DOI: 10.19663/j.issn2095-9869.20211116001

路加, 郭栋, 余思湉, 李文涛, 张沛东. 荣成天鹅湖海草床及其邻近裸沙区浮游生物的时空变化特征. 渔业科学进展, 2023, 44(4): 12-25

LU J, GUO D, YU S T, LI W T, ZHANG P D. Spatial-temporal variation of characteristics of plankton in a seagrass bed and an adjacent area of bare sand in Swan Lake, Rongcheng, China. Progress in Fishery Sciences, 2023, 44(4): 12–25

荣成天鹅湖海草床及其邻近裸沙区 浮游生物的时空变化特征^{*}

路 加1 郭 栋2 余思湉1 李文涛1 张沛东10

(1. 中国海洋大学海水养殖教育部重点实验室 山东 青岛 266003;2. 辽宁省海洋水产科学研究院 辽宁 大连 116023)

摘要 海草床是近海典型生态系统之一,为了解山东省荣成市天鹅湖鳗草(Zostera marina)海草床 及其邻近裸沙区的浮游生物群落结构及时空变化特征,于2019年2月、5月、8月和11月,对天 鹅湖鳗草海草床及其邻近裸沙区的浮游生物、海草床生态学特征及关键环境因子进行了周年调查, 并应用典范对应分析(CCA)和冗余分析(RDA)探究了环境因子对浮游生物优势种的影响。结果显示, 共发现浮游植物38种,隶属3门25属,其中,硅藻门(Bacilariophyta)种类最多(89.4%),甲藻门 (Dinophyta)次之(7.8%);共发现浮游动物18种,幼虫3类,以甲壳动物(71.4%)为主;浮游生物种 类数呈现显著的季节变化,且在11月达到最大值;海草床浮游植物和浮游动物的年平均丰度分别 为5.4×10⁴ cells/m³和1.6×10⁴ ind./m³,是裸沙区浮游植物和浮游动物车平均丰度的1.4倍和1.5倍; 典范对应分析和冗余分析显示,海草床浮游生物优势种主要与水温、海草床的植株密度及生物量显 著相关,而裸沙区浮游生物优势种则主要与水温、pH 值及氨氮含量等环境因子显著相关。结果表 明,天鹅湖海草床相比裸沙区具有更丰富的浮游生物。本研究为深入了解海草床生态系统的结构和 功能提供了基础数据。

关键词 海草床; 浮游植物; 浮游动物; 群落结构; 环境因子; 天鹅湖 中图分类号 Q-9 文献标识码 A 文章编号 2095-9869(2023)04-0012-14

海草床是滨海三大典型生态系统之一,不仅可以 吸收营养盐、改善水质,还能固定底质、抵抗风浪、 保护海岸,亦可为许多动物提供栖息地、繁育场所和 食物来源,对浅海海岸和河口生态系统具有极其重要 的意义(Fonseca *et al*, 1992; Edgar *et al*, 1994; Moore, 2004; Unsworth *et al*, 2019)。浮游生物作为水域生态 系统重要的生物组分,是鱼类等水生动物的天然饵 料,也是水体营养物质生产和传输的重要环节,对维 持食物网的复杂性和稳定性具有重要作用(Tang et al, 2019)。海草床作为重要的育幼场所,为多种海洋生物提供丰富的食物来源,主要包括以浮游植物为代表的初级生产者和以初级生产者为食的浮游动物 (Nakamura et al, 2005; Lugendo et al, 2006; Gullström et al, 2011; Park et al, 2013)。

研究发现,海草床显著影响浮游生物的群落结构。如,Ambo-Rappe (2011)研究表明,印度尼西亚

① 通信作者:张沛东,教授, E-mail: zhangpdsg@ouc.edu.cn

^{*}国家重点研发计划(2019YFD0901302)和国家自然科学基金(42076100)共同资助。路 加, E-mail: lj1761615@163.com

收稿日期: 2021-11-16, 收修改稿日期: 2021-11-30

Barrang Lompo 岛附近海菖蒲(Enhalus acoroides)海草 床和卵叶喜盐草(Halophila ovalis)海草床的浮游植物 多样性指数是邻近裸沙区的 1.7 倍; Lo 等(2020)研究 发现,马来西亚 Limau-limauan 海域海菖蒲海草床的 浮游动物丰度是邻近裸沙区的 1.5 倍以上。海草叶片 是大量附生植物的优良附着基,这些附生植物是端目 类和桡足类等众多浮游动物的重要食物来源,而浮游 动物又被海草床的鱼类等更高营养级动物所捕食 (Jernakoff et al, 1998; Beck et al, 2001; Heck et al, 2003; Blandon et al, 2014)。因此,海草床的植株密度 和生物量等生态特征决定了海草生境结构的复杂性,也 显著影响浮游生物的群落结构(Azmi et al, 2016; Metillo et al, 2019)。目前为止,相关研究大多集中于热带海草 床生境,以温带海草床生境为研究区域的报道还很少。

为查明温带海草床及其邻近裸沙区浮游生物群 落结构的时空变化特征,本研究选取荣成天鹅湖鳗草 (Zostera marina)海草床及其邻近裸沙区,通过对浮游 生物群落结构、鳗草生物量和植株密度以及关键环境 因子的周年调查,对比分析海草床及其邻近裸沙区浮 游生物群落结构的时空分布差异,探讨浮游生物群落 与鳗草海草床生态学特征及关键环境因子的相关性, 以期为深入了解海草床的生态功能、实现海草生境的 科学保护提供理论支持。

1 材料与方法

1.1 研究区域与站位布设

天鹅湖(37.34°~37.36°N, 122.56°~122.58°E)位于 山东半岛最东端,面积约为 4.8 km²,是一个半封闭 的海湾泻湖,湖东南部的狭长潮汐汊道与外海相通, 湖区平均水深小于 2 m (帅莉等, 2003; Zhang et al, 2015)。湖内分布有鳗草和日本鳗草(Zostera japonica) 2 种海草,其中鳗草为优势种,主要分布于天鹅湖中 央部分的潮下带和潮间带区域,形成大面积海草床 (刘建影等, 2017)。

2019 年 2 月、5 月、8 月和 11 月,对天鹅湖海 草床及其邻近裸沙区的浮游生物、关键环境因子和海 草床生态特征进行了调查。根据天鹅湖生境类型,共 设置 8 个站位,其中,C1、C2、C3 和 C4 位于鳗草 海草床,S1、S2、S3 和 S4 位于邻近裸沙区(图 1)。

1.2 样品采集及处理

1.2.1 浮游生物 浮游生物的采集按照《海洋调查规范》(GB/T 12763-2007)进行,其中,浮游植物使用 浅水Ⅲ型浮游生物网(网口面积 0.1 m²,筛孔 77 μm) 由底至表进行垂直拖网,样品用鲁哥氏液现场固定; 浮游动物使用浅水 I 型浮游生物网(网口面积 0.2 m², 孔径 0.5 mm)由底至表垂直拖网,样品使用 5%甲醛 溶液现场固定保存。固定好的样品带回实验室进行种 类鉴定和数量统计。

1.2.2 环境指标 在各站位,采用 Professional Plus 多功能水质仪(美国 YSI 公司)现场测定海水的 pH值、水温(WT)、溶解氧含量(DO),用盐度计测定 海水盐度;用采水器于水下 0.5 m 处采集水样,按照 《海洋监测规范》(GB/T17378.4-2007)的方法进行海 水化学需氧量(COD)、生化需氧量(BOD₅)、氨氮 (NH₄⁴-N)和磷酸盐(PO₄³⁻-P)的测定。

1.2.3 海草床生态学特征 在海草床的各站位,使 用 0.5 m×0.5 m 的采样框进行海草植株取样,潜水挖 掘采样框内鳗草植株,并确保植株的完整性,每站位 重复取样 3 次。用海水将植株彻底冲洗干净后放到聚 乙烯封口袋中,加冰低温运回实验室。先计数每个采 样框的植株数量以计算植株密度(shoots/m²),再将样 品用去离子水进行漂洗,并在 60 ℃烘干至恒重,测 量植株生物量(g DW/m²)。

