DOI: 10.19663/j.issn2095-9869.20221107001

http://www.yykxjz.cn/

陈治, 蔡杏伟, 申志新, 张清凤, 李芳远, 谷圆, 李高俊, 赵光军, 王镇江. 海南岛淡水鱼类 eDNA 宏条形码 CO I 通用引物 的筛选. 渔业科学进展, 2023, 44(6): 40-57

CHEN Z, CAI X W, SHEN Z X, ZHANG Q F, LI F Y, GU Y, LI G J, ZHAO G J, WANG Z J. Screening universal CO I primers for eDNA metabarcoding of freshwater fishes on Hainan Island. Progress in Fishery Sciences, 2023, 44(6): 40–57

海南岛淡水鱼类 eDNA 宏条形码 CO I 通用引物的筛选^{*}

陈 治^{1,2} 蔡杏伟¹⁰ 申志新¹ 张清凤¹ 李芳远¹ 谷 圆¹ 李高俊¹ 赵光军¹ 王镇江¹

(1. 海南省海洋与渔业科学院 海南 海口 571126;

2. 海南热带海洋学院 热带海洋生物资源利用与保护教育部重点实验室 海南 三亚 572022)

摘要 已知的鱼类环境 DNA (environmental DNA, eDNA)宏条形码通用引物主要位于线粒体核糖 体基因区,这些12S和16S引物存在部分近缘鱼类无法识别及参考序列不足等问题。本研究以海南 岛淡水鱼类为调查对象,基于8目26科101属150种鱼类COI序列,筛选出6个侧翼保守区;综 合碱基变异、物种鉴定、eDNA 降解及高通量测序读长需求,在4个侧翼保守区设计了26条引物, 其中 6 条引物未达到 Premier 评分要求; 72 种海南淡水鱼类的首轮 PCR 结果显示, 有 11 条引物的 通用性较高,其中,PCR 成功种数≥70 且条带亮度均大于 marker 的引物有 5 条;次轮 PCR 结果显 示,5条引物相互搭配产生的3(正向)×2(反向)套引物组合的扩增成功率均为100%(72种/72种), 经 PCR 条带长度、亮度筛选后表现最优的引物组合为 "HN-A-F4、HN-D-R3" (以下简称 HN-CO I)。30个水样高通量测序结果显示,HN-COI产生的待分析序列总数、鱼类序列总数、OTUs总 数和鱼类 OTUs 总数分别为 MiFish-U 的 0.77 倍(8 919 976/11 532 126)、1.22 倍(2 264 965/1 863 905)、 0.85 倍(406/477)和 1.32 倍(86/65); HN-CO I 产生的鱼类 OTUs 注释到种、属、科及科以上水平的 占比分别为 81.40%、11.63%和 6.98%, MiFish-U 则分别为 81.54%、4.62%和 13.85%。"引物+水样" 的 NMDS 聚类图形成边界明显的 2 组(胁强系数=0.15); HN-CO I 的属内物种扩增子两两遗传距离 最小值及平均值均分别是 MiFish-U 的 1.23 倍(0.006 9/0.005 6)和 1.57 倍(0.155 9/0.099 4)。 室内 6 个 密度组鲤鱼(Cyprinus carpio carpio)"生物量-拷贝数"线性回归方程的相关系数较低,HN-COI及 MiFish-U均无法准确反映鲤鱼的生物量。本研究筛选并比较了 HN-CO I 与 MiFish-U 的优劣,表明 HN-CO I 对海南岛淡水鱼类具有更高的靶向性,不仅在防止微生物、哺乳类等非目标生物 eDNA 污染方面有优势,而且更有利于海南岛淡水鱼类的检出和准确鉴定。

关键词	海南岛;	淡水鱼类;	eDNA;	COI;	通用	引物
中图分类号	S931.2	文献标识码	βA	文章编	景 2	095-9869(2023)06-0040-18

* 国家自然科学基金(32002389)、海南省自然科学基金(422RC717)、海南省重点研发计划(ZDYF2021XDNY299)和海 南热带海洋学院引进人才科研启动资助项目(RHDRC201907)共同资助。陈 治, E-mail: change@139.com ① 通信作者:蔡杏伟,副研究员, E-mail: caixw618@163.com

收稿日期: 2022-11-07, 收修改稿日期: 2022-12-28

淡水鱼类是水域生态系统的重要组成部分,对保 持生态平衡、维系人与自然和谐发展起着至关重要的 作用(程馨雨等, 2019)。海南省是中国唯一的热带岛 屿省份, 气候条件独特, 岛内存在丰富的淡水鱼类特 有种(李高俊等, 2020)。然而, 由于过度捕捞、环境污 染等原因,海南岛淡水鱼类生境遭到严重破坏,淡水鱼 类资源量急剧衰退。根据 2015-2017 年对海南省淡 水鱼类的全面调查数据(申志新等, 2018), 与1986年 相比,海南省已有 14.15%的淡水鱼类处于野外缺失 状态,大鳞鲢(Hypophthalmichthys harmandi)、大鳞光 唇鱼(Acrossocheilus ikedai)、海南鳅蛇(Gobiobotia kolleri)等 15 种特有鱼类可能已经灭绝或濒临灭绝。 对海南岛淡水鱼类特有种进行有效保护迫在眉睫。准 确掌握鱼类的群落构成和资源分布是后续制定各类 保护区的基础和前提(申志新等, 2018)。在鱼类资源 严重衰退的背景下, 仅依靠刺网、笼壶、绳钓等传统 物种多样性调查手段进行资源调查会给调查对象带 来不同程度的机体损伤。环境 DNA (environmental DNA, eDNA)是生物体释放于空气、水体、土壤等环 境样本中的游离 DNA 总称(Ficetola et al, 2008; Thomsen et al, 2012; Valentini et al, 2016)。近年来, eDNA 技术开始广泛应用于鱼类、甲壳类、两栖类、 头足类、海洋哺乳类等类群的多样性调查(Thomsen et al, 2015; 单秀娟等, 2018; 钱瑭毅等, 2021)。该技 术具有调查灵敏度高、对调查对象和所在生境干扰小 等优点(张辉等, 2020; 陶洁等, 2021), 可以作为鱼类 多样性调查的重要补充手段之一(Yoccoz, 2012)。

通用引物对 eDNA 宏条形码技术的应用具有直 接影响。已知的鱼类 eDNA 宏条形码通用引物主要位 于线粒体(mtDNA) 12S rRNA (以下简称 12S)、16S rRNA (以下简称 16S)基因区(Zhang et al, 2020), 这些 核糖体基因区引物普遍存在部分近缘鱼类难以识别 的问题。如蒋佩文等(2022)基于 CO I 和 12S 基因构 建珠江河口鱼类 eDNA 宏条形码数据库发现, 172 种 鱼类的 CO I 条形码可形成明显的条形码间隙, 全部 鱼类均可有效鉴定;而12S条形码则有11种鱼类(占 总种类的 6.4%)存在区分困难的情况。Schenekar 等 (2020)、陈锦孝(2022)在各自的鱼类 eDNA 研究中也 发现了此问题。此外,相比于 CO I 条形码,目前公 共数据库内的 12S 和 16S 条形码序列数量不足。陈治 等(2022)统计了123种(基于COI)、117种(基于12S)、 115种(基于16S)海南岛淡水鱼类在NCBI数据库内的 参考序列情况,发现平均每种鱼类有 21.98条(CO I)、 5.54 条(12S)、6.40 条(12S)参考序列。这表明 12S 和 16S条形码覆盖的地理群体更少,不能有效反映不同 地理群体的条形码变异情况。针对该问题, Sato 等 (2018)基于标本馆样品和 Mitofish 数据库构建专门的

鱼类 12S eDNA 宏条形码数据库,但该数据库的建设 时间较短,目前仅完成了数千种鱼类的参考序列构 建,且以海洋鱼类为主。因此,短期内该数据库无法 为淡水鱼类 eDNA 研究提供广泛支持。从近缘鱼类鉴 定准确性及可用参考序列两方面考虑,有必要针对海 南岛淡水鱼类开发 eDNA 宏条形码 CO I 通用引物。 本研究将在此方面进行尝试,以期为海南岛淡水鱼类 多样性研究提供一定的技术支撑。

1 材料与方法

本研究将基于数据库(自建+公共)内已有序列设 计多组 CO I 条形码引物;基于课题组积累的海南岛 淡水鱼类样品使用 PCR 技术初步筛选所设计引物。 野外采集水样,通过高通量测序技术比较所设计引物 与已有引物的鱼类多样性调查差异。实验室饲养不同 密度组的鲤鱼(Cyprinus carpio carpio),考察所设计引 物的定量准确性。

1.1 目标序列筛选或扩增

根据《海南淡水及河口鱼类图鉴》(申志新等, 2021)、《海南岛淡水及河口鱼类原色图鉴》(李新辉等, 2020)、《海南岛淡水及河口鱼类志》(珠江水产研究所 等,1986)等资料统计海南岛淡水鱼类名录(含对应拉 丁学名)。登录 NCBI 数据库(https://ncbi.nlm.nih. gov/),下载对应物种的线粒体 COI条形码 seq 文件 (优先下载线粒体全序列、含有标本凭证信息和来自 海南岛及临近水域的序列)。同时,采用 Ward 等(2005) 设计的引物组合扩增实验室积累的部分海南岛淡水鱼 类 COI条形码片段。PCR 引物(Fish-F1/F2 和 Fish-R1/R2)见 Ward 等(2005),反应条件和步骤参考 蒋佩文等(2022)。使用 DNAstar 软件包中的 SeqMan 程序核对序列长度、方向及所在链,删除 overlap 区 短、含有简并碱基或插入/缺失位点的序列。

1.2 侧翼保守区筛选及引物设计

使用 MegAlign 程序中的"ClustalW method"多 重比对功能生成".pau"文件,基于 DnaSP 5.01 程序 将该文件转化为".meg"文件;使用 MEGA7 软件将 保守位点用绿色背景标注并生成".xlsx"文件。采用 目测法筛选侧翼保守区:保守区长度≥18 bp,密码 子第 1、2 位点不发生任何变异,密码子第 3 位点如 有变异则必须仅为转换。将引物序列输入 Primer Premier 6.0 软件,查看退火温度(annealing temperature, T_m)、GC 含量等基本信息,并基于默认参数记录引物 Premier 评分等级:理论扩增效率≥80%的评分等级 为 Best, 80%>扩增效率≥50%的评分等级为 Good, 扩增效率<50%的评分等级为 Poor。

