鱼类属变温动物,水体温度的变化会影响鱼类的各种生命活动。鱼体对温度的变化有一定的适应能力,但也有耐受限度,尤其是水温剧变时,鱼体内稳态会被破坏(常玉梅等, 2006),消化酶活性降低(Wang et al, 2006),导致摄食率降低,进而影响鱼体的生长(陈松波, 2004; 黄国强等, 2010; Munillá-Moran et al, 1996; 罗奇等, 2010)以及免疫力(强俊等, 2012),也会造成血清生理的变化(Wakeling et al, 2000)。
维生素C(Vc)是水溶性维生素,又称为抗坏血酸,是鱼类必需的营养素。Vc作为鱼类合成羟化酶和氧合酶的基质,参与鱼体胶原蛋白(Wilson et al, 1973)、肉碱、类固醇的合成(Tolbert, 1979),最终促进皮肤、软骨和硬骨的生成(Darias et al, 2011),在鱼类生长(Ai et al, 2004)、抗氧化(Padayatty et al, 2001)、机体免疫(廖畅宇等, 2012)和抗应激(Wan et al, 2014)等方面具有重要作用。Vc能降低机体皮质醇的产生,减缓动物体受到的外界应激(万金娟等, 2012)。在养殖过程中,在饲料中添加Vc,可以提高鱼类的抗应激能力,增强鱼类对高密度、低氧胁迫的耐受性,并且显著提高养殖成活率(杨敬华等, 2004; 乔丽杰等, 2013)。
花鲈(Lateolabrax maculatus),别名海鲈、七星鲈,我国北起渤海、南至东海以及各大河口遍布花鲈踪迹。花鲈因其适应性广、抗病性强、肉鲜味美、营养丰富、生长快速等优质特性(胡鹏莉等, 2019),已成为养殖范围最广的海水鱼。在养殖生产中,常出现持续高温和温度突变等不可控环境变化,导致养殖花鲈生长减缓、摄食降低,甚至引发疾病,给养殖生产造成损失。管标等(2014)研究表明,虹鳟(Oncorhynchus mykiss)等冷水性鱼类对高温胁迫尤为敏感,高低温急性变化会引起代谢速率的改变,影响其健康养殖。鉴于此,本研究旨在探讨饲料Vc对急性降温后花鲈免疫、抗氧化及抗应激的影响,以期为Vc在抗应激营养调控中的应用提供理论依据。
1 材料与方法 1.1 实验饲料以鱼粉、鸡肉粉、豆粕等作为主要蛋白源,鱼油、豆油等为主要脂肪源,配制粗蛋白水平为43%、粗脂肪水平为12%的实验用饲料,并以L-抗坏血酸多聚磷酸酯(2APP)为Vc添加源(购买自山东天力药业有限公司维生素分公司,有效含量为34.1%,GB/ T23882- 2009),配制6组等氮、等脂的实验饲料,其配方及营养水平见表 1。各组饲料中Vc含量实际测定值分别为6.85、46.90、88.24、167.43、329.21和658.69 mg/kg,其中,对照组为6.85 mg/kg。饲料于集美大学水产学院饲料加工车间制备,鱼粉、鸡肉粉、豆粕等原料均使用超微粉碎机粉碎。所有饲料原料均过60目筛,然后采用逐级扩大法,将各原料按配比定量混合均匀后,加入40%左右的水搅拌。通过双螺旋杆饲料挤条机,制作粒径为2.5 mm的硬颗粒饲料。然后在电热鼓风干燥箱中43℃恒温干燥8 h,使实验饲料中的水分保持在7%~9%,并于-20℃冰箱保存备用。
实验所用花鲈鱼苗为当年同一批培育的鱼苗(购自福建省漳州市诏安县慧丰水产发展有限公司),养殖实验于大北农水产科技集团海康养殖基地进行。鱼苗暂养使用水泥池,并用对照组饲料驯养10 d。将待分组鱼饥饿24 h,随机选择体质健壮、规格一致[(2.2± 0.2) g]的花鲈720尾,随机分为6组,每组4个生物学重复,每桶(300 L)放养30尾鱼,实验周期为56 d。每天饱食投喂2次(08:30和17:30),记录每桶鱼的摄食量,并于投喂前后以虹吸管吸底排污。实验在控温的循环过滤水系统中进行,通过调试温控系统和覆盖双层塑料薄膜的方式,稳定控制缸内水温为33℃,盐度为25~28,溶氧≥9 mg/L。饲养56 d后,每个实验桶保留规格相似的花鲈8尾,通过换水、调试温控系统和覆盖双层塑料薄膜的方式,在2 h内将实验桶水温稳定控制在27℃,进行为期24 h和48 h的急性降温实验,实验期间不再投喂饲料。