1.3 数据处理与分析

浮游生物的丰度根据采样时的滤水体积,以每立 方米水体中细胞数或个体数(cells/m³, ind./m³)表示。

优势种使用浮游生物优势度(*Y*)表示,生物多样 性采用香农-威纳指数(Shannon-Weaner index)(*H*)、 均匀度指数(Pielou index)(*J*)和 Margalef 丰富度指数 (*D*)进行分析(张雪等, 2018),计算公式为:

$$Y = (n_i / N) \times f_i \tag{1}$$

$$H' = -\sum_{i=1}^{s} P_i \log_2 P_i$$
 (2)

$$J = H' / \log_2 S$$
(3)
$$D = (S - 1) / \log_2 N$$
(4)

式中,
$$n_i$$
为 i 种的个体数, N 为所有种类总个体数, f_i 为该种出现的频率。 $Y > 0.02$ 的种类为优势种。 P_i 为样品中第 i 种的个体数与总个体数的比值; S 为各

站位水柱种类数。

对各环境指标和浮游生物丰度的时间变化进行 单因素方差分析(one-way ANOVA),结果用平均值± 标准差(Mean±SD)表示,差异显著时使用 Duncan 多 重比较;对同月份海草床和裸沙区的环境指标、浮游 生物群落多样性指数进行独立样本 T 检验;显著性水 平设置为 $P \leq 0.05$ 。

运用 Canoco 5.0 软件分析浮游生物群落结构和 环境因子之间的关系。对优势种的丰度/生物量数据 进行去趋势对应分析(DCA)。如果最大梯度长度 (length of gradient) >4.0,进行典范对应分析(CCA); 如果在 3.0~4.0 之间,冗余分析(RDA)和 CCA 均可; 如果<3.0,进行 RDA 分析。排序结果用物种-环境因 子关系双序图表示。

2 结果与分析

2.1 关键环境因子

调查结果显示(表 1),海草床与裸沙区的关键环 境因子呈现显著的季节变化,且两区之间存在一定的 差异。多数环境因子在冬季和春季达到最大值,水温 和 pH 值在夏季达到最大值,而盐度在秋季达到最大 值。尽管各环境因子的平均值在海草床与裸沙区之间 无明显不同,但一些环境因子于某些季节在两区之间 存在显著差异(P<0.05)。如,裸沙区海水 COD 含量

表 1 天鹅湖海草床及其邻近裸沙区环境因子的时空变化

Tab.1 Spatial-temp	oral variation of environm	ental factors in s	seagrass bed and	l its adjacent bar	e sand area of Sv	van Lake
环境指标	区域	2 月	5 月	8月	11 月	均值
Environmental parameter	s Area	February	May	August	November	Average
化学需氧量	海草床 Seagrass bed	$1.91{\pm}0.15^{a}$	$2.23{\pm}0.41^{a}$	$2.00{\pm}0.23^{a}$	1.33 ± 0.21^{b}	1.86 ± 0.06
COD /(mg/L)	裸沙区 Bare sand area	$1.84{\pm}0.14^{ab}$	$3.08{\pm}0.11^{a^*}$	$2.38{\pm}0.31^{a^*}$	$1.37{\pm}0.10^{b}$	2.16±0.33
生化需氧量	海草床 Seagrass bed	$4.34{\pm}0.06^{a}$	$2.12{\pm}0.14^{b}$	$0.78{\pm}0.53^{\circ}$	$1.83 {\pm} 0.11^{b}$	$2.34{\pm}0.42$
$BOD_5 /(mg/L)$	裸沙区 Bare sand area	$4.33{\pm}0.14^{a}$	$2.02{\pm}0.32^{b}$	$0.99{\pm}0.08^{\circ}$	$2.59{\pm}0.42^{b^*}$	2.48 ± 0.46
溶解氧 DO /(mg/L)	海草床 Seagrass bed	$11.49{\pm}0.12^{a^*}$	8.85±0.39 ^c	$5.96{\pm}0.25^{d}$	$10.16 {\pm} 0.20^{b}$	9.12±0.35
	裸沙区 Bare sand area	$10.14{\pm}0.13^{a}$	$8.16 \pm 0.26^{\circ}$	$6.30{\pm}0.14^{d}$	$9.52{\pm}0.11^{b}$	8.53±0.22
水温 WT /℃	海草床 Seagrass bed	$2.68{\pm}0.02^{d}$	15.03 ± 0.17^{b}	$25.80{\pm}0.08^{a}$	$9.60{\pm}0.28^{\circ}$	13.28±0.25
	裸沙区 Bare sand area	$2.96{\pm}0.01^{d}$	$15.20{\pm}0.28^{b}$	$26.15{\pm}0.07^{a}$	$9.70{\pm}0.14^{c}$	13.50±0.13
pН	海草床 Seagrass bed	$8.35 {\pm} 0.13^{b}$	$8.07{\pm}0.07^{d}$	$8.46{\pm}0.07^{a}$	$8.26{\pm}0.04^{\circ}$	8.29 ± 0.08
	裸沙区 Bare sand area	$8.37{\pm}0.06^{b}$	$8.02{\pm}0.04^{c}$	$8.53{\pm}0.06^{a}$	$8.31 {\pm} 0.01^{b}$	8.31±0.05
盐度	海草床 Seagrass bed	$31.41 {\pm} 0.04^{c}$	$33.85 {\pm} 0.65^{b}$	31.75±0.29 ^c	$34.25{\pm}0.29^{a}$	32.82±0.35
Salinity	裸沙区 Bare sand area	$31.41 \pm 0.04^{\circ}$	33.50 ± 0.00^{b}	$31.50{\pm}0.00^{\circ}$	$34.51 {\pm} 0.71^{a}$	32.73±0.54
氨氮 NH ₄ -N /(mg/L)	海草床 Seagrass bed	$1.04{\pm}0.14^{a^*}$	$1.21 \pm 0.15^{a^*}$	$0.76{\pm}0.29^{b}$	$0.79 {\pm} 0.15^{b}$	0.88±0.14
	裸沙区 Bare sand area	$0.60{\pm}0.23^{b}$	$0.70{\pm}0.24^{b}$	$2.14{\pm}0.27^{a^*}$	$1.07{\pm}0.20^{b}$	1.18 ± 0.23
磷酸盐	海草床 Seagrass bed	$0.43 \pm 0.21^{\circ}$	$1.81{\pm}0.11^{a^*}$	0.38±0.09°	$1.29{\pm}0.10^{b^*}$	0.98±0.25
$PO_4^{3-}-P/(\mu mol/L)$	裸沙区 Bare sand area	$0.29{\pm}0.08^{\circ}$	1.27±0.12 ^a	0.41±0.13 ^c	$0.92{\pm}0.18^{b}$	0.73±0.22

注:*表示海草床与裸沙区之间存在显著差异(P<0.05),不同小写字母表示不同月份间存在显著差异(P<0.05)。下同。

Note: * indicates that there is significant difference between seagrass bed and bare sand area (P < 0.05), and different lowercase letters indicate significant difference between different months (P < 0.05). The same as below.

