环境中存在的能够干扰生物体内源激素的合成、释放、转运、结合、作用或清除,从而影响机体的内环境稳态、生长、生殖和发育等生理过程的外源性物质被称为环境内分泌干扰物(Environmental endocrine disrupting chemicals, EDCs)(European Commission, 1997)。其中,能影响动物体甲状腺的结构或功能,干扰甲状腺激素(Thyroid hormones, THs)的合成、转运及代谢等过程,造成体内THs紊乱,间接影响其生长、发育和生殖等重要生理过程的内分泌干扰物,被定义为甲状腺干扰物(Thyroid-disrupting chemicals, TDCs)。目前,已发现百余种TDCs,主要包括多氯联苯(Polychlorinated biphenyls, PCBs)、多环芳烃(Polycyclic aromatic hydrocarbons, PAHs)、多溴联苯醚(Polybrominated diphenyl ethers, PBDEs)、高氯酸盐(Perchlorate)、全氟化物(Perfluorinated chemicals, PFCs)、双酚A(Bisphenol A, BPA)及其类似物、农药等,这些化合物能够通过干扰动物体甲状腺轴导致甲状腺激素水平紊乱。本研究在对鱼类甲状腺轴进行简要概述的基础上,总结了指示鱼类甲状腺轴受干扰的指标,并对该领域今后的研究重点和方向进行了展望。
1 硬骨鱼甲状腺轴概述硬骨鱼甲状腺多呈弥散性分布,散布于腹侧主动脉及鳃区动脉的间隙组织、肌鳃骨及胸舌骨肌的附近(孟庆闻, 1987)。通常情况下,THs发挥功能是在下丘脑-垂体-甲状腺轴(Hypothalamus-pituitary-thyroid axis, HPT轴)的调控作用下进行的。哺乳动物中,下丘脑合成和分泌促甲状腺激素释放激素(Thryotropin releasing hormone, TRH),促进垂体合成促甲状腺激素(Thyroid stimulating hormone, TSH),TSH进一步促进甲状腺合成和分泌THs。在硬骨鱼中发现,对垂体促甲状腺细胞起调控作用的主要为下丘脑合成和分泌促肾上腺皮质激素释放激素(Corticotropin-releasing hormone, CRH)(De Groef et al, 2006; Bernier et al, 2009)。由单层排列的上皮细胞构成的甲状腺滤泡是鱼类THs合成的场所,其内充满胶状液体,主要合成和分泌甲状腺素(L-thyroxine, T4)。但T4基本不能直接发挥作用,主要是作为三碘甲腺原氨酸(Triiodothyronine, T3)的前体,T3具有较强的生物活性。THs的合成过程可简述为甲状腺上皮细胞上Na+/Ⅰ-转运蛋白(Sodium/iodide symporter, NIS)将Ⅰ-从血液中转运至上皮细胞内,在甲状腺过氧化物酶(Thyroid peroxidase, TPO)的催化下,与甲状腺球蛋白(Thyroglobulin, TG)中的酪氨酸残基结合发生碘化,碘化的酪氨酸残基在TPO的催化下氧化成为一种活性形式,随后,已活化的碘化酪氨酸残基分子内发生耦联反应形成T4和少量T3(欧阳五庆, 2006)。
THs在血浆中通过与甲状腺激素运载蛋白结合进行转运,鱼类血浆中最主要的甲状腺激素运载蛋白是转甲状腺激素蛋白(Transthyretin, TTR)(Morgado et al, 2007)。甲状腺合成的大量T4通过与血液中的TTR相结合,转运至外周组织进行脱碘;而脱碘生成的T3与TTR具有更强的亲和力,通过血液转运至靶组织发挥作用。此外,白蛋白和甲状腺素结合球蛋白也可以结合血浆中的THs (Lema et al, 2008)。一般结合型的甲状腺激素不具有生物活性,只有游离的激素(Free thyroxine, FT4; Free triiodothyronine, FT3)才能进入细胞,结合型激素和游离型激素之间保持动态平衡。
血浆中的T3主要来源于T4在肝脏中脱碘转化。催化脱碘反应的脱碘酶(Iodothyronine deiodinases, IDs)主要有3种,分别为ID1、ID2和ID3。T4经外环脱碘(Outer-ring deiodination, ORD)形成有活性的T3,经内环脱碘(Inner-ring deiodination, IRD)形成无活性的逆T3(Reverse T3, rT3)。目前,很多研究认为,硬骨鱼中ID2主要发挥ORD功能,ID3主要催化IRD反应,即THs的失活(Darras et al, 1998; Mol et al, 1998; Van der Geyten et al, 2001; Orozco et al, 2005);而ID1兼具ORD和IRD功能(Van der Geyten et al, 2005)。
THs发挥活性是由核受体介导的,T3进入靶组织细胞后,与甲状腺激素受体(Thyroid hormone receptors, TRs)结合形成复合物,复合物再与DNA序列上的TR应答因子(Thyroid hormone response elements, TRE)结合,调控下游目的基因的表达(Wu et al, 2000)。
鱼体内过量的THs在脱碘酶(主要为ID3) 的催化下转化为无活性的代谢产物rT3和T2。在肝脏硫酸基转移酶(Sulfortransferase,SULT)和尿苷二磷酸葡萄糖醛酸转移酶(Uridine diphospho-glucuronyltransferase, UDPGT)的催化下,通过硫酸化和葡萄糖苷化反应,水溶性增加,最后经胆汁、鳃和皮肤排出体外(Eales et al, 1993)。