1.3 PCR 筛选

共有 72 种海南岛淡水鱼类(见表 1 中用*标注的 物种)用于 PCR 筛选。为了减少工作量, 首轮 PCR 统 一使用"Fish-R1+Fish-R2"(1:1 混合,作为反向引 物)或"Fish-F1+Fish-F2"(1:1混合,作为正向引物) 作为本研究所设计引物的配套引物进行单引物筛选; 次轮 PCR 则对首轮 PCR 筛选出的单引物进行排列组 合,从中筛选出最优引物组合。PCR 体系总体积为 25 μL,包括 PCR 混合液(天根生化科技有限公司) 12.5 µL、灭菌蒸馏水 10 µL、上下游引物(10 µmol/L) 各 1 µL、DNA 样品 0.5 µL。PCR 条件为 94 ℃预变性 5 min; 94 ℃变性 20 s, T_m温度下退火 20 s (T_m="正 向引物 T_m+反向引物 T_m"的平均值), 72 ℃延伸 20 s, 共 39 个循环;最后 72 ℃再延伸 5 min。扩增后对 PCR 产物进行凝胶电泳检测,各取 2.5 µL 的 PCR 产物于 1%的琼脂糖凝胶中, 电压 220 V, 电泳 5 min, 最后 在凝胶成像系统上拍照。将 jpg 格式胶图导入 Photoshop 2022 软件,调节图片亮度,分别统计原图 状态及胶图上 100、200、500、1 000 和 2 000 bp marker 恰好肉眼不可见(以下简称 marker 不可见)时扩增条 带情况。

1.4 水样采集及高通量测序

为了方便运输、降低 eDNA 降解风险,在 G98 海南环岛高速与南渡江(编号 ND: 110°25′33″E, 19°56′54″N)、昌化江(编号 CH: 108°54′31″E, 19°13′56″N)、万泉河(编号 WQ: 110°26′30″E, 19°15′12″N)交汇处共设置3个水样采集点,每个取样 点取 10 个平行样。每个平行样用直径 47 mm、孔径 0.45 μm 的 WCN 硝酸纤维滤膜抽滤 5 L。抽滤后的滤 膜用液氮冷冻保存后送至华大基因青岛研究院进行 高通量测序。所用引物为本研究 PCR 筛选出的 CO I 引物与 MiFish-U (12S)引物(Miya et al, 2015)。建库类 型为全基因组测序(whole genome sequencing, WGS), 测序平台为 BGISEQ-500RS。对测序后的序列进行质 控等生物信息学操作后得到可操作分类管理单元 (operational taxonomic units, OTUs),将 OTUs 与 DNA 条形码参考数据库(自建数据库及 GenBank 库、 MitoFish 库等)进行 BLAST 注释分析。对于相似性≥ 99%的鱼类,记录其所在的种;相似性在 97%~99% 的鱼类,记录其所在的属;相似性在 95%~97%的鱼 类,记录其所在的科(Miya et al, 2015)。同时,基于 Kimura 双参数模型(Kimura-2-parameter, K2P), 采用 最大似然法(maximum likelihood, ML)计算 OTUs 间 的两两遗传距离(pairwise distance),评估不同引物的

物种鉴别差异。

使用非度量多维尺度(non-metric multidimensional scaling, NMDS)方法对鱼类出现结果[0,1]矩阵进行排 序, 该分析在 Canoco 5.0 软件中完成(魏亚男等, 2017)。选用 Bray-Curtis 距离,因其在大范围和小范 围的坐标轴上都具有稳健性(Kruskal et al, 1964)。分 析结果以胁强系数(stress)作为评判标准:当 stress<0.2 时,认为可以用 NMDS 的二维点图表示,该图形有 一定的解释意义;当 stress<0.1 时,认为该排序是一 个好的排序;当 stress<0.05 时,则认为该排序结果具 有很好的代表性(Newmaster et al, 2008; 魏亚男等, 2017)。NMDS 运算的步骤如下: (1)将鱼类出现情况 (仅分析确定种,未定种、属及属以上阶元不分析)处 理为[0,1]矩阵, 鱼类出现为 1, 不出现为 0; 以"水 系+引物名"为首行储存 xlsx 格式的[0,1]矩阵; (2)打 开 Canoco 5.0 软件, 加载 xlsx 文档, 给定 table name, 选择"import all species as factors",其余选择默认参 数,完成矩阵导入;(3)"analyses"对话框内点击"new" 选项,选择"Canoco Adviser",调出 NMDS 分析程 序; (4) "stress formula" 选择 "type 1", "treatment of ties in distance"选择"secondary",其余选择默认参数。

1.5 "生物量-拷贝数" 定量拟合

于热带海洋生物资源利用与保护教育部重点实 验室内设置6个容积为1m³、具有相同换水装置的圆 形水桶,用于比较所用引物的 eDNA 定量差异。每个 水桶用 10%次氯酸钠充分消毒后, 在水桶中加入 0.5 m3 淡水(淡水已进行多级沉淀、过滤和消毒)。水桶内的 水体源头独立、无相互交汇。水体更新速度恒定保持 为 0.5 L/min, 多余水体从溢流管流出, 使体积保持 不变。分别在这 6 个水桶中加入 1、2、4、8、16、 32 尾均重为 23.68 g 的鲤鱼, 在充分供氧条件下, 统 一喂食一定数量的鱼饵。在加入鲤鱼 15 d 后,对每 个水桶采集 500 mL 水样, 共取 3 个平行样, 同时取 等体积纯净水作为空白对照组。取样方式及滤膜处理 方式与野外式样相同。使用 R 软件(version 4.0.3)中的 "basicTrendline"包对剔除阴性对照后的高通量测序 分子拷贝数及不同尾数组进行散点图拟合,计算"生 物量-拷贝数"定量拟合线性回归方程和相关系数。

2 结果与分析

2.1 序列筛选结果

经物种名核对、碱基比对等过程筛选,本研究用 于引物设计的鱼类共计8目、26科、101属、150种 (表1)。

日 Order	和 Family	属 Genus	种 Snecies	序列号
 鳗鲡目	鳗鲡科 Anguillidae	鳗鲡属 Anguilla		AP007242
Anguilliformes	· · · · · · · · · · · · · · · · · · ·		日本鳗鲡 A. japonica	AB038556
鳉形目	花鳉科 Poeciliidae	花鳉属 Poecilia	孔雀花鳉 P. reticulata	AB898687
Cyprinodontiformes			茉莉花鳉 P. latipinna	KT175511
		食蚊鱼属 Gambusia	食蚊鱼 G. affinis	AP004422*
颌针鱼目	怪颌鳉科 Adrianichthyidae	青鳉属 Oryzias	青鳉 O. latipes	AP008938
Beloniformes			弓背青鳉 O. curvinotus	KY364884
合鳃鱼目	合鳃鱼科 Synbranchidae	黄鳝属 Monopterus	黄鳝 M. albus	KP779625
Synbranchiformes	刺鳅科 Mastacembelidae	刺鳅属 Mastacembelus	大刺鳅 M. armatus	KY609156 [*]
脂鲤目	脂鲤科 Characidae	巨脂鲤属 Piaractus	短盖巨脂鲤 P. brachypomus	KJ993871
Characiformes	鲮脂鲤科 Prochilodontidae	鲮脂鲤属 Prochilodus	条纹鲮脂鲤 P. lineatus	KY825189
鲇形目	鲇科 Siluridae	隐鳍鲇属 Pterocryptis	越南隐鳍站 P. cochinchinensis	KR028479 [*]
Siluriformes			糙隐鳍站 P. anomala	MT433099
		鲇属 Silurus	屿 S. asotus	MK895951
			大口鲶 S. meridionalis	JX087350
	胡子鲇科 Clariidae	胡子鲇属 Clarias	棕胡子鲇 C. fuscus	KJ819540
			革胡子鲇 C. gariepinus	KT001082
			蟾胡子鲇 C. batrachus	KC572134
	芒鲇科 Pangasiidae	芒鲇属 Pangasius	苏氏芒鲇 P. sutchi	KC846907
	甲鲇科 Loricariidae	下口鲇属 Hypostomus	下口鲇 H. plecostomus	KM576100
	鲿科 Bagridae	黄颡鱼属 Pelteobagrus	黄颡鱼 P. fulvidraco	MK104136
			中间黄颡鱼 P. intermedius	MK335935*
		拟鲿属 Pseudobagrus	瓦氏拟鲿 P. vachellii	HM746660
			粗唇拟鲿 P. crassilabris	JX867257
			海南拟鲿 P. hainanensis	MW980438*
		疯鲿属 Tachysurus	纵纹疯鲿 T. virgatus	$MT647840^{*}$
			纵带疯鲿 T. argentivittatus	KX164404
		半鲿属 Hemibagrus	斑点半鲿 H. guttatus	KJ584373
	鮡科 Sisoridae	纹胸鮡属 Glyptothorax	海南纹胸 鳅 G. fokiensis hainanensis	HQ593584 ^{*#}
	鲄科 Ictaluridae	真 鲴 属 Ictalurus	斑点叉尾鲄 I. punctatus	MF621720
鲈形目	真鲈科 Percichthyidae	少鳞鳜属 Coreoperca	中国少鳞鳜 C. whiteheadi	KJ149811
Perciformes	丽鱼科 Cichlidae	灿丽鱼属 Petenia	灿丽鱼 P. splendida	KJ914664 [*]
		口孵罗非鱼属	莫桑比克罗非鱼 O. mossambicus	AY597335
		Oreochromis	尼罗罗非鱼 O. niloticus	MT437356*
			奥利亚罗非鱼 O. aureus	OW770257
鲈形目	丽鱼科 Cichlidae	罗非鱼属 Tilapia	齐氏罗非鱼 T. zillii	MW194077 [*]
Perciformes			伦氏罗非鱼 T. rendalli	MG438461

表 1 本研究用于引物设计的鱼类名录及序列号

Tab.1 Species and accession number of fishes used for primer design in this study