在春、夏季显著高于海草床,平均为海草床的1.3倍; 裸沙区海水 BOD5含量在秋季显著高于海草床,是其 1.4 倍;海草床海水 NH4-N 含量在冬季和春季显著高 于裸沙区,为裸沙区的1.7倍,夏季则正相反,海草 床海水 NH₄⁺-N 含量仅为裸沙区 NH₄⁺-N 含量的 40%。

2.2 海草床生态学特征

鳗草植株的生长表现出明显的季节变化,植株密 度和生物量均于8月达到最大值,分别为(1472.0± 33.8) shoots/m²和(800.3±40.2) g DW/m², 是2月植株密 度和生物量的1.7倍和16.7倍(P<0.05)(表2)。

2.3 浮游植物群落结构

2.3.1 种类组成和丰度 调查期间,共发现浮游植 物 38 种, 隶属于 3 门 25 属, 如表 3 所示。其中, 硅 藻门(Bacilariophyta)最多, 共 16 科 21 属 34 种, 占总 种数的 89.4%; 甲藻门(Dinophyta)次之, 共 3 科 3 属 3种,占总种数的 7.8%;金藻门(Chrysophyta)最少, 仅1科1属1种。浮游植物种类数呈现明显的季节变 化,海草床和裸沙区均在11月达到最大值,显著高 于其他月份(P<0.05),相同月份海草床和裸沙区的浮 游植物种类数差异不显著(P>0.05)(图 2)。

表 2 天鹅湖海草床生态学特征的季节变化

Tab.2 Seasonal variation of ecological characteristics in seagrass bed of Swan Lake							
调查指标 Surveyed parameter	2月 February	5月 May	8月 August	11月 November			
植株密度 Density /(shoots/m ²)	882.0±43.9 ^c	$1374.0{\pm}19.9^{a}$	1472.0 ± 33.8^{a}	1041.0 ± 56.8^{b}			
植株生物量 Biomass /(g DW/m ²)	$48.2{\pm}3.8^{d}$	$461.4{\pm}11.8^{b}$	800.3 ± 40.2^{a}	$167.8 \pm 8.5^{\circ}$			

表 3 大鹅湖海卓床及其邻近裸沙区浮游植物初种名录 Tab.3 List of phytoplankton species in seagrass bed and its adjacent bare sand area of Swan Lake								
序号 Code	种名 Species	2月 February	5月 May	8月 August	11月 November			
硅藻 Bacilario	ophyta							
1	柔弱根管藻 Rhizosolenia delicatula	+/*	_/_	_/_	+/*			
2	刚毛根管藻 Rhizosolenia setigera	_/_	+/*	+/*	+/*			
3	格氏圆筛藻 Coscinodiscus granii	+/*	+/*	_/_	+/*			
4	琼氏圆筛藻 Coscinodiscus jonesianus	_/_	+/*	_/_	+/*			
5	辐射列圆筛藻 Coscinodiscus radiatus	_/_	_/_	_/_	+/*			
6	星脐圆筛藻 Coscinodiscus asteromphalus	_/_	_/_	_/_	+/*			
7	虹彩圆筛藻 Coscinodiscus oculus-iridis	_/_	_/_	_/_	+/*			
8	圆筛藻 Coscinodiscaceae sp.	_/_	_/_	_/_	+/*			
9	卡氏角毛藻 Chaetoceros castracanei	+/*	_/_	_/_	_/_			
10	范氏角毛藻 Chaetoceros vanheurckii	_/_	+/*	+/*	+/*			
11	并基角毛藻 Chaetoceros decipiens	_/_	_/_	_/_	+/*			
12	罗氏角毛藻 Chaetoceros lauderi	_/_	_/_	_/_	+/*			
13	艾氏角毛藻 Chaetoceros eibenii	_/_	_/_	_/_	+/*			
14	条纹小环藻 Cyclotella striata	+/*	+/*	+/	_/_			
15	海链藻 Thalassiosira sp.	+/*	+/*	+/*	_/_			
16	中华盒形藻 Bidduiphia sinensis Greville	+/_	_/_	_/_	+/*			
17	太阳漂流藻 Planktoniella sol	+/*	+/_	_/_	_/_			
18	细弱明盘藻 Hyalodiscus subtilis Bailey	_/_	_/_	_/_	+/			
19	曲舟藻 Pleurosigma spp.	_/_	+/*	+/*	_/_			
20	柔弱几内亚藻 Guinardia delicatula	_/_	+/_	_/_	+/*			
21	长耳齿状藻 Odontella aurita	_/_	+/_	_/_	_/_			
22	针杆藻 Synedra spp.	_/_	+/*	+/*	_/_			
23	长海毛藻 Thalassiothrix longissima	_/_	+/*	_/_	_/_			
24	透明辐杆藻 Bacteriastrum hvalinum	_/_	+/*	+/	_/_			

					
序号 Code	种名 Species	2月 February	5月 May	8月 August	11 月 November
硅藻 Bacilaric	phyta				
25	钝头盒形藻 Biddulphia obtusa	_/_	+/*	_/_	_/_
26	念珠直链藻 Melosira moniliformis	_/_	_/+	_/_	_/_
27	丹麦细柱藻 Leptocylindrus danicus	_/_	_/_	+/*	+/*
28	菱面盒形藻 Biddulphia rhombus	_/_	_/_	+/*	_/_
29	具槽帕拉藻 Paralia sulcata	_/_	_/_	_/+	_/_
30	菱形藻 Nitzschia sp.	_/_	_/_	_/+	_/_
31	并基海链藻 Thalassiosira decipens	_/_	_/_	_/_	+/*
32	中肋骨条藻 Skeletonema costatum	_/_	_/_	_/_	+/*
33	泰晤士旋鞘藻 Streptotheca thamesis	_/_	_/_	_/_	+/*
34	舟形藻 Navicula sp.	_/_	_/_	_/_	+/*
甲藻 Dinophy	ta				
35	夜光藻 Noctiluca scintillans	_/_	+/*	_/_	+/*
36	三角角藻 Ceratium tripos	_/_	_/_	_/_	+/*
37	大角三趾藻 Tripos macroceros	_/_	_/_	_/_	+/*
金藻 Chrysopl	iyta				
38	小等刺硅鞭藻 Dictyocha fibula	+/*	+/_	+/*	_/_

注:+表示该物种于该月份出现在海草床,*表示该物种于该月份出现在裸沙区,-表示该月份海草床或裸沙区无该物种。下同。

Note: + indicates that the species appears in the seagrass bed in this month, * indicates that the species appears in the bare sand area in this month, – indicates that there is no species in the seagrass bed or bare sand area in this month. The same as below.

调查结果显示,海草床与裸沙区的浮游植物丰度 呈现明显的季节变化,且两区之间存在一定的差异 (图 3)。海草床与裸沙区浮游植物丰度均在 5 月显著高 于其他月份(P<0.05),分别为 9.06×10⁴ cells/m³ 和 6.12×10⁴ cells/m³,为 2 月浮游植物丰度的 3.4 倍和 2.4 倍。5 月时,海草床浮游植物丰度显著高于裸沙区 (P<0.05),是裸沙区的 1.5 倍;其余调查月份,海草 床浮游植物丰度亦高于裸沙区浮游植物丰度,但二者 差异不显著(P>0.05)。

abundance in seagrass bed and its adjacent bare sand area of Swan Lake

2.3.2 第1优势种组成 浮游植物第1优势种组成 表现出明显的季节变化(表4)。5月时,海草床和裸沙区 的第1优势种分别为硅藻门的刚毛根管藻(*Rhizosolenia setigera*)和范氏角毛藻(*Chaetoceros vanheurckii*),平 均丰度为1.69×10⁴ cells/m³和1.13×10⁴ cells/m³,均高于 其他调查月第1优势种的丰度。

2.3.3 群落结构特征指数 除裸沙区的均匀度指数外,海草床和裸沙区浮游植物群落结构特征指数表

表 4 天鹅湖海草床及其邻近裸沙区浮游植物第1优势种及优势度指数的时空变化

Tab.4 Spatial-temporal variation of the first dominant species and dominance index of

phytoplankton in seagrass bed and its adjacent bare sand area of Swan La	ce
--	----

月份 Month	区域 Area	第1优势种 Dominant species	平均丰度 Average abundance/(×10 ⁴ cells/m ³)	优势度 Dominance
2 月	海草床 Seagrass bed	格氏圆筛藻 C. granii	0.50	0.21
February	裸沙区 Bare sand area	格氏圆筛藻 C. granii	0.63	0.24
5月	海草床 Seagrass bed	刚毛根管藻 R. setigera	1.69	0.19
May	裸沙区 Bare sand area	范氏角毛藻 C. vanheurckii	1.13	0.18
8月	海草床 Seagrass bed	曲舟藻 Pleurosigma spp.	1.06	0.22
August	裸沙区 Bare sand area	范氏角毛藻 C. vanheurckii	1.01	0.31
11 月	海草床 Seagrass bed	中肋骨条藻 S. costatum	0.56	0.11
November	裸沙区 Bare sand area	夜光藻 N. scintillans	0.43	0.11

表 5 天鹅湖海草床及其邻近裸沙区浮游植物群落特征指数的时空变化(平均值±标准差)