2 硬骨鱼中常用于指示HPT轴受干扰的指标鱼类甲状腺轴通过复杂的调控机制维持其稳态,而TDCs可以通过干扰1个或多个调控位点对其进行干扰。TDCs可以通过干扰鱼类下丘脑CRH、TRH和垂体TSH的合成与分泌,从而干扰THs的合成,还可通过负反馈作用调节CRH、TRH、TSH的释放;也可通过干扰NIS、TPO、TG等THs合成相关蛋白的活性和/或基因表达水平影响THs的合成,进而影响内源T4或T3的水平;而一些与THs化学结构相似的TDCs能与THs竞争血浆运载蛋白的结合位点,从而干扰THs的正常运输。另外,T3主要是通过外周组织中的T4脱碘而来,因此,若脱碘作用受TDCs干扰,THs水平也可能因此发生紊乱;TDCs亦可通过影响THs代谢过程中的硫酸化、葡萄糖苷化作用,干扰THs代谢和清除过程。近年来,随着PCBs等内分泌干扰物与TRs的结合作用的证实,TRs介导被认为是TDCs干扰甲状腺轴的一种新的作用途径(Tabb et al, 2006)。因此,从组织器官、细胞、分子水平的多种指标均已用来评估污染物对硬骨鱼的HPT轴的干扰效应。
甲状腺组织结构变化是反映TDCs造成甲状腺损伤效应的一个主要指标。外源化合物对硬骨鱼甲状腺组织结构的影响可直接体现在滤泡形态改变、上皮细胞增生、胶质减少或缺失以及血管增生和充血等方面。如斑马鱼(Danio rerio)经677mg/L高氯酸盐暴露28 d引起甲状腺滤泡细胞肥大,血管增生;18 mg/L(环境中近似浓度)高氯酸盐暴露56 d影响更为显著,造成甲状腺滤泡细胞肥大、增生,血管增生,胶质缺失(Patiñ o et al, 2003)。甲状腺滤泡面积、胶质面积、胶质缺损比例、上皮细胞高度、滤泡增生程度等均可量化作为甲状腺组织结构损伤的直接指标(Bradford et al, 2005; Liu et al, 2006)。
2.2 下丘脑-垂体TRH、CRH和TSH水平以下丘脑分泌的TRH、CRH和垂体分泌的TSH为指标,可以评价TDCs对鱼类HPT轴上游调控中心的干扰效应。Atli等(2015)研究发现,尼罗罗非鱼(Oreochromis niloticus)暴露于Cd可导致其血浆TSH水平显著降低,THs合成减少。但是,由于TRH、CRH在血液中含量很低以及哺乳动物的抗血清对大多数硬骨鱼并不适用等原因,其定量依然较难。因此,多数研究采用实时定量PCR方法研究下丘脑、垂体相关基因的表达量变化。TRH是由硬骨鱼下丘脑分泌的一种多功能调节肽,可刺激生长激素和催乳素的释放(Kagabu et al, 1998),还可促进垂体中间部细胞分泌α-促黑激素(Tran et al, 1989),以及调控摄食等(Abbott et al, 2011)。目前研究认为,CRH而非TSH对垂体TSH的合成和分泌起刺激作用(De Groef et al, 2006; Galas et al, 2009)。诸多研究表明,crh和tshβ的基因表达水平可以作为评价污染物是否造成甲状腺干扰的指标(Yu et al, 2011; Kim et al, 2015; Chen et al, 2016; Tu et al, 2016)。因此,今后可将crh和tshβ作为污染物对鱼类甲状腺轴上游基因调控干扰的主要指标。
2.3 THs合成和转运相关蛋白NIS、TG、TPO共同参与THs的合成,目前,越来越多的研究发现,这些检测指标可用于指示污染物对THs合成的干扰效应。如Shi等(2009)研究发现,斑马鱼幼鱼暴露于全氟辛烷磺酸盐(Perfluorooctane sulfonates),其nis基因表达水平上调。Manchado等(2008)研究发现,外源THs可使塞内加尔鳎(Solea senegalensis) tg基因表达量下调。Kim等(2015)在体外实验中发现,甲状腺滤泡细胞暴露于磷酸三苯酯(Triphenyl phosphate,TPP),其tpo基因表达水平显著上调,并刺激THs的合成。
外源化合物可通过干扰TTR影响THs的转运,进而可能影响血浆中游离THs水平(Yu et al, 2010)。因此,TTR水平常作为研究污染物对THs转运过程是否产生干扰的指标。Morgado等(2009)研究表明,海鲷(Sparus aurata)暴露于内分泌干扰物碘苯腈(Ioxynil)和己烯雌酚(Diethylstilbestrol),其肝脏中ttr基因表达水平上调,血浆中TTR蛋白含量增加。
2.4 脱碘酶和其他代谢酶很多甲状腺干扰物如PCBs、PAH、重金属以及农药等,都可能会影响IDs活性和/或基因表达水平。Van der Geyten等(2001)研究发现,罗非鱼暴露于甲硫咪唑(Methimazole),其肝脏和肾脏IDs的活性和IDs基因表达水平变化一致,证实IDs为转录前调控。Schnitzler等(2011)研究发现,黑鲈(Dicentrarchus labrax)成鱼暴露于PCBs,其肝脏T4外环脱碘酶活性显著升高。因此,IDs是指示甲状腺干扰作用的一个较为灵敏的指标。
TDCs同样可以通过干扰THs的硫酸化和葡萄糖苷化等过程,从而使THs的清除受到干扰。Kato等(2004)研究发现,PCBs可以通过与芳香烃受体结合,诱导肝脏中的UDPGT,进而促进T4及其代谢产物经胆汁排除。Yu等(2014)研究发现,斑马鱼雌鱼暴露于除草剂五氯苯酚(Pentachlorophenol),其肝脏ugt1ab和sult1st5基因表达水平显著升高,可能是由于对血浆T4水平升高的自动应答,以促进T4的清除。因此,ugt1ab和sult1st5的基因表达水平可作为研究污染物对THs代谢清除过程干扰的重要指标。