	~1		~	
日 Order	科 Family	属 Genus	柙 Species	序列号 Accession No
 鲈形目	丽鱼科 Cichlidae	罗非鱼属 <i>Tilania</i>	布氏奇罗非角 T. buttikoferi	KF866133
Perciformes		帚齿罗非鱼属 Sarotherodon	伽利略帚齿罗非鱼 S. galilaeus	MW194078
		副丽角属 Parachromis	花身副丽鱼 P. managuensis	KP728467*
		兩角属 Cichla	眼貞丽角 C. ocellaris	KU878410
		副尼丽鱼属 Paraneetroplus	粉红副尼丽鱼 P. synspilus	KF879808
		图丽角属 Astronotus	图丽角 A ocellatus	AP009127
		半丽角属 Hemichromis	双斑半丽角 H himaculatus	HM882928 [#]
	棘臀角科	平航 些 Micronterus	大口里鲈 M salmoides	HO391896
	Centrarchidae	大阳角属 Lenomis	広照大阳角 I macrochirus	AP005993
	塘岫彩	公语世海 Leponus	三部久陌世 E. macrocrata	K1595342*
	Eleotridae	大始與丙 Oxyeleotris	小业塘鳢 E orwanhala	KP713717 [*]
		站頭周 Lieottis	ア大站頭 E. Oxycephulu 堅体推薦 E. malanasama	太研究 This study ^{*#}
	》小 + 年 毎曲 壬	沙塘岫屋 Odoutobutio	二本指電 E. metanosoma	本研究 This study
	O ^{¹/d¹/d¹/d¹/d¹/d¹/d¹/d¹/}	び ^据 喧 周 <i>Ouontobults</i>	中平仍唱喧 O. smensis	MT198690
		制砂塘鳢属 Neodontobutis	海南加步塘鳢 N. nainanensis	MH644035*
	町市在利 0.1111	细凶塘鳢禹 Sineleotris	一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	HO654674 ^{*#}
	虾虎鱼科 Gobiidae	刚朝虾虎鱼禹 Awaous	黑目阿朝虾虎鱼 A. melanocephalus	IQ034074
			睛斑阿胡虾虎鱼 A. ocellaris	JQ451475
		吻虾虎鱼属 Rhinogobius	于陵吻虾虎鱼 R. giurinus	KF3/1334
			溪吻虾虎鱼 R. duospilus	MH12/918
			李氏吻虾虎鱼 R. leavelli	MH729000
			南渡江吻虾虎鱼 R. nandujiangensis	本研究 This study ^{*#}
			陵水吻虾虎鱼 R. linshuiensis	本研究 This study ^{*#}
			三更罗吻虾虎鱼 R. sangenloensis	本研究 This study ^{*#}
			戴氏虾虎鱼 R. davidi	OM617724
			未定种 1 sp. 1	本研究 This study ^{*#}
			未定种 2 sp. 2	本研究 This study ^{*#}
			未定种 3 sp. 3	本研究 This study ^{*#}
		沟虾虎鱼属 Oxyurichthys	台湾沟虾虎鱼 O. formosanus	KC237282
		舌虾虎鱼属 Glossogobius	舌虾虎鱼 G. giuris	MG680939
		枝牙虾虎鱼属 Stiphodon	多鳞枝牙虾虎鱼 S. multisquamus	本研究 This study ^{*#}
	攀鲈科 Anabantidae	攀鲈属 Anabas	攀鲈 A. testudineus	KJ808811*
	丝足鲈科 Osphronemidae	斗鱼属 Macropodus	叉尾斗鱼 M. opercularis	KM588227*
	鳢科 Channidae	鳢属 Channa	乌鳢 C. argus	AP006041
			斑鳢 C. maculata	KC823606
			南鳢 C. gachua	MF924390 [*]
			月鳢 C. asiatica	KJ930190 [*]
	鲤科 Cyprinidae	波鱼属 Rasbora	南方波鱼 R. steineri	JX843769 [*]
		鱲属 Zacco	宽鳍鑞 Z. platypus	KF683339

E	科	属	种	序列号
Order	Family	Genus	Species	Accession No.
鲤形目	鲤科	异蠟属 Parazacco	海南异鱲 P. fasciatus	本研究 This study ^{*#}
Cypriniformes	Cyprinidae	马口鱼属 Opsariichthys	南方马口鱼 O. bidens	DQ367044 [*]
			海南马口鱼 O. hainanensis	本研究 This study ^{*#}
		唐鱼属 Tanichthys	唐鱼 T. albonubes	AP011397
		拟细鲫属 Nicholsicypris	拟细鲫 N. normalis	AP011396*
		细鲫属 Aphyocypris	林氏细鲫 A. lini	MW338757
		鳤属 Ochetobius	鳤O. elongatus	KM400625
		青鱼属 Mylopharyngodon	青鱼 M. piceus	MT084757
		草鱼属 Ctenopharyngodon	草鱼 C. idella	MG827396
		赤眼鳟属 Squaliobarbus	赤眼鳟 S. curriculus	AP011218
		鲌属 Culter	蒙古鲌 C. mongolicus mongolicus	AP009060
			海南鲌 C. recurviceps	KJ609181
		红鳍鲌属 Chanodichthys	红鳍鲌 C. erythropterus	MN105126 [*]
		拟餐属 Pseudohemiculter	海南拟鰲P. hainanensis	ON227526 [*]
		鳊属 Parabramis	鳊 P. pekinensis	KF857485
		餐属 Hemiculter	餐H. leucisculus	MZ521000 [*]
		鲂属 Megalobrama	三角鲂 M. terminalis	MN725725*
			斯氏鲂 M. skolkovii	KJ630486
		华鳊属 Sinibrama	海南华鳊 S. melrosei	MW175533 [*]
		海南餐属 Hainania	海南鰲H. serrata	KF029674 ^{*#}
		梅氏鳊属 Metzia	线纹梅氏鳊 M. lineata	AP011220
			台湾梅氏鳊 M. formosae	AP011395
		似稣属 Toxabramis	海南似稣 T. houdemeri	AP011333
		鲴属 Xenocypris	黄尾鲷 X. davidi	KF039718
			银鲴 X. macrolepis	AP009059
		鳑鲏属 Rhodeus	高体鳑鲏 R. ocellatus	KT004415*
			刺鳍鳑鲏 R. spinalis	本研究 This study ^{*#}
		鐍属 Acheilognathus	大鳍 鐍 A. macropterus	KJ499466 [*]
			越南 鐍 A. tonkinensis	MH261370 [*]
			彩副 鐍 A. imberbis	KP015738
		小鲃属 Puntius	疏斑小鲃 P. paucimaculatus	KJ994664 ^{*#}
			条纹小鲃 P. semifasciolatus	AP011246*
		倒刺鲃属 Spinibarbus	光倒刺鲃 S. caldwelli	KF134718 [*]
			锯齿倒刺鲃 S. denticulatus	KC852197 [*]
		光唇鱼属 Acrossocheilus	虹彩光唇鱼 A. iridescens	AP011242*
			厚唇光唇鱼 A. paradoxus	AP009303*
		自甲鱼属 Onychostoma	细尾白甲鱼 O. lepturum	MT258556*
			南方白甲鱼 O. gerlachi	KP244449

				续表
目 Order	科 Family	属 Genus	种 Species	序列号 Accession No.
鲤形目	鲤科	结鱼属 Folifer	瓣结鱼 F. brevifilis	AP011354
Cypriniformes	Cyprinidae	纹唇鱼属 Osteochilus	暗花纹唇鱼 O. salsburyi	KT359600*
		鲮属 Cirrhinus	鲮 C. molitorella	KF160921 [*]
			麦瑞加拉鲮 C. cirrhosus	AP012150
		野鲮属 Labeo	露斯塔野鲮 L. rohita	AP011201
		墨头鱼属 Garra	海南墨头鱼 G. hainanensis	JQ864621 [#]
			东方墨头鱼 G. orientalis	$JX290078^{*}$
		銷属 Hemibarbus	间 螖 H. medius	KJ868177 [*]
		麦穗鱼属 Pseudorasbora	麦穗鱼 P. parva	JF802126
		鳈属 Sarcocheilichthys	海南鳈 S. hainanensis	JN003354 [#]
		银鉤属 Squalidus	点纹银 鉤 S. wolterstorffi	AP011392*
			银 鉤 S. argentatus	KF819452
		小鳔 鉤 属 Microphysogobio	嘉积小鳔 鉤 M. kachekensis	MK139891 [#]
		似鉤属 Pseudogobio	似鉤 P. vaillanti	MN883563 [*]
		蛇鉤属 Saurogobio	无斑蛇 鉤 S. immaculatus	AP012074 [*]
		鲤属 Cyprinus	尖鳍鲤 C. acutidorsalis	KR869144 [*]
			鲤 C. carpio carpio	JN105352
			锦鲤 C. carpio haematopterus	JX188254
		须鲫属 Carassioides	须鲫 C. acuminatus	AP011178
		鲫属 Carassius	鲫 C. auratus	KJ874428 [*]
		道森鲃属 Dawkinsia	黑点道森鲃 D. filamentosa	MK348133 [*]
		鲢属 Hypophthalmichthys	鳙 H. nobilis	KJ729090
			鲢 H. molitrix	EU315941
		花鳅属 Cobitis	中华花鳅 C. sinensis	AY526868*
		泥鳅属 Misgurnus	泥鳅 M. anguillicaudatus	MT896815
		副泥鳅属 Paramisgurnus	大鳞副泥鳅 P. dabryanus	MG725379
		华鳅属 Sinibotia	美丽华沙鳅 S. pulchra	AP012125
	鳅科	小条鳅属 Micronemacheilus	美丽小条鳅 M. pulcher	AP011301*
	Cobitidae		齐氏小条鳅 M. zispi	KJ434599*
		南鳅属 Schistura	横纹南鳅 S. fasciolata	MW192448 [*]
			无斑南鳅 S. incerta	MK361215 [*]
	爬鳅科	爬鳅属 Balitora	广西爬鳅 B. kwangsiensis	JN177072 ^{*#}
	Balitoridae	近腹吸鳅属 Plesiomyzon	保亭近腹吸鳅 P. baotingensis	KF732713 [*]
		拟平鳅属 Liniparhomaloptera	琼中拟平鳅 L. disparis aiongzhongensis	MZ047229 [*]
		原缨口鳅属 Vanmanenia	海南原缨口鳅 V. hainanensis	MW289207*
		爬岩鳅属 Beaufortia	爬岩鳅 B. leveretti	KX060617 [*]
		中华爬岩鳅属 Sinogastromyzon	伍氏爬岩鳅 S. wui	JN177076 [#]

注:*, 该物种用于 PCR 筛选; #, 序列为 CO I 基因部分片段(共 22 种)。

Note: *: This species is used for PCR screening; #: The sequence was only a part of CO I gene (22 species in total).

2.2 侧翼保守区简介

基于 150 种鱼类 CO I 序列, 共筛选出 6 个侧翼 保守区(图 1, 侧翼保守区 A~F)。其中, 侧翼保守区 F 与 E 距离较远(>300 bp), 其扩增子长度超出常见 eDNA 分子长度及高通量测序读长范围(2×150 bp) (Turner *et al*, 2014)。侧翼保守区 A 与 B、C 与 D 距 离不足 100 bp, 扩增子长度较短不利于近缘鱼类区 分。因此,本研究在 2×150 bp 测序读长范围内选取 扩增子最长的前 3 个侧翼保守区组合——A+D、A+E、 B+E 进行正、反向引物设计。为了比较,本研究同 时标注了标准的鱼类 DNA 条形码(650 bp 或 652 bp) 及其他研究者设计的 2 对通用性较高的 eDNA 宏条 形码 CO I 通用引物所在位置(图 1, Fish-F1/F2、 Fish-R1/R2、PS1、Uni-Minibar) (Zhang *et al*, 2020)。

图 1 侧翼保守区在 CO I 基因前半段(776 bp/1 551 bp)内的相对位置 Fig.1 Relative positions of flanking conserved regions within the first half of CO I gene (776 bp/1 551 bp)

以鲤鱼(NCBI 序列号: JN105352)为标注模板。 Cyprinus carpio carpio (accession number: JN105352) was used as the labeling template.