Tab.5 Spatial-temporal variation of phytoplankton community parameters in seagrass bed and

its adjacent bare sand area of Swan Lake (Mean±SD)							
群落特征指数	区域	2 月	5 月	8月	11 月	均值	
Community parameters	Area	February	May	August	November	Average	
多样性指数	海草床 Seagrass bed	1.9 ± 0.1^{b}	$2.0{\pm}0.1^{b}$	1.8 ± 0.1^{b}	$2.7{\pm}0.2^{a}$	2.1±0.4	
Diversity index (H')	裸沙区 Bare sand area	$2.0{\pm}0.1^{b}$	2.1 ± 0.1^{b}	1.7 ± 0.3^{b}	2.8±0.1 ^a	2.1±0.5	
均匀度指数	海草床 Seagrass bed	$0.9{\pm}0.0^{a}$	$0.8{\pm}0.0^{b}$	$1.0{\pm}0.1^{a}$	$0.9{\pm}0.0^{a}$	$0.9{\pm}0.0$	
Evenness index (J)	裸沙区 Bare sand area	$0.9{\pm}0.0$	$0.9{\pm}0.0$	$0.9{\pm}0.0$	$0.9{\pm}0.0$	$0.9{\pm}0.0$	
丰富度指数	海草床 Seagrass bed	$4.9{\pm}0.3^{b}$	$4.4{\pm}0.3^{b}$	$4.2{\pm}0.2^{b}$	11.4±0.3 ^a	6.2±2.6	
Richness index (D)	裸沙区 Bare sand area	$5.2{\pm}0.4^{b}$	5.2 ± 0.3^{b}	4.7 ± 0.3^{b}	$14.0{\pm}0.5^{a^*}$	7.3±3.2	

现出明显的季节变化(表 5)。其中,两区的多样性指数和丰富度指数均在 11 月达到最高值,在 8 月达到最低值,而海草床浮游植物的均匀度指数则在 5 月达到最低值。海草床和裸沙区之间浮游植物群落结构特征指数的差异不明显,仅在 11 月,裸沙区浮游植物丰富度指数显著高于海草床(P<0.05)。

2.3.4 优势种与环境因子的关系 分别对海草床 和裸沙区浮游植物优势种与环境因子进行 CCA 分 析,如图 4 所示。其中,海草床浮游植物群落前 2 个 排序轴的特征值为 0.849 和 0.673,对物种变量的解 释量达 72%。由图 4a 可知,影响海草床浮游植物群 落结构的主要因素为水温、鳗草植株密度和生物量, 且格氏圆筛藻(Coscinodiscus granii)、刚毛根管藻等 多数优势种与这 3 个因子表现为正相关。

裸沙区浮游植物群落前2个排序轴的特征值为 0.825和0.719,对物种变量的解释量达74%。由图4b 可知,影响裸沙区浮游植物群落结构的主要因素为水 温和氨氮,且范氏角毛藻、针杆藻(*Synedra* spp.)、夜 光藻(*Noctiluca scintillans*)等大多数优势种与这2个因 子表现为正相关。

2.4 浮游动物群落结构

2.4.1 种类组成和丰度 在鳗草草床及其邻近裸 沙区共鉴定出浮游动物 18 种、幼虫 3 类(表 6)。其中, 浮游动物成体隶属于刺胞动物门(Cnidaria)(1 种)、甲 壳动物门(Crustacea)(桡足类 10 种, 枝角类 3 种, 端 足类 1 种, 甲壳类 1 种)、毛颚动物门(Cheaetognatha) (1 种)、尾索动物门(Urochordata)(1 种)。浮游动物种 类数呈现明显的季节变化,海草床和裸沙区均在 11 月达到最大值,显著高于其他月份(P<0.05);两区之间浮游动物种类数差异不明显,仅在 2 月时,海草床 浮游动物的种类数显著高于裸沙区(P<0.05)(图 5)。

调查结果显示,海草床与裸沙区的浮游动物丰度 呈现明显的季节变化,且两区之间存在一定的差异 (图 6)。海草床浮游动物丰度在 2 月达到最高值,为 2.88×10⁴ ind./m³,是 8 月海草床浮游动物丰度的 14.5 倍;裸沙区浮游动物丰度则在 5 月达到最高值,为 2.14×10⁴ ind./m³,是 8 月裸沙区浮游动物丰度的 10.2 倍。2 月时,海草床浮游动物丰度显著高于裸沙区 (P<0.05),是裸沙区浮游动物丰度(1.25×10⁴ ind./m³) 的 2.2 倍;其余月份,海草床的浮游动物丰度亦高于 裸沙区浮游动物丰度,但两区差异不显著(P>0.05)。

图 4 天鹅湖海草床(a)及其邻近裸沙区(b)浮游植物优势种与环境因子的 CCA 排序图 Fig.4 CCA ordination of phytoplankton dominant species and associated environment factors in seagrass bed (a) and its adjacent bare sand area (b) of Swan Lake

1: 小等刺硅鞭藻 D. fibula; 2: 卡氏角毛藻 C. castracanei; 3: 条纹小环藻 C. striata; 4: 格氏圆筛藻 C. granii;

5: 刚毛根管藻 R. delicatula; 6: 范氏角毛藻 C. vanheurckii; 7: 长海毛藻 T. longissimi; 8: 针杆藻 Synedra spp.;

9: 丹麦细柱藻 L. danicus; 10: 夜光藻 N. scintillans; 11: 辐射列圆筛藻 C. radiatus; 12: 虹彩圆筛藻 C. oculus-iridis;

13: 圆筛藻 Coscinodiscaceae sp.; 14: 中肋骨条藻 S. costatum; 15: 并基角毛藻 C. decipiens; 16: 舟形藻 Navicula spp.;

17: 柔弱根管藻 R. delicatula; 18: 海链藻 Thalassiosira sp.; 19: 太阳漂流藻 P. sol; 20: 琼氏圆筛藻 C. jonesianus; 21: 曲舟藻 Pleurosigma spp.; 22: 具槽帕拉藻 B. sulcate; 23: 菱形藻 Nitzschia sp.; 24: 中华盒形藻 B. greville; 25: 并基海链 藻 T. decipens; 26: 三角角藻 C. tripos; 27: 艾氏角毛藻 C. eibenii; 28: 柔弱几内亚藻 G. delicatula; 29: 罗氏角毛藻 C. lauderi

2.4.2 第1优势种组成 调查期间,海草床和裸沙 区浮游动物第1优势种均为桡足类的小拟哲水蚤 (Paracalanus parvus),其丰度具有明显季节变化,平 均丰度均于5月达到最大值,分别为1.87×10⁴ ind./m³ 和1.75×10⁴ ind./m³,是8月平均丰度的25.9倍和29.2 倍(表7)。两区之间小拟哲水蚤的丰度也具有一定差 异。2月时,海草床小拟哲水蚤平均丰度(1.06× 10⁴ ind./m³)为裸沙区的2.1倍;其余调查月份,两区 之间差异不明显。

浮游动物丰度的时空变化

2.4.3 群落结构特征指数 海草床和裸沙区的浮游动物群落结构特征指数表现出相同的季节变化,如表8所示。其中,多样性指数和丰富度指数均在11月达到最高值,而均匀度指数则在5月达到最低值。两区之间群落特征指数差异不明显,仅2月时,海草床浮游动物丰富度指数显著高于裸沙区(P<0.05)。