2.5 TRs一些与THs结构相似的TDCs如PCBs、PBDEs、BPA等,可以通过和THs竞争结合TRs从而干扰T3正常作用的发挥,对甲状腺轴产生干扰作用。Moriyama等(2002)研究表明,BPA能与T3竞争性结合TR,从而抑制TR介导的基因转录。然而,还有一些具有潜在作用的甲状腺干扰物,尽管与THs不具有结构相似性,也能影响T3与TRs作用,如Davey等(2008)研究发现,As能在TR水平干扰T3正常发挥作用。因此,TRs水平常用来评价污染物对甲状腺轴的干扰效应。
2.6 THs水平具有潜在的甲状腺干扰作用的污染物作用于硬骨鱼甲状腺轴的不同位点,最终均可能导致鱼体内THs水平紊乱。如斑马鱼暴露于多溴联苯醚混合物DE-71,其甲状腺轴上THs的合成、转运、转化及代谢过程均受到影响,最终导致T4和T3水平显著升高,并呈一定的剂量相关效应(Kuiper et al, 2008);而稀有鲫(Gobiocypris rarus)暴露于乙草胺(Acetochlor,200 ng/L),其血浆中T4和T3含量均显著降低(Li et al, 2009)。与上述指标相比,THs水平的变化既可以指示下丘脑、垂体功能的异常,也可以反映THs合成的紊乱,是评价鱼体甲状腺功能损伤的最直接指标。
总体看来,HPT轴作用机制复杂,若要阐明某种EDCs对硬骨鱼HPT轴干扰作用机制,需结合THs的合成、转运、转化及代谢等过程的多种指标,甚至结合体外实验进行综合研究。
3 展望 3.1 TDCs干扰鱼类甲状腺轴生物标志物的研发上述多种指标可指示污染物对甲状腺轴的干扰效应,但仍有待研发更加敏感、便捷的生物标志物。由于T3进入靶组织细胞与核受体TR相结合形成复合物后,进一步同DNA序列上的TRE相结合,启动下游基因的转录。因此,这些激素的应答元件如磷酸烯醇式丙酮酸激酶等可作为甲状腺轴受干扰的新生物标志物进行研发。
3.2 TDCs活体暴露时间及暴露浓度选择Skolness等(2011)研究发现,黑头呆鱼(Pimephales promelas)暴露于芳香化酶抑制剂咪鲜胺(Prochloraz) 24 h,其卵巢中相关芳香化酶基因(cyp19a1a和cyp17)表达水平却显著升高,认为是短期暴露引起的补偿效应所致。Dong等(2014)研究发现,褐牙鲆(Paralichthys olivaceus)暴露于高浓度PCBs,其血浆T3、T4水平均显著降低,同时,甲状腺滤泡上皮细胞增生增厚、泡内胶质缺损严重,认为甲状腺滤泡通过合成和分泌更多的THs以维持血液中THs水平,这种长期的补偿导致甲状腺组织受损严重。因此,在TDCs活体暴露时间、暴露浓度的选择上,需考虑鱼类甲状腺轴补偿能力的潜在影响。
3.3 体外/体内相结合评价体系的建立体外实验具有操作简单、快速、经济等优点,但却可能产生假阳/阴性结果。而体内实验可以减少假阴性结果,对评价污染物的生态风险更具实际指导意义,但考虑到生物体内甲状腺轴的复杂调控机制,单独的体内实验无法确定干扰物的作用靶位点。因此,有必要建立体外/体内相结合的评价体系来研究污染物的干扰机制。例如,一些污染物可以影响硬骨鱼垂体TSH水平,但仅凭体内实验结果无法确定是干扰物直接作用还是THs负反馈作用所致,而Kim等(2015)结合体内和体外实验,证实TPP可以直接影响垂体TSH的合成与分泌。
3.4 微观水平与宏观水平指标相结合评价EDCs的甲状腺干扰效应目前,有关EDCs的研究大多集中于分子、细胞、组织器官等层面来探讨其作用机制。然而,分子、细胞、组织器官、个体乃至种群是一个有机的整体,虽然微观水平上的研究必不可少,但将微观水平指标与个体、种群等宏观水平特征指标相结合,才能更加准确地对EDCs的甲状腺干扰效应进行评价。例如,在硬骨鱼中,牙鲆的变态较为典型,且依赖于THs调控(Inui et al, 1985; Miwa et al, 1987a、b)。变态期是牙鲆死亡的高峰期,变态过程的促进或抑制可直接影响其存活率,甚至对种群产生影响。PCBs混合物Aroclor 1254暴露可使褐牙鲆仔鱼甲状腺滤泡上皮细胞增高、胶质缺损,体内T3和T4水平降低,而个体水平上会导致变态过程受抑制(董怡飞, 2014)1)。斑马鱼在变态期间,胸鳍与腹鳍的生长和分化、鳞的形成以及幼鱼色素的形成也均受THs调控。研究表明,外源THs能诱导斑马鱼胸鳍提前分化并使腹鳍生长加快;反之用甲状腺肿素(Goitrogens)抑制THs合成,斑马鱼仔鱼向幼鱼转变过程就会相应地受到抑制(Brown et al, 1997)。因此,在以后的研究中,可结合较直观的宏观水平指标评价EDCs的甲状腺干扰效应。
1) Dong YF. Thyroid hormone disrupting effects of Polychlorinated biphenyls(PCBs) on Japanese flounder(Paralichthys olivaceus).Doctoral Dissertation of Ocean University of China, 2014, 73-84 [董怡飞.多氯联苯(PCBs)对褐牙鲆(Paralichthys olivaceus)的甲状腺干扰效应研究.中国海洋大学博士研究生学位论文, 2014, 73-84]
Abbott M, Volkoff H. Thyrotropin Releasing Hormone (TRH) in goldfish (Carassius auratus): Role in the regulation of feeding and locomotor behaviors and interactions with the orexin system and cocaine-and amphetamine regulated transcript (CART). Hormones and Behavior, 2011, 59(2): 236-245 DOI:10.1016/j.yhbeh.2010.12.008 | |
