2</sub>-1 was 824 bp, containing a 5'-untranslated region (5'-UTR) of 48 bp, an open reading frame (ORF) of 504 bp, and a 3'- untranslated region (3'-UTR) of 272 bp. SMART analysis showed that Re-PLA<sub>2</sub>-1 was a secreted protein, including a putative signal peptide consisting of 19 amino acid residues and a domain of phospholipase  $A_2$ . The deduced amino acid sequence of Re-PLA<sub>2</sub>-1 was highly similar to those of PLA<sub>2</sub>s from Conus magus, Nematostella vectensis, Crassostrea gigas and so on, and they could form a cluster of pfam09056 GIX PLA<sub>2</sub> revealed by the multiple sequence alignment and phylogenetic analysis. They shared the essential features of pfam09056 PLA<sub>2</sub>s family, including a calcium-binding site, the catalytic active sites, and a PLA<sub>2</sub> domain, which perfectly corresponds to the conserved disulfide-bonded cysteine residues involved in the formation of the internal disulfide. The size of Re-PLA<sub>2</sub>-1 gene was 2671 bp that included four exons and three introns. Quantitative real-time PCR analysis revealed that the expression of Re-PLA<sub>2</sub>-1 mRNA occurred in all four developmental stages. The expression was the highest in strobila and the lowest in ephyra. These results contributed to further understanding the biological function of  $PLA_2$  in R. esculentum.

Key words Rhopilema esculentum; Phospholipases A<sub>2</sub>; cDNA; Genome; Expression analysis

① Corresponding author: ZHU Ling, E-mail: zhuling@ysfri.ac.cn