2.4.4 优势种与环境因子的关系 分别对海草床 和裸沙区浮游动物优势种与环境因子进行 RDA 分析,如图 7 所示。其中,海草床浮游动物前 2 个排序

21

双壳类幼体 Bivalve larvae

+/*

序号 Code 种名 Species 2月 February 5月 May 8月 August 11 月 November 刺胞动物门 Cnidaria 水螅水母亚纲 Hydromedusae 1 四枝管水母 Proboscidactyla flavicirrata _/_ _/_ _/* _/_ 节肢动物门 Arthropoda 桡足类 Copepoda 2 海洋伪镖水蚤 Pseudodiaptomus marinus _/_ +/* _/_ _/_ 3 火腿许水蚤 Schmakeria poplesia _/_ _/_ _/_ +/* 4 _/_ _/_ _/_ +/* 克氏纺锤水蚤 Acartia clausi +/* _/* _/_ 5 猛水蚤 Harpacticoida sp. _/_ 6 双刺纺锤水蚤 Acartia bipinnata _/_ _/_ _/_ +/* 7 太平洋纺锤水蚤 Acartia pacifica _/_ _/_ +/* _/_ 8 太平洋真宽水蚤 Eurytemora pacifica _/_ +/* +/* _/_ 9 细巧华哲水蚤 Sinocalanus tenellus +/* +/* _/_ _/_ +/* +/* 10 小拟哲水蚤 Paracalanus parvus +/* +/* +/* 中华哲水蚤 Calanus sinicus +/* 11 +/* +/* 枝角类 Cladocera +/* 12 肥胖三角溞 Evadne tergestina _/_ _/_ _/_ +/_ _/_ +/* 13 鸟缘尖头溞 Penilia avirostris +/* 诺氏三角潘 Evadne nordmanni 14 _/_ _/_ _/_ +/*端足目 Amphipoda 15 细长脚虫戎 Theisto gracilipes (Norman) +/-+/* +/* _/_ 鳃足纲 Branchiopoda 盐卤虫 Artemia salina (Linnaeus) +/* 16 _/_ _/_ _/_ 毛颚动物门 Cheaetognatha 17 强壮箭虫 Sagitta crassa +/* +/* _/_ +/* 尾索动物门 Urochordata 18 长尾住囊虫 Oikopleura longicauda _/_ _/_ _/_ +/* 浮游幼虫 Pelagic larvae 多毛类幼体 Polychaet larvae _/_ _/_ _/_ +/* 19 20 腹足类幼体 Gastropod larvae _/_ +/* +/* _/_

表 6 天鹅湖海草床及其邻近裸沙区浮游动物物种名录

Tab.6 List of zooplankton species in seagrass bed and its adjacent bare sand area of Swan Lake

表 7 天鹅湖海草床及其邻近裸沙区浮游动物第1优势种及优势度指数的时空变化

/

/

/

Tab.7	Spatial-temporal variation of the first dominant species and dominance index o	f
	zooplankton in seagrass bed and its adjacent bare sand area of Swan Lake	

	1 6	5		
月份	区域	第1优势种	平均丰度	优势度
Month	Area	Dominant species	Average abundance $/(\times 10^{-1} \text{ m}^2)$	Dominance
2月 February	海草床 Seagrass bed	小拟哲水蚤 P. parvus	1.06	0.37
	裸沙区 Bare sand area	小拟哲水蚤 P. parvus	0.51	0.40
5月 May	海草床 Seagrass bed	小拟哲水蚤 P. parvus	1.81	0.85
	裸沙区 Bare sand area	小拟哲水蚤 P. parvus	1.75	0.70
8月 August	海草床 Seagrass bed	小拟哲水蚤 P. parvus	0.07	0.31
	裸沙区 Bare sand area	小拟哲水蚤 P. parvus	0.06	0.37
11月 November	海草床 Seagrass bed	小拟哲水蚤 P. parvus	0.17	0.25
	裸沙区 Bare sand area	小拟哲水蚤 P. parvus	0.18	0.25

轴的特征值为 0.58 和 0.27,物种变量的解释量达 91%。由图 7a 可知,影响海草床浮游动物群落结构 的主要因素为水温、鳗草植株密度和生物量,且鸟缘 尖头 溞 (Penilia avirostris)、太平洋真宽水蚤 (Eurytemora pacifica)、细巧华哲水蚤 (Sinocalanus tenellus)等优势种与这 3 个因子呈正相关。

裸沙区浮游动物前 2 个排序轴的特征值为 0.61 和 0.24,对物种变量的解释量达 94%。由图 7b 可知, 影响裸沙区浮游动物群落结构的主要因素为 pH、氨 氮、水温,且鸟缘尖头溞、太平洋真宽水蚤、细巧华 哲水蚤和克氏纺锤水蚤(*Acartia clausi*)等优势种与这 些环境因子表现为正相关。

表 8	天鹅湖海草床及其邻近裸沙区浮游动物群落特征指数的时空变化(平均值±标准差)
Tab 8	Spatial-temporal variation of zooplankton Community parameters in seagrass hed and

its adjacent bare sand area of Swan Lake (Mean±SD)								
群落特征指数 Community parameters	区域 Area	2月 February	5 月 May	8月 August	11 月 November	均值 Average		
Community purumeters	A local	h	ivitay	rugust	itovenioei	nvenage		
多样性指数	海草床 Seagrass bed	1.5 ± 0.1^{6}	$1.0\pm0.2^{\circ}$	1.9 ± 0.1^{6}	2.5 ± 0.1^{a}	1.7 ± 0.1		
Diversity index (H')	裸沙区 Bare sand area	1.2±0.1 ^c	1.3±0.1 ^c	$2.0{\pm}0.1^{b}$	$2.6{\pm}0.0^{a}$	1.8 ± 0.1		
均匀度指数	海草床 Seagrass bed	$1.0{\pm}0.0^{a}$	$0.7{\pm}0.1^{b}$	$1.0{\pm}0.0^{a}$	$1.0{\pm}0.0^{a}$	0.9±0.2		
Evenness index (J)	裸沙区 Bare sand area	$1.0{\pm}0.0^{a}$	$0.7{\pm}0.0^{b}$	$1.0{\pm}0.0^{a}$	$1.0{\pm}0.0^{a}$	0.9±0.1		
丰富度指数	海草床 Seagrass bed	$1.8{\pm}0.2^{b^*}$	2.5 ± 0.1^{b}	$2.7{\pm}0.3^{b}$	4.5±0.3 ^a	2.8±0.2		
Richness index (D)	裸沙区 Bare sand area	1.3±0.3 ^c	$2.8{\pm}0.4^{b}$	$3.0{\pm}0.4^{b}$	$4.9{\pm}0.2^{a}$	3.0±0.3		

小拟哲水蚤 P. parvus; 2: 强壮箭虫 S. crassa; 3: 中华哲水蚤 C. sinicus; 4: 猛水蚤 Harpacticoida sp.;
3: 细长脚虫戎 T. gracilipes; 6: 腹足类幼体 Gastropod larvae; 7: 鸟缘尖头溞 P. avirostris; 8: 太平洋真宽水蚤 E. pacifica;
9: 细巧华哲水蚤 S. tenellus; 10: 克氏纺锤水蚤 A. clausi; 11: 太平洋纺锤水蚤 A. pacifica; 12: 海洋伪镖水蚤 P. marinus;
13: 火腿许水蚤 S. poplesia; 14: 长尾住囊虫 O. longicauda

3 讨论

3.1 浮游生物群落结构的季节性变化特征

天鹅湖海草床及其邻近裸沙区浮游植物种类组成与荣成附近海域浮游植物种类大致相同,以近岸广 布种为主,硅藻占绝对优势(潘玉龙等,2019)。浮游 植物丰度在两区域表现出相同的季节变化,春季达到 最高值,夏秋次之,冬季最低。另外,浮游植物数目 的季节差异大于空间差异,种类数均在 11 月最高, 且每个物种的个体丰度差异较小,导致生物多样性指 数和丰富度指数在 11 月显著升高。生物多样性指数 的高低反映生物群落结构的复杂程度,通常指数越 高,群落越复杂,对环境的反馈和适应功能越强,群 落的结构越稳定(李超伦等, 2010)。天鹅湖浮游植物 多样性指数在 1.7~2.8 之间,均匀度指数在 0.8~1.0 之间,处于附近黄海已有研究结果变化范围之内,说 明天鹅湖浮游植物群落处于较为稳定的状态(李超伦 等,2010; 慕建东等,2009)。