Atli G, Ariyurek SY, Kanak EG, et al. Alterations in the serum biomarkers belonging to different metabolic systems of fish (Oreochromis niloticus) after Cd and Pb exposures. Environmental Toxicology and Pharmacology, 2015, 40(2): 508-515 DOI:10.1016/j.etap.2015.08.001 | |
Bernier NJ, Flik G, Klaren PHM. Regulation and contribution of the corticotropic, melanotropic and thyrotropic axes to the stress response in fishes. Elsevier Science and Technology, 2009, 28(9): 235-311 | |
Bradford CM, Rinchard J, Carr JA, et al. Perchlorate affects thyroid function in eastern mosquitofish (Gambusia holbrooki) at environmentally relevant concentrations. Environmenal Science and Technology, 2005, 39(14): 5190-5195 DOI:10.1021/es0484505 | |
Brown DD. The role of thyroid hormone in zebrafish and axolotl development. Proceedings of the National Academy of Sciences of the USA, 1997, 94(24): 13011-13016 DOI:10.1073/pnas.94.24.13011 | |
Darras VM, Mol KA, Geyten S, et al. Control of peripheral thyroid hormone levels by activating and inactivating deiodinases. Annals of the New York Academy of Sciences, 1998, 839(1): 80-86 | |
Davey JC, Nomikos AP, Wungjiranirun M, et al. Arsenic as an endocrine disruptor: Arsenic disrupts retinoic acid receptor-and thyroid hormone receptor-mediated gene regulation and thyroid hormone-mediated amphibian tail metamorphosis. Environmental Health Perspectives, 2008, 116(2): 165-172 | |
De Groef B, Van der Geyten S, Darras V M, et al. Role of corticotropin-releasing hormone as a thyrotropin-releasing factor in non-mammalian vertebrates. General Comparative of Endocrinology, 2006, 146(1): 62-68 DOI:10.1016/j.ygcen.2005.10.014 | |
Dong YF, Tian H, Wang W, et al. Disruption of the thyroid system by the thyroid-disrupting compound aroclor 1254 in juvenile Japanese flounder (Paralichthys olivaceus). PLoS One, 2014, 9(8): e104196 DOI:10.1371/journal.pone.0104196 | |
Eales JG, MacLatchy DL, Sweeting RM. Thyroid hormone deiodinase systems in salmonids, and their involvement in the regulation of thyroidal status. Fish Physiology and Biochemistry, 1993, 11(1-6): 313-321 DOI:10.1007/BF00004580 | |
European Commission. Environment and climate research programme DG XII of the report of European Commission. Proceedings EUR 17549. European Workshop on the Impact of Endocrine Disruptors on Human Health and Wildlife, London, UK, 1997 https://link.springer.com/article/10.1007/s10695-017-0355-2 | |