2.3 引物设计结果

除侧翼保守区 A 存在 2 个完全保守密码子外, 其余密码子第 3 位点均发生转换变异(表 2),需要使 用适量简并碱基提高"引物序列–DNA 模板"匹配度。 根据简并碱基数的不同,本研究对每个侧翼保守区分 别设计了 5~8 种引物,其碱基组成、GC 含量和 T_m 值见表 3。引物 Premier 评分结果显示,26 条引物中, 3 条引物评分处于"Best"等级,表明引物在退火温 度、GC 含量、二级结构等方面更符合理想引物的标 准;17 条引物评分处于"Good"等级,理论上仍能 够进行 DNA 模板有效扩增;6 条引物评分处于"Poor" 等级,不满足常用引物有关标准。

2.4 PCR 筛选结果

首轮 PCR 筛选结果显示,20 条引物中,侧翼保 守区 E 内的 5 条引物扩增成功率较低,引物的通用性 差。HN-A-F1/F2/F3/F4、HN-B-F1/F2/F3/F4、HN-D-R2/ R3/R4 扩增出的单一条带物种数较多(表 3);逐步调 低图片亮度,当胶图上的 marker 不可见时,HN-A-F4、 HN-B-F3/F4、HN-D-R3/R4 存在条带痕迹的物种数较 多(亮度大于 marker 的单一条带物种数≥70 种,表 3)。 因此, 这 5 条引物的通用性更高。

对上述 5 条引物形成的 3 (正向) × 2 (反向)套引 物组合进行次轮 PCR 筛选,结果显示,全部 72 种鱼 类扩增成功率均为 100% (PCR 胶图未展示)。 HN-A-F4、HN-B-F3/F4 作为 HN-D-R3/R4 的正向引 物产生的扩增子长度分别为 139 bp、106 bp/106 bp。 扩增子长度越长,物种鉴定准确性越高,因此, HN-A-F4比HN-B-F3/F4更有优势。虽然HN-D-R3/R4 作为 HN-A-F4 的反向引物产生的扩增子长度相同, 且二者的扩增成功率均为 100% (图 2A: HN-D-R3; 图 2B: HN-D-R4), 但逐步调低图片亮度, 当胶图上 的 marker 不可见时 HN-D-R3 产生的扩增子均存在痕 迹(图 2C), 而 HN-D-R3 扩增的 23、24、43 号样品条 带彻底消失(图 2D)。HN-D-R3 产生的条带更亮、扩 增效率高于 HN-D-R4 (见图 2C、图 2D),因此更适合 作为反向引物。综上所述,次轮 PCR 筛选中表现最 优的引物组合为"HN-A-F4、HN-D-R3"(以下简称 HN-CO I).

	Ē
	b
	Ē.
	÷
	փ
	6
	÷
-1-2	0
臣	E
钮	Ť
Ť.	5
	ĝ
鬞	5
Š	E
<u>d</u>	č
教	¢
	20
im.	,ĉ
₩Ľ.	Ţ
Ē	L L
24	0
R	Ě
柂	.₽
÷	b
5	re
壃	ç
咸	ve Ne
E.	Ę
È	S.
置	Ē
12	č
<u> </u>	6
X	.É
ł۲.	17
	μ
伯	Ť
翼	¢
	Ę
5	1
在	·=
44	2
1 ND	- 5
鱼	ě
뮾	ę
-	~
20	v
Ξ	ε
ᅭ	C
Ц	ň
笂	
њ	ĥ
뛵	+
Ħ	Ċ
	Ę
2	.Ē
цю	Ŧ
₩Ŕ	Ξ,
	÷Ē
	v
	•=
	5
	e d
	ase d
	Base d

	励其																																				
Name of flanking conserved regions or	燙 勝 type															Bê	5' Ise co	r→3'ť	钓碱 ^j sition	基组 贞 from	کر 5′ to	3,															
primers	4 U U F	0 0 %	127	35 1 4 4 17	20 8 1 8	0 28	2 1 2 1	0 0 0	0 0 58	0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	0 1 0	00 1	0 0 0	0 0 0	0 0 0 0 0 0	58 0	0 1 0	0	0 0 0	000	0 31 0	0 0 0	$\begin{array}{c} 0\\ 0\\ 135\\ \end{array}$	0 29 0 29	$\begin{pmatrix} 142\\ 0\\ 0 \end{pmatrix}$	$\left \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right $	$\begin{array}{c} 0\\ 1501\\ 0\\ 0\end{array}$	0	000							
Fish-F1 Fish-F2 Uni-Minibar-F 伽罶 但	-	123 T T T	-000	CGAD		ວບບບບ		0444	0 4 4 4	20FH	ວບບບ	0 4 4 4	30F0	0	0 4 4 4	N A A O	- ೮೮೮	0	• U U H	0	Т Т Т ²⁸	чсч[- ೮೮೮	- ひ ひ ひ	HCC9	0 < < <	ວບບບ	⊃	- · · · ·	03							
Flanking conserved			l		1	i I		, V	V	Y	C	A	Y	A	A	A	IJ	V	Y	A	Т	Υ	IJ	G	Y	A	C	C	C	Ч							
	H C C F	0 150 0	0 0 150	.31 0 19 0 1	0 0 50 1:	0 0 0 20 1	0 21 29 1	0 0 1 0	0 0 2 0	0 12 38	0 50 0	0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 10 10 10 10	0 0 50	0 0 0 0	0 1 0 1	0 0 1 0	0 0 0	0 117 0 1 33	0 0 0	0 0 0 0	107 0 0	$\begin{array}{c} 150\\ 0\\ 0\\ 0\end{array}$	0 0 150	$\begin{array}{c} 129\\ 0\\ 21\\ 0\end{array}$	$\begin{array}{c} 0 \\ 0 \\ 150 \end{array}$	$\begin{array}{c} 0\\ 0\\ 150 \end{array}$										
PS1-F 侧翼保守区 B Flanking conserved region B		U U	н н	R A		н н	ч Т Т	 ບ ບ	თ. თ.	ХХ	5 5	υυ	чч	E E	5 5	х х	5 5	υυ	ΥC	ი ი	ი ი	я я	A A	н н	R A	U U	н н					ſ	I				
	I C V	$\begin{array}{c} 0\\ 0\\ 150\\ 0\end{array}$	0 150	0 1 0 28 88	0 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 3 47	50 0 1 0 1	0 50 0	0 1 14 0 36	150 0 0 1	0 1 0 50	37 1 0 13 0	50 0 0	50 0 1 0 1	15 1 0 35 0	50 1 0 0 0	0 0 0	112 0 0	0 0 0 0	0 0 150	0 23 0 127	$\begin{array}{c} 150\\ 0\\ 0\\ 0 \end{array}$	0 0 150	29 6 103	$\begin{smallmatrix} 150\\0\\0\\0 \end{smallmatrix}$	$\begin{array}{c} 0\\136\\0\\14\end{array}$	63 0 0	150 1 0 0 0	150 4 0 1 0 1 0 1 0 (15 0 04 15 0 0 0 15	$\begin{smallmatrix}&0\\150\\0&0\\0\end{smallmatrix}$	73 77 0	0 0 150	0 50 6 50 6	29 (5 7 (5 8 15 16 (5	0 20 1
Uni-Minibar-R 侧翼保守区 D Flanking conserved		U (J	U (J	- -	· ·	, , H	· ·		ι . Ο	Х	V	·	∣ ≃			U M	A A	A A	R A	V V	L L	κ c	A A	н н	V	A	H	<u>ں</u>	V I	• · ·		U	A	-	υ	▼ ▼	י - ט
PSI-R	A D D H	150 0 A	27 0 123 G	C 2 0 8 0	0,000	A 0 0 5 0 4	7 0 2 0 Z 0 Z	₹ 00 1 0 0 0 0 0 1	₹ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R 0 0 1	00000	0 0 0 T	Y 00 1	A 0 0 0 0 0 0 1	000%F	%0%0% 1	0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 T	80 0 80 × 1	T 0 0 0	0 0 0 150 U	0 36 114 Y	A 0 0 0 A	0 0 0 150 T	10 110 1127 T	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0					I	1				
侧翼保守区 E Flanking conserved region F		I		I	۔ ن	×	R	, 4	∢	ĸ	C	Т	Х	A	н	К	Н	Н	К	Н	н	Y	V	Н													