天鹅湖海草床及其邻近裸沙区浮游动物种类组 成以近岸低盐类群[海洋伪镖水蚤(P. marinus)和太平 洋真宽水蚤等]和广温广盐类群[中华哲水蚤 (C. sinicus)和小拟哲水蚤]为代表。浮游动物丰度在冬 春季显著高于夏秋季,其中,冬春季节浮游动物丰度 较高主要是由优势种小拟哲水蚤和中华哲水蚤较高 的个体丰度造成的, 而夏秋季节浮游动物丰度较低则 可能与附近海域的养殖活动有关(刘萍等, 2013)。浮 游动物种类数从高到低依次为11月>8月>5月>2月, 符合黄海浮游动物种类数夏秋季较多、春冬季较少的 一般规律(杜明敏等, 2013)。本研究发现, 小拟哲水 蚤、强壮箭虫和中华哲水蚤为天鹅湖的主要优势种, 这与帅莉等(2003)在天鹅湖的调查结果相同。海草床 和裸沙区浮游动物种类数均在 11 月最高且物种个体 丰度差异较小,导致 11 月生物多样性指数和丰富度 指数显著升高。均匀度指数则在5月最低,这可能是 由于 5 月小拟哲水蚤在海草床及裸沙区占据绝对优 势,优势度分别为 0.85 和 0.70,浮游动物种类过于 单一,导致均匀度指数降低。

3.2 浮游生物群落变化的重要控制因素

浮游生物群落结构受环境因素的综合影响,且在 不同水体中环境因子对群落结构也存在差异。侯兴等 (2021)对桑沟湾浮游植物的调查发现,各个季节浮游 植物丰度与氨氮呈负相关,除秋季外,浮游植物与磷 酸盐呈正相关。潘玉龙等(2019)对荣成近岸养殖海域 浮游植物的调查发现,浮游植物群落结构主要受溶解 氧、硅酸盐、铵盐、温度和 pH 等因素的影响。本研 究发现,海草床浮游植物优势种主要与水温、鳗草植 株密度和生物量相关,裸沙区浮游植物优势种主要与 水温、氨氮相关。海草叶片是附生藻类生长繁殖的基 质,尤其在春季时,海草叶片生长周期较长、更新速 率较慢,利于附生藻类繁殖,累积更高的生物量 (Lavery *et al*, 2002)。鳗草植株密度也可以通过改变水 下光照条件影响浮游植物的生长发育(Maucha, 1942)。

荣成天鹅湖地处中纬度地区,季节分明,因此, 温度对生物的影响较大,是影响浮游植物种类及生物 量的关键因子(代龚圆等,2012)。如硅藻适宜在较低 温度的水体中生长,最适温度通常低于 18℃ (Wasmund *et al*, 2011)。本研究发现,硅藻门物种所占 比例为 89%, 且天鹅湖 5 月平均水温为 15℃, 有利 于硅藻大量繁殖,可能是浮游植物丰度在 5 月达到最 高值的主要原因。季节性的调查研究表明,随着可利 用光和温度上升,浮游植物生物量通常随之增加 (Alcoverro *et al*, 1997; Lepoint *et al*, 1999)。因此,温 度与可利用光的相互结合很大程度上影响着海草床 浮游植物的生长。氮是浮游植物生长所需的重要营养 元素,也是限制元素(Ma *et al*, 2013)。氨氮作为一种 重要的氮源,显著影响裸沙区浮游植物的生长繁殖, 这可能是由于氨氮能被浮游植物直接利用,但利用程 度取决于浮游植物种类(Balode *et al*, 1998; Strom *et al*, 2009)。本研究中,裸沙区圆筛藻等优势种与氨氮含 量呈正相关,可以推测这些浮游植物能直接利用氨氮。

本研究发现,海草床浮游动物优势种主要与水 温、鳗草植株密度和生物量相关,裸沙区浮游动物优 势种主要与 pH、氨氮和水温相关,因此,水温是天 鹅湖浮游动物种类和丰度的关键因子。许多研究表 明,水温能够影响浮游动物的体温、新陈代谢强度、 生长发育以及繁殖周期,从而影响其丰度变化以及群 落结构的分布(Lenz et al, 2005; Devreker et al, 2005; 姜会超等,2015);另外,浮游植物可为浮游动物的生 长繁殖提供饵料,水温也可通过影响浮游植物种类和 丰度进而改变浮游动物的种类和丰度(叶文建等, 2021)。海草的存在对浮游动物具有显著影响,这是 由于海草床的存在和其复杂的空间结构,减小了水流 和捕食者的影响,为浮游动物提供了保护(Lo et al, 2020)。水流的削弱也会促进悬浮物沉积,与海草碎 片一同作为浮游动物的碎屑食物来源(Roman et al, 1983; Fonseca et al, 1986, 2007; Thresher et al, 1992). 此外,海草凋落叶含有丰富的非结构碳水化合物等活 性物质,会以溶解有机碳(DOC)的形式释放进入水体 或沉积物,并在微食物环作用下,DOC 得以被浮游 动物所利用(Vichkovitten et al, 2004; Lavery et al, 2013; 张明亮等, 2018)。因此, 海草床复杂的物理空 间带来的栖息、隐蔽、摄食环境是引起浮游动物丰度 高的重要因素。裸沙区氨氮含量可能通过限制浮游植 物的生长进而对浮游动物产生间接影响(赵鑫等, 2021)。刘潇等(2019)对荣成近岸海域浮游动物群落进 行 RDA 分析发现, pH 是第1 排序轴重要的负相关影响 因子,和本研究裸沙区浮游动物与环境因子 RDA 的结 果较为一致。

3.3 海草床对浮游生物群落的影响及其生态学意义

本研究发现,天鹅湖海草床浮游植物和浮游动物的 年平均丰度分别为 5.4×10^4 cells/m³ 和 1.6×10^4 ind./m³,

是裸沙区浮游植物和浮游动物年平均丰度的1.4 倍和 1.5 倍。相比裸沙区,海草床复杂的物理空间和环境 条件以及海草叶片、碎屑的可利用性可能是海草床浮 游生物丰度和生物量水平较高的关键因素,这些特性 可为浮游生物提供基质、食物和庇护(Nagelkerken, 2009; Nanjo et al, 2014)。海草床对浮游生物群落的生 态学意义主要有:(1)海草叶片阻碍光向水底的传 播,具有或明或暗的光环境,这对某些浮游植物生长、 浮游动物的产卵和幼体发育具有重要作用(Przeslawski, 2004; Sridhar et al, 2008; Fernandes et al, 2011); (2) 海 草叶片不仅是附生藻类和黏性卵良好的附着基,还是 生物幼体固着变态发育过程理想的固着基(Allen, 2014);(3) 海草叶片与附生藻类之间有着密切的营养 物质交换关系,大部分从海草植株释放至周围水柱的 营养物质通常在被水流稀释之前可被附生藻类所摄 取和利用,同时海草凋落叶会释放 DOC 到周围环境 中,经微食物环被浮游动物所利用(McRoy et al, 1974; Vichkovitten et al, 2004; Lavery et al, 2013; 张明亮等, 2018); (4) 海草的存在可有效削弱水流, 从而为浮游 生物提供保护,同时,会促进悬浮物沉积和浮游植物 附着,与海草碎屑一起作为浮游动物的食物来源 (Kimmerer et al, 1985; Fonseca et al, 2007; Lo et al, 2020)。然而,海草床属于脆弱的生态系统,易受自 然环境变迁和人类活动影响,因此,建议加强对海草 床的有效保护和科学修复,促进海草床的恢复,并发 挥其对资源养护和环境改善的重要作用。

参考文献

- ALCOVERRO T, DUARTE C M, ROMERO J. The influence of herbivores on *Posidonia oceanica* epiphytes. Aquatic Botany, 1997, 56(2): 93–104
- ALLEN R M. Oviposition site influences dispersal potential in a marine bubble snail. Marine Biology Research, 2014, 10(5): 515–522
- AMBO-RAPPE R. Differences in richness and abundance of species assemblages in tropical seagrass beds of different structural complexity. Journal of Environmental Science and Technology, 2011, 9(3): 246–256
- AZMI A A, YOSHIDA T, TODA T, et al. Comparison of zooplankton abundance and community in seagrass and non-seagrass areas of Merambong shoal. AIP Publishing LLC, 2016, 1784(1): 060002
- BALODE M, PURINA I, BEÉCHEMIN C, et al. Effects of nutrient enrichment on the growth rates and community structure of summer phytoplankton from the Gulf of Riga, Baltic Sea. Journal of Plankton Research, 1998, 20(12): 2251–2272