1.3 样品采集与分析分别在急性降温0、24和48 h,从每个实验桶各取4尾花鲈,以丁香酚麻醉(1∶10000)后尾静脉取血,离心血清,-80℃保存,用于检测血清生化指标;取肝脏于-80℃保存,用于肝脏抗氧化酶活性的测定。
肝脏总超氧化物歧化酶(T-SOD)活性(羟胺法)、丙二醛(MDA)含量(TBA法)、谷胱甘肽(GSH)含量(微量酶标法)、血红素氧合酶HO-1活性、肝脏组织蛋白含量的测定所使用试剂盒均购自南京建成生物工程研究所。
血清溶菌酶(LZM)活性使用比浊法测定,而血清中补体3(C3)、补体4(C4)、免疫球蛋白M(IgM)、热休克蛋白(HSP70)等含量均通过酶联免疫吸附法(ELISA)测定。试剂盒购自南京建成生物工程研究所。
饲料中维生素C含量的测定采用HPLC法(Dabrowski et al, 1989)。
1.4 数据统计与分析实验数据使用SPSS 22.0统计软件进行单因素(one-way ANOVA)和双因素(two-way ANOVA)方差分析。若交互作用显著,则通过使用SPSS的语法代码进行简单效应分析(simple effect test)。所有实验数据均以平均值±标准误(Mean±SE)的形式来表示。
2 结果 2.1 Vc对急性降温后花鲈血清免疫指标的影响饲料Vc对急性降温后花鲈血清免疫能力的影响见表 2。花鲈血清C3、C4和IgM均受饲料Vc水平显著影响(P < 0.05),也受降温时间显著影响(P < 0.05),且Vc水平和降温时间存在显著交互作用(P < 0.05),而血清LZM活性受饲料Vc水平和降温时间显著影响,但不受二者交互作用的影响。降温24 h和48 h时,各组C3水平高于0 h,而饲料Vc水平为167.43和658.69 mg/kg组的血清C3显著高于对照组(P < 0.05)。血清C4水平在0 h高于降温后24 h和48 h,且在0 h时,随着饲料Vc水平的升高而升高。当饲料Vc水平在6.85~167.43 mg/kg时,血清IgM水平在降温24 h和48 h后显著高于0 h (P < 0.05);当饲料Vc水平在329.21~658.69 mg/kg时,各时间点IgM差异不显著。与0 h相比,血清LZM活性在降温24 h后没有显著变化(P > 0.05),而在48 h后显著降低(P < 0.05),随着饲料Vc水平的增加,血清LZM活性在88.24~ 658.69 mg/kg实验组显著高于对照组(P < 0.05)。
饲料Vc对急性降温后花鲈肝脏抗氧化能力的影响如表 3所示。花鲈肝脏T-SOD、MDA和GSH均受饲料Vc水平显著影响(P < 0.05),也受降温时间显著影响(P < 0.05),且饲料Vc水平和降温时间存在显著交互作用(P < 0.05),而肝脏HO-1含量不受饲料Vc水平影响,但受降温时间和二者交互作用的显著影响(P < 0.05)。肝脏T-SOD含量随降温时间的增加,先增加后降低,在降温24 h,当饲料Vc水平为329.21 mg/kg时最低,而在降温48 h,当饲料Vc水平为167.43 mg/kg时最低。肝脏MDA含量在降温24 h和48 h时显著高于0 h,但在降温后随着饲料Vc水平的升高而显著降低(P < 0.05)。在各时间点,花鲈肝脏GSH含量都随着饲料Vc水平的升高而升高,而当饲料Vc水平在6.85~167.43 mg/kg时,肝脏GSH含量随着降温时间的增加先升高后降低(P < 0.05)。在降温前,肝脏HO-1含量随着饲料Vc水平的升高而先升高后降低,当饲料Vc水平为6.85 mg/kg时,肝脏HO-1含量在降温后显著高于降温前(P < 0.05),当饲料Vc水平为88.24~ 167.43 mg/kg时,肝脏HO-1含量在降温后显著低于降温前(P < 0.05)。