Galas L, Raoult E, Tonon MC, et al. TRH acts as a multifunctional hypophysiotropic factor in vertebrates. General and Comparative Endocrinology, 2009, 164(1): 40-50 DOI:10.1016/j.ygcen.2009.05.003 | |
Inui Y, Miwa S. Thyroid hormone induces metamorphosis of flounder larvae. General and Comparative Endocrinology, 1985, 60(3): 450-454 DOI:10.1016/0016-6480(85)90080-2 | |
Chen JJ, Xue WJ, Cao JL, et al. Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio). Aquatic Toxicology, 2016, 171: 48-58 DOI:10.1016/j.aquatox.2015.12.010 | |
Kagabu Y, Mishiba T, Okino T, et al. Effects of thyrotropin-releasing hormone and its metabolites, Cyclo (His-Pro) and TRH-OH, on growth hormone and prolactin synthesis in primary cultured pituitary cells of the common carp, Cyprinus carpio. General and Comparative Endocrinology, 1998, 111(3): 395-403 DOI:10.1006/gcen.1998.7124 | |
Kato Y, Ikushiro S, Haraguchi K, et al. A possible mechanism for decrease in serum thyroxine level by polychlorinated biphenyls in Wistar and Gunn rats. Toxicological Science, 2004, 81(2): 309-315 DOI:10.1093/toxsci/kfh225 | |
Kim S, Jung J, Lee I, et al. Thyroid disruption by triphenyl phosphate, an organophosphate flame retardant, in zebrafish (Danio rerio) embryos/larvae, and in GH3 and FRTL-5 cell lines. Aquatic Toxicology, 2015, 160: 188-196 DOI:10.1016/j.aquatox.2015.01.016 | |
Kuiper RV, Vethaak AD, Anselmo H, et al. Toxicity of analytically cleaned pentabromodiphenylether after prolonged exposure in estuarine European flounder (Platichthys flesus), and partial life-cycle exposure in fresh water zebrafish (Danio rerio). Chemosphere, 2008, 73(2): 195-202 DOI:10.1016/j.chemosphere.2008.04.079 | |
Lema SC, Dickey JT, Schultz IR, et al. Dietary exposure to 2, 2 , 4, 4 -tetrabromodiphenyl ether (PBDE-47) alters thyroid status and thyroid hormone-regulated gene transcription in the pituitary and brain. Environmental Health Perspectives, 2008, 116(12): 1694-1699 DOI:10.1289/ehp.11570 | |
Li W, Zha J, Li Z, et al. Effects of exposure to acetochlor on the expression of thyroid hormone related genes in larval and adult rare minnow (Gobiocypris rarus). Aquatic Toxicology, 2009, 94(2): 87-93 DOI:10.1016/j.aquatox.2009.06.002 | |
Liu FJ, Wang JS, Theodorakis CW. Thyrotoxicity of sodium arsenate, sodium perchlorate, and their mixture in zebrafish Danio rerio. Environmental Science and Technology, 2006, 40(10): 3429-3436 DOI:10.1021/es052538g | |