- BECK M W, HECK K L, ABLE K W, et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: A better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. BioScience, 2001, 51(8): 633–641
- BLANDON A, ERMGASSEN P. Quantitative estimate of commercial fish enhancement by seagrass habitat in southern Australia. Estuarine Coastal and Shelf Science, 2014, 141(5): 1–8
- DAI G Y, LI J, LI L, et al. The spatio-temporal pattern of phytoplankton in the north basin of Lake Dianchi and related environmental factors. Acta Hydrobiologica Sinica, 2012, 36(5): 946–956 [代龚圆, 李杰, 李林, 等. 滇池北部 湖区浮游植物时空格局及相关环境因子. 水生生物学报, 2012, 36(5): 946–956]
- DEVREKER D, SOUISSI S, SEURONT L. Effects of chlorophyll concentration and temperature variation on the reproduction and survival of *Temora longicornis* (Copepoda, Calanoida) in the Eastern English Channel. Journal of Experimental Marine Biology and Ecology, 2005, 318(2): 145–162
- DU M M, LIU Z T, WANG C S, *et al.* The seasonal variation and community structure of zooplankton in China Sea. Acta Ecologica Sinica, 2013, 33(17): 5407–5418 [杜明敏, 刘镇 盛, 王春生, 等. 中国近海浮游动物群落结构及季节变化. 生态学报, 2013, 33(17): 5407–5418]
- EDGAR J G, SHAW C, WATSONA G F, *et al.* Comparisons of species richness, size-structure and production of benthos in vegetated and unvegetated habitats in Western Port, Victoria. Journal of Experimental Marine Biology and Ecology, 1994, 176(2): 201–226
- FERNANDES D, PODOLSKY R D. Developmental consequences of association with a photosynthetic substrate for encapsulated embryos of an intertidal gastropod. Journal of Experimental Marine Biology and Ecology, 2011, 407(2): 370–376
- FONSECA M S, CAHALAN J A. A preliminary evaluation of wave attenuation by four species of seagrass. Estuarine, Coastal and Shelf Science, 1992, 35(6): 565–576
- FONSECA M S, FISHER J S. A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration. Marine Ecology Progress Series, 1986, 29(1): 15–22
- FONSECA M S, KOEHL M, KOPP B S. Biomechanical factors contributing to self-organization in seagrass landscapes. Journal of Experimental Marine Biology and Ecology, 2007, 340(2): 227–246
- GULLSTRÖM M, BERKSTRÖM C, ÖHMAN M C, et al. Scale-dependent patterns of variability of a grazing parrotfish (*Leptoscarus vaigiensis*) in a tropical seagrass-dominated seascape. Marine Biology, 2011, 158(7): 1483–1495
- HECK K L, HAYS G, ORTH R J. Critical evaluation of the

nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series, 2003, 253: 123–136

- HOU X, GAO Y P, DU M R, et al. Temporal and spatial variation in phytoplankton community structure and their relationship with environmental factors in Sanggou Bay. Progress in Fishery Sciences, 2021, 42(2): 18–27 [侯兴, 高 亚平, 杜美荣, 等. 桑沟湾浮游植物群落结构时空变化特 征及影响因素. 渔业科学进展, 2021, 42(2): 18–27]
- JERNAKOFF P, NIELSEN J. Plant-animal associations in two species of seagrasses in Western Australia. Aquatic Botany, 1998, 60(4): 359–376
- JIANG H C, CHEN H G, SONG X K, et al. Zooplankton community structure in Jincheng area of Laizhou Bay and its relationship with environmental factors. Acta Ecologica Sinica, 2015, 35(22): 7308–7319 [姜会超,陈海刚,宋秀凯, 等. 莱州湾金城海域浮游动物群落结构及与环境因子的 关系. 生态学报, 2015, 35(22): 7308–7319]
- KIMMERER W J, MCKINNON A D. A comparative study of the zooplankton in two adjacent embayments, Port Phillip and Westernport Bays, Australia. Estuarine, Coastal and Shelf Science, 1985, 21(2): 145–159
- LAVERY P S, MCMAHON K, WEYERS J, et al. Release of dissolved organic carbon from seagrass wrack and its implications for trophic connectivity. Marine Ecology Progress Series, 2013, 494(3): 121–133
- LAVERY P S, VANDERRKLIFT M A. A comparison of spatial and temporal patterns in epiphytic macroalgal assemblages of the seagrasses *Amphibolis griffithii* and *Posidonia coriacea*. Marine Ecology Progress Series, 2002, 236: 99–112
- LENZ P H, HARTLINE A. Temperature compensation in the escape response of a marine copepod, *Calanus finmarchicus* (Crustacea). The Biological Bulletin, 2005, 209(1): 75–85
- LEPOINT G, HAVELANGE S, GOBERT S, et al. Fauna vs flora contribution to the leaf epiphytes biomass in a *Posidonia* oceanica seagrass bed (Revellata Bay, Corsica). Hydrobiologia, 1999, 394: 63–67
- LI C L, ZHANG Y S, SUN S, *et al.* Species composition, density and seasonal variation of phytoplankton in Sanggou Bay, China. Progress in Fishery Sciences, 2010, 31(4): 1-8 [李超 伦,张永山,孙松,等. 桑沟湾浮游植物种类组成、数量 分布及其季节变化. 渔业科学进展, 2010, 31(4): 1-8]
- LIU J Y, LI W T, QIN L Z, et al. Spatio-temporal variations in benthic and macrobenthic molluscs in Swan Lake, Shandong, China. Marine Sciences, 2017, 41(1): 113–122 [刘建影, 李 文涛, 覃乐政, 等. 山东荣成天鹅湖海草场大型底栖贝类 时空分布研究. 海洋科学, 2017, 41(1): 113–122]
- LIU P, SONG H J, FU M Z, et al. Seasonal variability of zooplankton community characteristics in the Rongcheng Bay contiguous waters. Acta Oceanologica Sinica, 2013, 35(4): 168–175 [刘萍, 宋洪军, 傅明珠, 等. 荣成湾毗邻 海域浮游动物群落季节分布特征. 海洋学报, 2013, 35(4):

168-175]

- LIU X, PANG Y L, SUN B B, et al. Structure of zooplankton community and its relation with environmental factors in Rongcheng adjacent waters. Modern Agricultural Science and Technology, 2019(10): 177–179 [刘潇, 潘玉龙, 孙蓓 蓓,等. 荣成近岸海域浮游动物群落结构及其与环境因 子的关系. 现代农业科技, 2019(10): 177–179]
- LO S L, YAP T K, CHEN C A, *et al.* Zooplankton in seagrass and adjacent non-seagrass habitats in Tun Mustapha Park, Sabah, Malaysia. Borneo Journal of Marine Science and Aquaculture, 2020, 4(1): 6–13
- LUGENDO B R, NAGELKERKEN I, VAN DER VELDE G, *et al.* The importance of mangroves, mud and sand flats, and seagrass beds as feeding areas for juvenile fishes in Chwaka Bay, Zanzibar: Gut content and stable isotope analyses. Journal of Fish Biology, 2006, 69(6): 1639–1661
- MA C X, YU H X. Phytoplankton community structure in reservoirs of different trophic status, Northeast China. Chinese Journal of Oceanology and Limnology, 2013, 31(3): 471–481
- MAUCHA R. Das gleichgewicht des limnischen Lebensraumes. Magyar Boil Kutatantezet Munka, 1942, 14: 192–230
- MCROY C P, GOERING J J. Nutrient transfer between the seagrass *Zostera marina* and its epiphytes. Nature, 1974, 248(5444): 173–174
- METILLO E B, NISHIKAWA J, ROSS O B, *et al.* Diel patterns of zooplankton community structure in nearshore waters of different substrates off Tinggi and Sibu Islands, Malaysia, with special reference to copepods. Aquatic Ecosystem Health and Management, 2019, 22(1): 86–102
- MOORE K A. Influence of seagrasses on water quality in shallow regions of the lower Chesapeake Bay. Journal of Coastal Research, 2004, 2009(10045): 162–178
- MU J D, DONG W, CHEN B J, et al. Ecological characteristics of phytoplankton in Sanggou Bay. Progress in Fishery Sciences, 2009, 30(3): 91–96 [慕建东,董玮,陈碧鹃,等. 桑沟湾浮游植物生态特征. 渔业科学进展, 2009, 30(3): 91–96]
- NAGELKERKEN I. Evaluation of nursery function of mangroves and seagrass beds for tropical decapods and reef fishes: Patterns and underlying mechanisms. Ecological connectivity among tropical coastal ecosystems. Springer, Dordrecht, 2009, 357–399
- NAKAMURA Y, SANO M. Comparison of invertebrate abundance in a seagrass bed and adjacent coral and sand areas at Amitori Bay, Iriomote Island, Japan. Fisheries Science, 2005, 71(3): 543–550
- NANJO K, KOHNO H, NAKAMURA Y, *et al.* Differences in fish assemblage structure between vegetated and unvegetated microhabitats in relation to food abundance patterns in a mangrove creek. Fisheries Science, 2014, 80(1): 21–41
- PAN Y L, LIU X, SHA J J, et al. Influence of environmental factors on phytoplankton community structure and its