Шų́
氜
₩
蜝
暬
#
絙
Ŧ
究
Ш
¥
.,
ŝ
表

		Tab.3	Basic infe	ormation of d	legenerate pi	rimers in this study				
4 7 - 47 - 47	子 五 五 二 二 一	退火	GC 含量	引物长度	引物评分	用于 PCR	无条带物种数	多条带物种数	单一条带 物种数	条带亮度大于 marker 的物种
51物名称 Primer name	$f_{T} = \frac{1}{2} f_{T} = \frac{1}$	温度	GC content	Primer	等狄 Primer	筛选的配套引物 Matchino mimers	Number of species	Number of species with	Number of	数 Number of species with
		$(T_m)/C$	%/	length /bp	score grade	for PCR screening	without bands 1	multiple bands	species with a single band	brighter bands than marker
HN-A-F1	AACCACAAAGACATTGGYACCCT	61.9	46	23	Best		0	2	70	60
HN-A-F2	AACCACAAAGACATYGGYACCCT	61.4	48	23	Best		0	0	72	65
HN-A-F3	AACCAYAAAGACATYGGYACCCT	62.8	46	23	Best	Fish-R1+Fish-R2	0	0	72	69
HN-A-F4	AAYCAYAAAGACATYGGYACCCT	65.2	43	23	Good		0	0	72	71
HN-A-F5	AAYCAYAAAGAYATYGGYACCCT	66.4	41	23	Good		7	4	99	59
HN-B-F1	GTATTTGGTGCCTGAGCCGGAATRGT	67.1	52	26	Good		7	0	70	57
HN-B-F2	GTATTTGGTGCCTGAGCCGGRATRGT	69.1	54	26	Good		0	1	71	99
HN-B-F3	GTAITTIGGTGCCTGAGCYGGRAIRGT	66.4	52	26	Good		0	0	72	71
HN-B-F4	GTAITTIGGTGCCTGRGCYGGRATRGT	67.6	54	26	Good	Fich_R 1+Fich_R 2	0	0	72	71
HN-B-F5	GTAITTIGGTGCYTGRGCYGGRATRGT	65.2	52	26	Good		ŝ	9	63	58
HN-B-F6	GTAITTIGGYGCYTGRGCYGGRATRGT	65.8	54	26	Poor					
HN-B-F7	GTATTYGGYGCYTGRGCYGGRATRGT	65.4	56	26	Poor					
HN-B-F8	GTRTTYGGYGCYTGRGCYGGRATRGT	65.5	58	26	Poor					
HN-D-R1	GGTATTACTATAAAGAAAATYAT	43.9	20	23	Good		7	2	63	52
HN-D-R2	GGTATTACTATAAAGAARATYAT	45.8	22	23	Good		1	1	70	99
HN-D-R3	GGYATTACTATAAAGAARATYAT	50.1	24	23	Good		0	0	72	70
HN-D-R4	GGYATTACTATAAARAARATYAT	52.2	22	23	Good	Fish-F1+Fish-F2	0	1	71	70
HN-D-R5	GGYATTACTATRAARAARATYAT	55.2	24	23	Good		5	6	58	53
HN-D-R6	GGYATTACYATRAARAARATYAT	59.5	26	23	Good		14	20	38	19
HN-D-R7	GGYATYACYATRAARAARATYAT	62.6	28	23	Poor					
HN-E-R1	CAGAAGCTTATGTTATTYAT	44	28	20	Good		13	13	46	25
HN-E-R2	CAGAAGCTTATGTTRTTYAT	44	30	20	Good		10	4	58	44
HN-E-R3	CAGAAGCTTATRTTRTTYAT	41.1	28	20	Good	Fish-F1+Fish-F2	4	9	62	50
HN-E-R4	CAGAAGCTYATRTTRTTYAT	44.4	30	20	Good		7	11	54	49
HN-E-R5	CAGAARCTYATRTTRTTYAT	46.9	28	20	Poor					
HN-E-R6	CARAARCTYATRTTRTTYAT	49.5	25	20	Poor					
Fish-F1	TCAACCAACCACAAAGACATTGGCAC	66.6	46	26	Good	Fish-R1+Fish-R2	1	1	70	68
Fish-F2	TCGACTAATCATAAAGACATCGGCAC	61.4	42	26	Best		0	0	72	99
Uni-Minibar-F	F TCCACTAATCACAARGATATTGGTAC	56	37	26	Good	Uni-Minibar-R	19	28	25	6
PS1-F	GTATTTGGYGCYTGRGCCGGRATAGT	66.4	54	26	Good	PS1-R	7	19	46	22
Fish-R1	TAGACTTCTGGGTGGCCAAAGAATCA	64.7	46	26	Good	Eich E1+Eich E7	0	1	71	64
Fish-R2	ACTTCAGGGTGACCGAAGAATCAGAA	64.1	46	26	Good	7.1-1191.1 1.1-1191.1	0	2	70	62
Uni-Minibar-F	R GAAATCATAATGAAGGCATGAGC	57.9	38	24	Good					
PS1-R	AGCCARAARCTYATRTTRTTYATTCG	64.3	35	26	Good					

注: "—"表示结果重复或未进行有关实验。 Note: "—" indicates that the results were repeated or the experiment was not carried out.

1 2 3 4 5 6 7 8 9 10 11 12 M 13 14 15 16 17 18 19 20 21 22 23 24 1 000 bp $\leftarrow \rightarrow 2 000$ bp 500 bp $\leftarrow \rightarrow 750$ bp 100 bp $\leftarrow \rightarrow 200$ bp	1 2 3 4 5 6 7 8 9 10 11 12 M_13 14 15 16 17 18 19 20 21 22 23 24 1 000 bp $\leftarrow 2 2000$ bp 500 bp $\leftarrow 3750$ bp 100 bp $\leftarrow -200$ bp
25 26 27 28 29 30 31 32 33 34 35 36 M 37 38 39 40 41 42 43 44 45 46 47 48 1 000 bp $\leftarrow \rightarrow 2 000$ bp 500 bp $\leftarrow \rightarrow 750$ bp 100 bp $\leftarrow = 200$ bp	25 26 27 28 29 30 31 32 33 34 35 36 M 37 38 39 40 41 42 43 44 45 46 47 48 $\rightarrow 2.000 \text{ bp}$ $1 000 \text{ bp} \leftarrow = \rightarrow 750 \text{ bp}$ $500 \text{ bp} \leftarrow = 200 \text{ bp}$ $100 \text{ bp} \leftarrow = -200 \text{ bp}$
49 50 51 52 53 54 55 56 57 58 59 60 M 61 62 63 64 65 66 67 68 69 70 71 72 1 000 bp $\leftarrow = \rightarrow 2000$ bp 500 bp $\leftarrow = \rightarrow 2000$ bp 200 bp 100 bp $\leftarrow = \rightarrow 2000$ bp	49 50 51 52 53 54 55 56 57 58 59 60 M 61 62 63 64 65 66 67 68 69 70 71 72 1 000 bp $\leftarrow \rightarrow 2$ 000 bp 1 000 bp $\leftarrow \rightarrow 750$ bp 2 00 bp 1 000 bp $\leftarrow -$
A	D
1 2 3 4 5 6 7 8 9 10 11 12 M 13 14 15 16 17 18 19 20 21 22 23 24 \rightarrow 750 bp	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 2 3 4 5 6 7 8 9 10 11 12 M 13 14 15 16 17 18 19 20 21 22 23 24 → 750 bp 25 26 27 28 29 30 31 32 33 34 35 36 M 37 38 39 40 41 42 43 44 45 46 47 48 → 750 bp	$\begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & M & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\ & - & \rightarrow 750 & \text{bp} \end{array}$
1 2 3 4 5 6 7 8 9 10 11 12 M 13 14 15 16 17 18 19 20 21 22 23 24 \rightarrow 750 bp 25 26 27 28 29 30 31 32 33 34 35 36 M 37 38 39 40 41 42 43 44 45 46 47 48 \rightarrow 750 bp 49 50 51 52 53 54 55 56 57 58 59 60 M 61 62 63 64 65 66 67 68 69 70 71 72 \rightarrow 750 bp	$\begin{array}{c} 12 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ M \ 13 \ 14 \ 15 \ 16 \ 17 \ 18 \ 19 \ 20 \ 21 \ 22 \ 23 \ 24 \\ - \ 750 \ bp \end{array}$

图 2 HN-D-R3 与 HN-D-R4 的扩增效果比较 Fig.2 Comparison of amplification effect of HN-D-R3 and HN-D-R4

A: HN-D-R3 扩增原图; B: HN-D-R4 扩增原图; C、D: 原图亮度同步调低至只剩 750 bp marker 可见时 的扩增子痕迹(C: HN-D-R3; D: HN-D-R4); 1~72: 物种编号; M: Marker。

A: Original image of HN-D-R3 amplification; B: Original image of HN-D-R4 amplification; C, D: Amplicon trace when the brightness of the original image was synchronously reduced to only 750 bp marker visible (C: HN-D-R3; D: HN-D-R4); 1~72: Numbers of species; M: Marker.

2.5 水样高通量测序结果

全部 30 个水样稀释曲线(rarefaction curves)末端 趋于平滑,样品测序数据量充足,可用于后续分析。 虽然生物信息学过程已剔除阴性对照中出现的序列, 但水样中仍检测出了一定比例的河口及海洋鱼类 OTUs。由于这部分序列仍是引物灵敏性和通用性的 反映,因此,本研究未进一步对其进行剔除。MiFish-U 的扩增效率高于 HN-CO I,前者产生的待分析序列 (clean reads)总量是后者的 1.29 倍(表 4);然而,HN-CO I 对鱼类 eDNA 靶向性更强,待分析序列内鱼类序列 总数和序列平均占比分别是 MiFish-U 的 1.22 倍和 1.99 倍(表 4)。OTUs 也表现出同样的现象: MiFish-U 共扩增出 477 种 OTUs,其中鱼类 OTUs 共 65 种(占 比为 13.63%); HN-CO I 共扩增出 406 种 OTUs,其 中鱼类 OTUs 共 86 种(占比为 21.18%) (表 4)。 OTUs 注释结果显示,HN-CO I 产生的 86 种鱼 类 OTUs 注释到种、属、科及科以上水平的数目分别 为 70 (81.40%)、10 (11.63%)、6 (6.98%);MiFish-U 产生的 65 种鱼类 OTUs 中注释到种、属、科及科以 上水平的数目分别为 53(81.54%)、3(4.62%)、9 (13.85%)。种水平的 OTUs 共注释 81 种鱼类,其中共 享鱼类 42 种,独享鱼类 28 种(HN-CO I)和 11 种 (MiFish-U)。基于 81 种鱼类的出现情况进行"引物+ 水样"的 NMDS 排序结果显示,样品聚类成边界明 显的 2 组。表明 HN-CO I、MiFish-U 的鱼类多样性 调查结果存在较大不同。此外,HN-CO I 的 NMDS 结果离散性高于 MiFish-U,暗示基于该引物组合的 海南岛鱼类多样性调查差异大。NMDS 分析结果的胁 强系数为 0.15,说明将 2 个引物调查结果划归不同组 具有一定的解释意义。

	140.4	Difer introducti	ion to water sa	inple results alter	ingn-unoughp	ut sequeneing	
己物组合	水样	待分析序列	鱼类序列	鱼类序列占比	OTUs 总数	鱼类 OTUs 总数	鱼类 OTUs 占比
Primers pairs	Samples	Clean reads	Fish	Fish sequence	Total number	Total number	Fish OTUs
F	I II		sequence	ratio /%	of OTUs	of fish OTUs	ratio /%
MiFish-U	ND-1	1 587 885	695 760	43.82	117	11	9.40
	ND-2	1 104 676	144 785	13.11	78	8	10.26
	ND-3	991 762	133 630	13.47	119	18	15.13
	ND-4	938 059	132 825	14.16	115	17	14.78
	ND-5	905 181	111 780	12.35	115	13	11.30
	CH-1	816 815	71 645	8.77	62	3	4.84
	CH-2	785 725	69 115	8.79	115	6	5.22
	CH-3	755 231	59 800	7.92	69	7	10.14
	CH-4	685 819	64 445	9.40	55	6	10.91
	CH-5	672 648	103 730	15.42	85	12	14.12
	WQ-1	662 054	56 005	8.46	105	10	9.52
	WQ-2	488 033	43 930	9.00	69	7	10.14
	WQ-3	484 507	80 615	16.65	62	14	22.58
	WQ-4	382 510	55 820	14.59	117	19	16.24
	WQ-5	271 221	40 020	14.76	56	7	12.50
HN-CO I	ND-1	1 388 328	281 980	20.31	64	8	12.50
	ND-2	1 063 166	220 225	20.71	124	19	15.32
	ND-3	1 006 708	322 920	32.08	71	12	16.90
	ND-4	833 107	135 355	16.25	121	19	15.70
	ND-5	657 805	99 920	15.19	80	14	13.25
	CH-1	548 473	135 110	24.63	75	9	12.00
	CH-2	497 554	256 795	51.61	70	17	22.86
	CH-3	440 352	84 155	19.11	86	19	22.09
	CH-4	407 752	124 430	30.52	117	21	17.95
	CH-5	405 178	86 020	21.23	82	19	23.17
	WQ-1	403 004	58 650	14.55	67	8	11.94
	WQ-2	359 890	94 830	26.35	64	18	28.13
	WQ-3	352 378	78 085	22.16	71	10	14.08
	WQ-4	315 718	157 690	49.95	103	31	30.09
	WQ-5	240 563	128 800	53.54	78	22	28.21