Manchado M, Infante C, Asensio E, et al. Thyroid hormones down-regulate thyrotropin β subunit and thyroglobulin during metamorphosis in the flatfish Senegalese sole (Solea senegalensis Kaup). General and Comparative Endocrinology, 2008, 155(2): 447-455 DOI:10.1016/j.ygcen.2007.07.011 | |
Meng QW, Su JX, Li WD. Comparative anatomy of fish. Beijing: Science Press, 1987. [孟庆闻, 苏锦祥, 李婉端. 鱼类比较解剖. 北京: 科学出版社, 1987.] | |
Miwa S, Inui Y. Effects of various doses of thyroxine and triiodothyronine on the metamorphosis of flounder (Paralichthys olivaceus). General and Comparative Endocrinology, 1987, 67(3): 356-363 DOI:10.1016/0016-6480(87)90190-0 | |
Miwa S, Inui Y. Histological changes in the pituitary-thyroid axis during spontaneous and artificially-induced metamorphosis of larvae of the flounder Paralichthys olivaceus. Cell and Tissue Research, 1987, 249(1): 117-123 DOI:10.1007/BF00215425 | |
Mol KA, Van der Geyten S, Burel C, et al. Comparative study of iodothyronine outer ring and inner ring deiodinase activities in five teleostean fishes. Fish Physiology and Biochemistry, 1998, 18(3): 253-266 DOI:10.1023/A:1007722812697 | |
Morgado I, Campinho MA, Costa R, et al. Disruption of the thyroid system by diethylstilbestrol and ioxynil in the sea bream (Sparus aurata). Aquatic Toxicology, 2009, 92(4): 271-280 DOI:10.1016/j.aquatox.2009.02.015 | |
Morgado I, Hamers T, Van der Ven L, et al. Disruption of thyroid hormone binding to sea bream recombinant transthyretin by ioxinyl and polybrominated diphenyl ethers. Chemosphere, 2007, 69(1): 155-163 DOI:10.1016/j.chemosphere.2007.04.010 | |
Moriyama K, Tagami T, Akamizu T, et al. Thyroid hormone action is disrupted by bisphenol A as an antagonist. Journal of Clinical Endocrinology and Metabolism, 2002, 87(11): 5185-5190 DOI:10.1210/jc.2002-020209 | |
Orozco A, Valverde RC. Thyroid hormone deiodination in fish. Thyroid Official Journal of the American Thyroid Association, 2005, 15(8): 799-813 DOI:10.1089/thy.2005.15.799 | |
Ouyang WQ. Animal physiology. Beijing: Science Press, 2006. [欧阳五庆. 动物生理学. 北京: 科学出版社, 2006.] | |
Patiñ o R, Wainscott MR, Cruz-Li EI, et al. Effects of ammonium perchlorate on the reproductive performance and thyroid follicle histology of zebrafish. Environmental Toxicology and Chemistry, 2003, 22(5): 1115-1121 DOI:10.1002/etc.v22:5 | |