relationship with coastal aquaculture in the waters adjacent to Rongcheng. Progress in Fishery Sciences, 2019, 40(5): 26–33 [潘玉龙, 刘潇, 沙婧婧, 等. 荣成近岸养殖海域浮游植物群落结构及与环境因子的关系. 渔业科学进展, 2019, 40(5): 26–33]

- PARK H J, CHOY E J, LEE K, *et al.* Trophic transfer between coastal habitats in a seagrass-dominated macrotidal embayment system as determined by stable isotope and fatty acid signatures. Marine and Freshwater Research, 2013, 64(12): 1169–1183
- PRZESLAWSKI R. A review of the effects of environmental stress on embryonic development within intertidal gastropod egg masses. Molluscan Research, 2004, 24(1): 43–63
- ROMAN M R, REEVE M R, FROGGATT J L. Carbon production and export from Biscayne Bay, Florida. I. Temporal patterns in primary production, seston and zooplankton. Estuarine Coastal and Shelf Science, 1983, 17(1): 45–59
- SHUAI L, YIN X C, YANG X N, et al. Studies on phytoplankton and zooplankton in the Yuehu inlet, Shongdong Peninsula. Journal of Qingdao University, 2003, 18(4): 70–75 [帅莉, 殷效彩,杨小妮,等.山东荣成月湖浮游动植物的研究. 青岛大学学报, 2003, 18(4): 70–75]
- SRIDHAR R, THANGARADJOU T, KANTIAN L. Comparative investigation on physico-chemical properties of the coral reef and seagrass ecosystems of the Palk Bay. Indian Journal of Marine Sciences, 2008, 37(2): 207–213
- STROM S L, BRIGHT K J. Inter-strain differences in nitrogen use by the coccolithophore *Emiliania huxleyi*, and consequences for predation by a planktonic ciliate. Harmful Algae, 2009, 8(5): 811–816
- TANG C, YI Y, YANG Z, et al. Planktonic indicators of trophic states for a shallow lake (Baiyangdian Lake, China). Limnologica, 2019, 78: 125712
- THRESHER R E, NICHOLS P D, GUNN J S, *et al.* Seagrass detritus as the basis of a coastal planktonic food chain. Limnology and Oceanography, 1992, 37(8): 1754–1758
- UNSWORTH R K F, NORDLUND L M, CULLEN-UNSWORTH L C. Seagrass meadows support global fisheries production. Conservation Letters, 2019, 12(1): e12566

- VICHKOVITTEN T, HOLMER M. Contribution of plant carbohydrates to sedimentary carbon mineralization. Organic Geochemistry, 2004, 35(9): 1053–1066
- WASMUND N, TUIMALA J, SUIKKANEN S, et al. Long-term trends in phytoplankton composition in the western and central Baltic Sea. Journal of Marine Systems, 2011, 87(2): 145–159
- YE W J, DU P, SHOU L, *et al.* Spatio-temporal variation of marco and mesozooplankton communities and the controlling factors around Zhoushan Archipelago. Acta Ecologica Sinica, 2021, 41(1): 254–267 [叶文建, 杜萍, 寿鹿, 等. 舟山海域 大中型浮游动物群落时空变化及受控要素. 生态学报, 2021, 41(1): 254–267]
- ZHANG M L, QI Z H, LI B, et al. A preliminary study on energy contribution of terrestrial organic carbon to zooplankton in the Laizhou Bay. Marine Fisheries, 2018, 40(3): 319–325 [张明亮,齐占会,李斌,等. 陆源有机碳 对莱州湾浮游动物能量贡献的初步研究. 海洋渔业, 2018, 40(3): 319–325]
- ZHANG X, XU X F, DAI Y Y, et al. Phytoplankton community characteristics and variation at artificial reefs of Tianjin offshore. Progress in Fishery Sciences, 2018, 39(6): 1–10 [张雪, 徐晓甫, 戴媛媛, 等. 天津近岸人工鱼礁海域浮游 植物群落及其变化特征. 渔业科学进展, 2018, 39(6): 1–10]
- ZHANG X, ZHOU Y, LIU P, et al. Temporal pattern in biometrics and nutrient stoichiometry of the intertidal seagrass Zostera japonica and its adaptation to air exposure in a temperate marine lagoon (China): Implications for restoration and management. Marine Pollution Bulletin, 2015, 94(1/2): 103–113
- ZHAO X, WANG L, ZHENG S, *et al.* Analysis on community characteristics and environmental factors of plankton and zoobenthos in headwater area of Wudinghe River watershed: A tributary of mid Yellow River. Water Resources and Hydropower Engineering, 2021, 52(10): 121–132 [赵鑫, 王 琳, 郑帅, 等. 黄河中游支流无定河流域源头区浮游生物 和底栖动物群落特征与环境因子分析. 水利水电技术, 2021, 52(10): 121–132]

(编辑 冯小花)

Spatial-Temporal Variation of Characteristics of Plankton in a Seagrass Bed and an Adjacent Area of Bare Sand in Swan Lake, Rongcheng, China

LU Jia¹, GUO Dong², YU Sitian¹, LI Wentao¹, ZHANG Peidong¹⁰

Key Laboratory of Mariculture, Ministry of Education; Ocean University of China, Qingdao 266003, China;
Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China)

Abstract Seagrass beds are a typical coastal ecosystem. To understand the temporal and spatial variation characteristics of the plankton community structure in a Zostera marina seagrass bed and an adjacent area of bare sand in Swan Lake, Rongcheng City, Shandong Province, an investigation of plankton diversity and abundance, ecological characteristics of the seagrass bed, and key environmental factors in the Z. marina seagrass bed and its adjacent bare sand area was conducted in February, May, August, and November in 2019. Canonical correspondence analysis (CCA) and redundancy analysis (RDA) were used to explore the influence of environmental factors on the diversity of plankton species. The results showed that there were 38 species of phytoplankton, belonging to 25 genera and three phyla, among which diatom species were the most abundant (89.4%), followed by dinoflagellates (7.8%). A total of 18 species of zooplankton and three species of larvae were identified (mainly crustaceans: 71.4%), and the number of plankton species was the highest in November. The annual average abundance of phytoplankton and zooplankton in the seagrass bed was 5.4×10^4 cells/m³ and 1.6×10^4 ind./m³, respectively, which were 1.4 times and 1.5 times higher than those in the bare sand area. The CCA and RDA analyses showed that the dominant plankton species in the seagrass bed were significantly correlated with water temperature, plant density, and biomass of seagrass beds, while the dominant plankton species in the bare sand area were mainly correlated with environmental factors such as water temperature, pH value, and ammonia nitrogen content. The results showed that the seagrass bed in Swan Lake supported a higher abundance and diversity of plankton compared with the bare sand area. This study provides baseline data for further elucidating the structure and function of the seagrass bed ecosystem.

Key words Seagrass bed; Phytoplankton; Zooplankton; Community structure; Environmental factors; Swan Lake

① Corresponding author: ZHANG Peidong, E-mail: zhangpdsg@ouc.edu.cn