表 4 水样高通量测序结果简介 Tab 4 Brief introduction to water sample results after high-throughput sequencing

Fig.3 NMDS analysis of different primers

42 种共享鱼类的两两遗传距离分别为 0.007~0.377 (0.234±0.087) (HN-COI)和 0.006~0.462 (0.298±0.135) (MiFish-U);对 42 种鱼类所在阶元进行分组,属内物种间两两遗传距离分别为 0.007~0.251 (0.156±0.050) (COI)和 0.006~0.202 (0.099 4±0.035) (MiFish-U);HN-COI引物组合的属内物种遗传距离最小值及平均值均高于 MiFish-U,分别为后者的 1.23 倍和 1.57 倍,暗示 HN-COI的近缘鱼类的区分能力高于 MiFish-U。此外,全部 42 种共享鱼类的两两遗传距离的变异系数分别为 37.28% (HN-COI)和 45.42% (MiFish-U);属内物种间两两遗传距离的变异系数分别为 31.88% (HN-COI)和 35.51% (MiFish-U)。与 MiFish-U 相比,HN-COI的变异系数更小,表明其物

种鉴定稳定性高于 MiFish-U。

2.6 "生物量-拷贝数"定量拟合结果

将不同密度的鲤鱼与高通量测序后的分子拷贝 数进行拟合: HN-COI、MiFish-U的线性回归方程 分别为 y=18586x ($R^2=0.65$)和 y=17267x ($R^2=0.52$) (图 4)。2 种引物拟合方程的相关系数均较低,表明尚 不能通过 eDNA 序列反映水槽中鲤鱼的生物量。拟合 结果还表明,饲养 15 d 后低密度组的 eDNA 浓度极 高,6个密度组内的鲤鱼 eDNA 可能均处于饱和状态; 同一密度组内却又存在平行样间分子拷贝数差异较 大的现象(图,4),表明水体内 eDNA 分布并不均匀。 此外,本研究尝试了二项式、指数、对数、幂函数的 拟合效果,其相关性均较低(*R*²≤0.565)(图表略)。

A: HN-CO I; B: MiFish-U

3 讨论

3.1 CO I 通用引物的地域性

本研究中,有5条引物的通用性较高(表3),其 中以HN-COI效果最佳,该引物组合的扩增子长度 达到139 bp, PCR 成功率为100%且扩增条带亮度均 大于 marker。表明以海南岛淡水鱼类为调查对象时, 能够筛选出理想的鱼类 eDNA 宏条形码 COI 通用引 物。然而,PS1及 Uni-Minibar 在本研究中表现较差 ——72种鱼类 PCR 成功数分别为46种和25种,扩 增条带亮度大于 marker 的物种数更是仅有22种和9 种(表3)。Zhang等(2020)基于北京市水样进行 eDNA 宏条形码引物比较亦表明:PS1及 Uni-Minibar 在全 部 22 对测评引物中处于中等偏下水平。然而,在 Balasingham 等(2018)和 Meusnier 等(2008)的原始研 究中, PS1、Uni-Minibar 却展现了极高的通用性。 PS1、Uni-Minibar 及 HN-CO I 在不同研究中的表现 说明, eDNA 宏条形码 CO I 通用引物具有明显的地 域性,可能无法适用于原始调查水域/类群之外的鱼 类多样性研究。造成引物地域性的主要原因,是 CO I 基因变异速率远高于 12S、16S,因而找不到严格 的侧翼保守区(Riaz et al, 2011; Freeland, 2017; Evans et al, 2018)。综合已有研究结果,本研究认为, 鱼类 eDNA 宏条形码 CO I 通用引物的具体应用需 要密切考虑其设计背景和原始调查水域/类群,直接 使用他人筛选出的 CO I 通用引物存在一定的物种 调查假阴性风险。

3.2 CO I 通用引物筛选参考及建议

虽然鱼类 eDNA 宏条形码 CO I 通用引物具有一定的地域性,但本研究为其他类似研究提供了一个引

物筛选参考。本研究筛选出的 6 个侧翼保守区与 Fish-F、Fish-R、PS1、Uni-Minibar 等已知的鱼类 CO I条形码引物位置重叠(图 1),并且侧翼保守区涉及 的鱼类总数在数百种以上(本研究: 150种; Fish-F、 Fish-R: 207种; PS1: 114种; Uni-Minibar: 187种) (Ward et al, 2005; Meusnier et al, 2008; Balasingham et al, 2018)。因此,图 1标注的侧翼保守区位置具有 充分借鉴意义。尽管不同类群在具体碱基构成上可能 存在一定差异,如 150种海南岛淡水鱼类在 HN-A-F4 引物 3'端存在 5 个连续保守碱基,Fish-F1/F2、 Uni-Minibar-F 在相同位置却只存在 2 个连续保守碱 基(表 2),但其他水域的鱼类多样性调查仍然可以以 此为导引,通过调整引物起始位置和修改碱基组成, 筛选所需的 CO I 通用引物。

侧翼保守区长度会影响引物通用性。本研究中 HN-E 系列的 6 条引物 PCR 成功率明显偏低(表 3)。 虽然侧翼保守区 E 的长度达到 20 bp。有研究认为, 当引物长度在 18 bp 以上即可保证引物自身有极高的 扩增效率(Kitano et al, 2007; Riaz et al, 2011; Sultana et al, 2018)。但由于密码子第3位点变异碱基的存在, 侧翼保守区 E 与 eDNA 模板的有效结合长度最小值 只有 14 bp,导致引物筛选过程中有 10~26 种鱼类扩 增失败。随机扩增片段多态性(random amplification polymorphic DNA, RAPD)技术的广泛使用(所用引物 在 10 bp 左右),也从侧面印证了引物长度的降低会导 致 PCR 出现多条带或者无条带的结果(何舜平等, 2000; 尹绍武等, 2006; 鹿志创等, 2007)。相比之下, Fish-F1/F2及Fish-R1/R2长度均为26bp,即使密码 子第3位点完全不匹配,其有效结合长度也至少为 18 bp。这4条引物在未使用任何简并碱基的情况下, PCR条带亮度大于 marker 的物种数仍高达 62~68 种; HN-B-F3/F4 的 PCR 成功率更是高达 100%。Menning 等(2020)和 Sultana 等(2018)针对阿拉斯加、马来西亚 本土鱼类进行的 CO I 通用引物筛选,结果也呈现出 类似规律:长度短的引物更容易被率先淘汰。本研究 不推荐在短侧翼保守区内进行引物设计,如有必要则 应该对引物 5′端进行碱基加长修饰。

COI通用引物设计过程中,应使用适量简并碱基。Miya等(2015)在引物筛选过程中发现,即使只添加1~2个简并碱基也会导致PCR扩增中出现不同程度的弥散带,因此,采取将MiFish-U(硬骨鱼类)与MiFish-E(软骨鱼类)引物分开设计的原则。Ward等(2005)在设计标准的鱼类DNA条形码COI引物(Fish-F1/F2及Fish-R1/R2)过程中,也采取了"分别设计多对正、反向引物,不同引物组合应用"的策略。

然而,由于没有简并碱基,MiFish-U、Fish-F1/F2及 Fish-R1/R2 始终存在部分鱼类无法扩增的问题(Ward et al, 2005; Miya et al, 2015); 并且多对引物搭配使用 会显著提高鱼类 eDNA 研究的工作量和 PCR 测序成 本。针对此问题, Ivanova 等(2007)和 Minamoto 等 (2012)均通过添加简并碱基来提高"引物序列-DNA 模板"的匹配度。本研究支持使用适量简并碱基的做 法:用于首轮 PCR 筛选的 20 条引物中,使用 1~2、 3~4、5个及以上简并碱基的引物,其 PCR 条带亮度 大于 marker 的物种数分别为 25~66 (54.38±14.13)、 49~71 (65.13±9.67)和 19~59 (47.25±19.02)种。次轮 PCR 筛选结果也显示, HN-CO I 等存在 3~4 个简并 碱基的引物 PCR 成功率均为 100%。然而,当简并 碱基在 5 个及以上时, 72 种海南岛淡水鱼类的 PCR 成功数开始明显下降;特别是 HN-B-F6/F7/F8、 HN-D-R7、HN-E-R5/R6 引物,由于自身含有过多的 简并碱基,已经无法满足 Premier 软件的基本要求。 PS1 对海南岛淡水鱼类的扩增效果较差,可能也受到 了反向引物简并碱基过多的影响(Minamoto et al, 2012; Miya et al, 2015).