Schnitzler JG, Celis N, Klaren PHM, et al. Thyroid dysfunction in sea bass (Dicentrarchus labrax): Underlying mechanisms and effects of polychlorinated biphenyls on thyroid hormone physiology and metabolism. Aquatic Toxicology, 2011, 105(3): 438-447 | |
Shi XJ, Liu CS, Wu GQ, et al. Waterborne exposure to PFOS causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae. Chemosphere, 2009, 77(7): 1010-1018 DOI:10.1016/j.chemosphere.2009.07.074 | |
Skolness SY, Durhan EJ, Garcia-Reyero N, et al. Effects of a short-term exposure to the fungicide prochloraz on endocrine function and gene expression in female fathead minnows (Pimephales promelas). Aquatic Toxicology, 2011, 103(3): 170-178 | |
Tabb MM, Blumberg B. New modes of action for endocrine-disrupting chemicals. Molecular Endocrinology, 2006, 20(3): 475-482 DOI:10.1210/me.2004-0513 | |
Tran TN, Fryer JN, Bennett HPJ, et al. TRH stimulates the release of POMC-derived peptides from goldfish melanotropes. Peptides, 1989, 10(4): 835-841 DOI:10.1016/0196-9781(89)90122-8 | |
Tu WQ, Xu C, Lu B, et al. Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus-pituitary-thyroid axis in zebrafish embryos. Science of the Total Environment, 2016, 542: 876-885 DOI:10.1016/j.scitotenv.2015.10.131 | |
Van der Geyten S, Toguyeni A, Baroiller JF, et al. Hypothyroidism induces type Ⅰ iodothyronine deiodinase expression in tilapia liver. General and Comparative Endocrinology, 2001, 124(3): 333-342 DOI:10.1006/gcen.2001.7722 | |
Van der Geyten S, Byamungu N, Reyns GE, et al. Iodothyronine deiodinases and the control of plasma and tissue thyroid hormone levels in hyperthyroid tilapia (Oreochromis niloticus). Jounal of Endocrinology, 2005, 184(3): 467-479 | |
Wu Y, Koenig R J. Gene regulation by thyroid hormone. Trends in Endocrinology and Metabolism, 2000, 11(6): 207-211 DOI:10.1016/S1043-2760(00)00263-0 | |
Yu L, Deng J, Shi X, et al. Exposure to DE-71 alters thyroid hormone levels and gene transcription in the hypothalamic-pituitary-thyroid axis of zebrafish larvae. Aquatic Toxicology, 2010, 97(3): 226-233 DOI:10.1016/j.aquatox.2009.10.022 | |
Yu L, Lam JCW, Guo Y, et al. Parental transfer of polybrominated diphenyl ethers (PBDEs) and thyroid endocrine disruption in zebrafish. Environmental Science and Technology, 2011, 45(24): 10652-10659 DOI:10.1021/es2026592 | |
Yu LQ, Zhao GF, Feng M, et al. Chronic exposure to pentachlorophenol alters thyroid hormones and thyroid hormone pathway mRNAs in zebrafish. Environmental Toxicology and Chemistry, 2014, 33(1): 170-176 DOI:10.1002/etc.2408 |