3.3 HN-CO I 与 MiFish-U 的比较

通用性和物种识别能力是鱼类 eDNA 宏条形码 引物的2个核心指标。Collins 等(2019)和 Milan 等(2020) 认为: 12S 和 16S 引物的通用性一般高于 CO I 和 Cytb。本研究支持此结论。30 个水样高通量测序结 果显示, MiFish-U 产生的待分析序列总数和 OTUs 总数分别是 HN-CO I 的 1.29 倍和 1.18 倍(表 4)。然 而, MiFish-U可能存在通用性过高的风险——虽然该 引物是 Miya 等(2015)基于 880 种鱼类线粒体全序列 筛选所得,但引物序列对微生物、鸟类、哺乳类等众 多类群却普遍适用。过高的通用性会引起 PCR 竞争 性扩增,导致量少的鱼类 eDNA 模板在扩增过程中因 受到其他量多的 eDNA 模板(如微生物)的竞争而逐步 丢失(Kobayashi et al, 2000; 华育平, 2002; 李朋祥, 2012)。本研究中, HN-CO I 产生的鱼类序列总数及 其占比、鱼类 OTUs 总数及其占比分别为 MiFish-U 的 1.22 倍 (2 264 965/1 863 905)和 1.57 倍(25.39%/ 16.16%)、1.32 倍(86/65)和1.57 倍(25.39%/16.16%)(表 4)。HN-CO I 引物对海南岛淡水鱼类具有更高的靶向 性,能够在降低微生物等非目标物种有效扩增的同时 产生更多的鱼类序列或 OTUs, 进而满足海南岛淡水 鱼类多样性调查需求。

HN-CO I 的物种识别能力高于 MiFish-U。42 种 共享鱼类遗传距离分析结果显示, HN-CO I 属内物种 遗传距离最小值及平均值是 MiFish-U 的 1.23 倍和 1.57 倍; HN-CO I 在物种注释过程中停滞在科及科以 上水平的 OTUs 占比则仅为 MiFish-U 的 0.50 倍 (6.98%/13.85%)。陈治等(2022)通过比较数十种海南 岛淡水鱼类的 eDNA 宏条形码参考数据库发现, HN-CO I 和 MiFish-U 分别有 5.56% (4种)和 16.67% (12种)鱼类存在条形码序列完全相同的现象。因此, MiFish-U 扩增出的部分 OTUs 可能是多个种的复合 OTUs (Schenekar *et al*, 2020; 蒋佩文等, 2022; 王梦 等, 2022)。这可能也是该引物的鱼类 OTUs 比 HN-CO I 少的原因之一。

"引物+水样"的 NMDS 聚类形成边界明显的两 组(胁强系数=0.15),表明HN-COI、MiFish-U的鱼 类多样性调查结果存在较大不同。该结果符合 Taberlet 等(2012)和 Pawlowski 等(2020)提出的鱼类 eDNA 调查应多基因片段并用的观点。NMDS 图中南 渡江、昌化江、万泉河的位点距离较远,该结果也与 部分已有研究一致(李高俊等, 2020), 表明 eDNA 能 够在中尺度上有效反映鱼类的组成差异(Kelly et al, 2014; Deiner et al, 2017; Yamamoto et al, 2017)。并且, 基于 HN-CO I 的南渡江、昌化江、万泉河三大水系 NMDS 结果离散性高于 MiFish-U。海南岛高山地形 复杂、环境异质化明显, 众多河流互不干扰且呈放射 状向海岛四周奔流,因此,物种的隔离效应极其明显 (陈辈乐等, 2008)。HN-CO I 结果可能更符合海南岛 淡水鱼类的这一时空分布特点。然而,由于没有同步 采用传统调查方法采集鱼类样品,上述推测还需要进 一步验证。

虽然有观点认为, eDNA 能够反映鱼类的生物量 (Doi et al, 2017; Takahara et al, 2019), 但本研究 2 种 引物的"生物量--拷贝数"定量拟合方程相关系数较 低。这可能是由于本研究为室内实验,水体中的 eDNA 浓度较高,导致全部水样经过少数几个 PCR 循环后均达到峰值。Pilliod 等(2013)和 Anais 等(2016) 的研究也未能通过 eDNA 浓度准确反映物种的生物 量和养殖密度。本研究同一密度组内却存在平行样间 分子拷贝数差异较大的现象(图 4),表明无论鲤鱼密 度高低都会出现检出生物量不稳定的风险。eDNA 在 水体的分布可能并不均匀, 而是呈斑片状分布, 这与 Eichmiller 等(2014)和吴昀晟等(2019)的研究报道相 同。鱼类 eDNA 的产生、降解动力学过程极为复杂, 目前没有研究能够准确阐明 eDNA 的微观存在和变 化规律。后续还需要进行大量实验厘清 HN-CO I、 MiFsh-U 等引物的 eDNA 定量结果准确性。

4 结论

本研究基于 8 目、26 科、101 属、150 种鱼类 CO I 序列筛选出 6 个侧翼保守区,从中设计了 26 条引物,经 72 种鱼类、30 个水样验证后表现最优的引物组合为 HN-CO I (HN-A-F4、HN-D-R3)——该引物组合扩增成功率为 100%且扩增条带单一明亮,扩增子长度为 139 bp;高通量测序获得的鱼类 OTUs 总数是 MiFish-U 的 1.32 倍;属内物种扩增子两两遗传距离最小值及平均值分别是 MiFish-U 的 1.23 倍和 1.57倍。HN-CO I 的 OTUs 注释结果及 NMDS 聚类图形同样与 MiFish-U 存在较大不同。HN-CO I 虽然无法准确反映鲤鱼的生物量,但对海南岛淡水鱼类具有更高的靶向性,该引物组合更有利于海南岛淡水鱼类的检出和准确鉴定。

参考文献

- ANAIS L R, ROSABAL M, BERNATCHEZ L. Estimating fish abundance and biomass from eDNA concentrations: Variability among capture methods and environmental conditions. Molecular Ecology Resources, 2016, 16(6): 1401–1414
- BALASINGHAM K D, WALTER R P, MANDRAK N E, et al. Environmental DNA detection of rare and invasive fish species in two Great Lakes tributaries. Molecular Ecology, 2018, 27(1): 112–127
- CHEN B L, CHEN X L. Species diversity and distribution of freshwater fishes at Mt. Yinggeling, Hainan Island, China. Biodiversity Science, 2008, 16(1): 44-52 [陈辈乐, 陈湘粦. 海南鹦哥岭地区的鱼类物种多样性与分布特点. 生物多 样性, 2008, 16(1): 44-52]
- CHEN J X. Fish species composition and diversity in the northern and southern foothills of the Qinling Mountains based on environmental DNA high-throughput barcoding technology. Master's Thesis of Northwest A&F University, 2022 [陈锦孝. 基于环境 DNA 高通量条形码技术的秦岭 南北两麓鱼类物种组成及多样性研究.西北农林科技大 学硕士研究生学位论文, 2022]
- CHEN Z, CAI X W, ZHANG Q F, et al. Preliminary construction and comparative analysis of environmental DNA metabarcoding reference database of freshwater fishes in Hainan Island. South China Fisheries Science, 2022, 18(3): 1–12 [陈治, 蔡杏伟, 张清凤, 等. 海南岛淡水鱼类 环境 DNA 宏条形码参考数据库的初步构建及比较分析. 南方水产科学, 2022, 18(3): 1–12]
- CHENG X Y, TAO J, WU R D, et al. Functional ecology of freshwater fish: Research progress and prospects. Acta Ecologica Sinica, 2019, 39(3): 810-822 [程馨雨,陶捐,武瑞东,等. 淡水鱼类功能生态学研究进展. 生态学报, 2019, 39(3): 810-822]

- COLLINS R A, BAKKER J, WANGENSTEEN O S, et al. Nonspecific amplification compromises environmental DNA metabarcoding with CO I. Methods in Ecology and Evolution, 2019, 10(11): 1985–2001
- DEINER K, BIK H M, ELVIRA MACHLER, et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology, 2017, 26(21): 5872–5880
- DOI H, INUI R, AKAMATSU Y, *et al.* Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshwater Biology, 2017, 62(1): 30–39
- EICHMILLER J J, BAJER P G, SORENSEN P W. The relationship between the distribution of common carp and their environmental DNA in a small lake. PLoS One, 2014, 9(11): e112611
- EVANS N T, LAMBERTI G A. Freshwater fisheries assessment using environmental DNA: A primer on the method, its potential, and shortcomings as a conservation tool. Fisheries Research, 2018, 197(4): 60–66
- FICETOLA G, MIAUD C, POMPANON F, et al. Species detection using environmental DNA from water samples. Biology Letters, 2008, 4(4): 423–425
- FREELAND J R. The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA. Genome, 2017, 60(4): 358–374
- HE S P, WANG W, CHEN Y Y. The RAPD analysis and the phylogenetic concerning for primitive Cyprinidae. Acta Hydrobiologica Sinica, 2000, 24(2): 101–106 [何舜平, 王 伟,陈宜瑜. 低等鲤科鱼类 RAPD 分析及系统发育研究. 水生生物学报, 2000, 24(2): 101–106]
- HUA Y P. Development of a competitive PCR assay for quantifying sheep-associated malignant catarrhal fever viral DNA. Chinese Journal of Veterinary Medicine, 2002, 38(9): 10–13 [华育平. 定量测定羊关联性恶性卡他热病毒 DNA 的竞争性 PCR 方法的建立. 中国兽医杂志, 2002, 38(9): 10–13]
- IVANOVA N V, ZEMLAK T S, HANNER R H, et al. Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 2007, 7(4): 544–548
- JIANG P W, LI M, ZHANG S, et al. Construction of DNA meta-barcode database of fish in Pearl River estuary based on mitochondrial cytochrome CO I and 12S rDNA gene. South China Fisheries Science, 2022, 18(3): 13–21 [蒋佩文, 李敏, 张帅, 等. 基于线粒体 CO I 和12S rDNA 基因构建 珠江河口鱼类 DNA 宏条形码数据库.南方水产科学, 2022, 18(3): 13–21]
- KELLY R P, PORT J A, YAMAHARA K M, et al. Using Environmental DNA to census marine fishes in a large mesocosm. PLoS One, 2014, 9(1): e86175
- KITANO T, UMETSU K, TIAN W, et al. Two universal primer sets for species identification among vertebrates. International Journal of Legal Medicine, 2007, 121(5): 423–427
- KOBAYASHI Y, FORSTER R J, TEATHER R M. Development of a competitive polymerase chain reaction assay for the

ruminal bacterium *Butyrivibrio fibrisolvens* OB156 and its use for tracking an OB156-derived recombinant. FEMS Microbiology Letters, 2000, 188(2): 185–190

- KRUSKAL J B. Nonmetric multidimensional scaling: A numerical method. Psychometrika, 1964, 29(2): 115–129
- LI G J, GU D E, CAI X W, et al. The species composition and distribution of indigenous freshwater fishes of three main rivers in Hainan Island. Freshwater Fisheries, 2020, 50(6): 15–22 [李高俊, 顾党恩, 蔡杏伟, 等. 海南岛"两江—河" 淡水土著鱼类的种类组成与分布现状. 淡水渔业, 2020, 50(6): 15–22]
- LI P X. Analytical methods of gene copy number variations based on multiplex competitive PCR using universal fluorescent primers. Master's Thesis of Donghua University, 2012 [李朋祥. 基于荧光通用引物竞争性 PCR 的基因拷 贝数分析方法. 东华大学硕士研究生学位论文, 2012]
- LI X H, LI J, LI Y F. Primary color Atlas of freshwater and estuarine fishes in Hainan Island. Beijing: Science Press, 2020 [李新辉, 李捷, 李跃飞. 海南岛淡水及河口鱼类原 色图鉴. 北京: 科学出版社, 2020]
- LU Z C, GAO T X, LI Y H, et al. Optimization for the RAPD reaction system in *Gadus macrocephalus* Tilesius and *Cynoglossus semilaevis* Gunther. Transactions of Oceanology and Limnology, 2007, 113(3): 96–103 [鹿志创, 高天翔, 李 玉晖, 等. 大头鳕和半滑舌鳎 RAPD 分析条件的优化. 海 洋湖沼通报, 2007, 113(3): 96–103]
- MENNING D, SIMMONS T, TALBOT S. Using redundant primer sets to detect multiple native Alaskan fish species from environmental DNA. Conservation Genetics Resources, 2020, 12(1): 109–123
- MEUSNIER I, SINGER G A C, LANDRY J F, *et al.* A universal DNA mini-barcode for biodiversity analysis. BMC Genomics, 2008, 9(1): 214
- MILAN D T, MENDES I S, DAMASCENO J S, et al. New 12S metabarcoding primers for enhanced Neotropical freshwater fish biodiversity assessment. Scientific Reports, 2020, 10(1): 17966
- MINAMOTO T, YAMANAKA H, TAKAHARA T, et al. Surveillance of fish species composition using environmental DNA. Limnology, 2012, 13(1): 193–197
- MIYA M, SATO Y, FUKUNAGA T, et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. Royal Society Open Science, 2015, 2(7): 150088
- NEWMASTER S G, FAZEKAS A J, STEEVES R A D, *et al.* Testing candidate plant barcode regions in the Myristicaceae. Molecular Ecology Resources, 2008, 8(3): 480–490
- PAWLOWSKI J, APOTHELOZ P G L, ALTERMATT F. Environmental DNA: What's behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Molecular Ecology, 2020, 29(22): 4258
- Pearl River Fisheries Research Institute, Shanghai Fisheries University, East China Sea Fishery Research Institute, et al.

The freshwater and estuaries fishes of Hainan Island. Guangzhou: Guangdong Science and Technology Press, 1986 [珠江水产研究所, 上海水产大学, 东海水产研究所, 等. 海南岛淡水及河口鱼类志. 广东: 广东科技出版社, 1986]

- PILLIOD D S, GOLDBERG C S, ARKLE R S, et al. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70(8): 1123–1130
- QIAN T Y, WANG W J, LI M, *et al.* A preliminary study on the vertical distribution of *Fenneropenaeus chinensis* environmental DNA in the Yellow Sea and its influencing factors. Progress in Fishery Sciences, 2021, 42(2): 1–9 [钱瑭毅, 王伟继, 李 苗, 等. 黄海中国对虾环境 DNA(eDNA)的垂直分布规律 及其影响因素初探. 渔业科学进展, 2021, 42(2): 1–9]
- RIAZ T, SHEHZAD W, VIARI A, *et al.* ecoPrimers: Inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Research, 2011, 39(21): e145
- SATO Y, MIYA M, FUKUNAGA T, et al. MitoFish and MiFish pipeline: A mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Molecular Biology and Evolution, 2018, 35(6): 1553–1555
- SCHENEKAR T, SCHLETTERER M, LECAUDEY L A, et al. Reference databases, primer choice, and assay sensitivity for environmental metabarcoding: Lessons learnt from a re-evaluation of an eDNA fish assessment in the Volga headwaters. River Research and Applications, 2020, 36(7): 1004–1013
- SHAN X J, LI M, WANG W J. Application of environmental DNA technology in aquatic ecosystem. Progress in Fishery Sciences, 2018, 39(3): 23–29 [单秀娟, 李苗, 王伟继. 环 境 DNA (eDNA)技术在水生生态系统中的应用研究进展. 渔业科学进展, 2018, 39(3): 23–29]
- SHEN Z X, LI G J, CAI X W, et al. The evolution and protection of freshwater fish species in Hainan Province. China Fisheries, 2018, 516(11): 56–60 [申志新, 李高俊, 蔡杏伟, 等. 海南省淡水野生鱼类多样性演变及保护建议. 中国 水产, 2018, 516(11): 56–60]
- SHEN Z X, WANG D Q, LI G J, et al. Atlas guide to Hainan freshwater and estuarine fish. Beijing: Chinese Agricultural Press, 2021 [申志新, 王德强, 李高俊, 等. 海南淡水及河 口鱼类图鉴. 北京: 中国农业出版社, 2021]
- SULTANA S, ALI M E, HOSSAIN M A M, et al. Universal mini CO I barcode for the identification of fish species in processed products. Food Research International, 2018, 105(5): 19–28
- TABERLET P, COISSAC E, HAJIBABAEI M, et al. Environmental DNA. Molecular Ecology, 2012, 21(8): 1789–1793
- TAKAHARA T, IKEBUCHI T, DOI H, *et al.* Using environmental DNA to estimate the seasonal distribution and habitat preferences of a Japanese basket clam in Lake Shinji, Japan. Estuarine, Coastal and Shelf Science, 2019, 221(5): 15–20
- TAO J, CAO Y, ZUO Q T. Research progress on the application

of environmental DNA technology on river ecosystem. Water Resources Protection, 2021, 37(6): 150–156 [陶洁, 曹阳, 左其亭. 环境 DNA 技术在河流生态系统中的应用 研究进展. 水资源保护, 2021, 37(6): 150–156]

- THOMSEN P F, KIELGAST J, IVERSEN L L, et al. Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology, 2012, 21(11): 2565–2573
- THOMSEN P F, WILLERSLEV E. Environmental DNA: An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation, 2015, 183(1): 4–18
- TURNER C R, BARNES M A, XU C C Y, et al. Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods in Ecology and Evolution, 2014, 5(7): 676–684
- VALENTINI A, TABERLET P, MIAUD C, *et al.* Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Molecular Ecology, 2016, 25(4): 929– 942
- WANG M, YANG X, WANG W, *et al.* Fish diversity in Chongqing section of the national nature reserve for rare and endemic fish in the upper Yangtze River based on eDNA technology. Acta Hydrobiologica Sinica, 2022, 46(1): 2–16 [王梦, 杨鑫, 王维, 等. 基于 eDNA 技术的长江上 游珍稀特有鱼类国家级自然保护区重庆段鱼类多样性研 究. 水生生物学报, 2022, 46(1): 2–16]
- WARD R D, ZEMLAK T S, INNES B H, et al. DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360(1462): 1847–1857
- WEI Y N, WANG X M, YAO P C, et al. Comparison of species resolution rates of DNA barcoding for Chinese coastal halotolerant plants. Biodiversity Science, 2017, 25(10): 1095–1104 [魏亚男, 王晓梅, 姚鹏程, 等. 比较不同 DNA 条形码对中国海岸带耐盐植物的识别率. 生物多样 性, 2017, 25(10): 1095–1104]
- WU Y S, TANG Y K, LI J L, et al. The application of environmental DNA in the monitoring of the Yangtze finless porpoise, *Neophocaena phocaenoides asaeorientalis*. Journal of Fishery Sciences of China, 2019, 26(1): 124–132 [吴昀晟, 唐永凯, 李建林, 等. 环境 DNA 在长江江豚监测中的应 用. 中国水产科学, 2019, 26(1): 124–132]
- YAMAMOTO S, MASUDA R, SATO Y, *et al.* Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Scientific Reports, 2017, 7(1): 40368
- YIN S W, HUANG H, LIAO J Q, et al. RAPD analysis of molecular genetic diversity and genetic relationship of four grouper species. Acta Oceanologica Sinica, 2006, 28(6): 119–126 [尹绍武, 黄海, 廖经球, 等. 4 种石斑鱼的分子 遗传多样性和亲缘关系的 RAPD 分析. 海洋学报(中文 版), 2006, 28(6): 119–126]
- YOCCOZ N G. The future of environmental DNA in ecology. Molecular Ecology, 2012, 21(8): 2031–2038

ZHANG H, XIAN W W. Application of environmental DNA technology in ecological conservation and monitoring. Marine Sciences, 2020, 44(7): 96–102 [张辉, 线薇薇. 环境 DNA 技术在生态保护和监测中的应用. 海洋科学, 2020, 44(7): 96-102]

ZHANG S, ZHAO J, YAO M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods in Ecology and Evolution, 2020, 11(12): 1609–1625

(编辑 冯小花)

Screening Universal CO I Primers for eDNA Metabarcoding of Freshwater Fishes on Hainan Island

CHEN Zhi^{1,2}, CAI Xingwei¹⁰, SHEN Zhixin¹, ZHANG Qingfeng¹, LI Fangyuan¹,

GU Yuan¹, LI Gaojun¹, ZHAO Guangjun¹, WANG Zhenjiang¹

(1. Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China; 2. Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education,

Hainan Tropical Ocean University, Sanya 572022, China)

The known universal primers for environmental DNA (eDNA) metabarcoding of fish are Abstract mainly located in the mitochondrial ribosome gene regions. Not only are the reference sequences insufficient but also some relative fish species could not be identified using these 12S and 16S primers. In this study, the freshwater fishes of Hainan Island were selected to meet six investigation targets. (1) Six conserved regions were selected through the cytochrome c oxidase subunit I (CO I) sequences of 8 orders, 26 families, 101 genera, and 150 species; (2) Based on the base variation, species identification, eDNA degradation, and read length requirements of high-throughput sequencing, 26 primers were designed from four flanking conserved regions; however, six primers did not meet the Premier score requirements. (3) The first-round PCR results of 72 freshwater fish species on Hainan Island showed that 11 primers had high universality. Among them, there were 5 primers with more than 70 species successfully amplified and brighter PCR bands than marker. The second-round of PCR results showed that the amplification success rate of 3×2 (forward and reverse, respectively) primer combinations generated by the five primers was 100%, and the optimal primer combinations after PCR band length and brightness screening were "HN-A-F4, HN-D-R3" (hereinafter referred to as HN-CO I). (4) High-throughput sequencing results of 30 water samples showed that the total number of clean reads, fish sequences, operational taxonomic units (OTUs), and fish OTUs generated by HN-CO I were 0.77, 1.22, 0.85, and 1.32 times those of MiFish-U, respectively. (5) The proportion of fish OTUs annotated to species, genus, and family was 81.40%, 11.63%, and 6.98% for HN-CO I and 81.54%, 4.62%, and 13.85% for MiFish-U, respectively. The non-metric multidimensional scaling (NMDS) clustering pattern of "primer + water sample" formed two distinct groups with an obvious boundary (stress=0.15). The minimum and average values of pairwise genetic distances of species amplicons within genera of HN-CO I were 1.23 and 1.57 times those of MiFish-U, respectively. (6) The correlation coefficient of the linear regression equation of common carp biomass and sequence copies of the six indoor density groups was low. HN-CO I and MiFish-U could not accurately reflect the biomass of common carp. In this study, the advantages and disadvantages of HN-CO I were screened and compared with those of MiFish-U. The results showed that HN-CO I primers have a high targeting ability for freshwater fishes on Hainan Island. HN-CO I are advantageous in preventing eDNA contamination from non-target organisms, such as microorganisms and mammals, and is also conducive to the detection and accurate identification of freshwater fishes.

Key words Hainan Island; Freshwater fish; Environmental DNA; CO I; Universal primers

① Corresponding author: CAI Xingwei, E-mail: caixw618@163.com