饲料Vc对急性降温后花鲈血清抗应激能力的影响如图 1所示。花鲈血清HSP70水平受饲料Vc水平显著影响(P < 0.05),也受降温时间显著影响(P < 0.05)。花鲈血清HSP70水平在降温前显著低于降温后。降温0 h时,花鲈血清HSP70水平在88.24~167.43 mg/kg Vc实验组显著高于对照组(P < 0.05),且在167.43 mg/kg组达到最大值;降温24 h时,在88.24 mg/kg实验组HSP70水平最高,显著高于其他各组(P < 0.05),而46.90和658.69 mg/kg实验组的HSP70水平显著低于对照组(P < 0.05);降温48 h时,各实验组血清HSP70水平均显著低于对照组,且在167.43 mg/kg达到最小值(P < 0.05)。
补体系统在鱼类非特异性免疫机制中具有重要意义(Boshra et al, 2006),IgM是鱼类特异性免疫最主要的效应分子(Scapigliati et al, 1999)。万金娟等(2012)研究表明,pH胁迫10 d后,团头鲂(Megalobrama amblycephala)血清C3、C4水平均显著降低,而饲料添加Vc组C3、C4水平均显著高于对照组。其他研究也发现,应激源会抑制鱼类补体活性(Sunyer et al, 1995; Tort et al, 1996; Ortuno et al, 2001、2002)。本研究发现,急性降温后,血清C3水平升高,C4水平在降温后下降,LZM活性在降温48 h显著降低,但饲料Vc水平为88.24~167.43 mg/kg时活性显著提高,说明急性降温应激降低了C4和LZM的活性,而饲料Vc添加可以提高二者活性。Magnadóttir等(1999)发现,鱼类免疫受水温的影响,低温会延缓免疫应答的发生。本研究中,当饲料Vc水平在329.21~658.69 mg/kg时,各时间点血清IgM差异不显著。血清IgM水平随降温时间的增加,在24 h和48 h后显著高于0 h。何杰等(2014)研究发现,当水温由26℃降到20℃时,吉富罗非鱼(genetic improvement of farmed tilapia, GIFT)、奥尼罗非鱼(Oreochromis niloticus ×O. aureus)与奥里亚罗非鱼(Tilapip aureus)的血清IgM水平上升。而Klesius等(1990)研究表明,温度变化对斑点叉尾鮰(Ictalurus punctatus)血清IgM水平无影响。上述研究结果的不同,可能与实验环境、鱼的种类等因素有关。
3.2 Vc对急性降温后花鲈肝脏抗氧化能力的影响SOD可以清除体内过高的超氧阴离子自由基,SOD活性可以反映生物体受到环境氧化胁迫的程度。GSH是重要的水溶性抗氧化剂,在动物机体解毒代谢中具有重要作用(陈剑杰等, 2018)。而Vc是体内重要的抗氧化剂,可以将氧化型谷胱甘肽(GSSG)还原为还原型谷胱甘肽(GSH)。本研究结果显示,肝脏MDA含量在0 h低于降温后24 h和48 h,随着饲料Vc水平的升高而降低。说明急性温度变化对花鲈产生了氧化应激,导致MDA含量升高,激活花鲈体内抗氧化系统参与清除ROS,饲料中添加Vc能降低MDA含量、减少脂质过氧化反应。Wan等(2014)研究发现,当受到pH胁迫时,团头鲂肝脏SOD活性显著上升。本研究也发现,当饲料Vc水平在6.85~ 167.43 mg/kg时,肝脏T-SOD活性和GSH含量在降温24 h后升高,而当降温48 h时,随着抗氧化系统作用和对温度的适应,花鲈机体氧化应激水平降低,说明花鲈对环境温度有很强的适应能力。血红素氧合酶(HO-1)是生物体内一种关键的限速酶,除了有降解血红素的功能外,还在许多生理和病理过程中发挥重要的调节作用,各种应激源均可增加HO-1的表达(Butler et al, 2020)。本研究中,对照组花鲈肝脏HO-1活性随着急性降温时间增加而升高,当饲料Vc水平为88.24~167.43 mg/kg时,肝脏HO-1活性随着低温应激时间的增加而显著降低,说明肝脏HO-1含量是花鲈急性降温的敏感指标,饲料中添加Vc可有效提高花鲈的抗急性降温应激的能力。相似研究结果已有大量报道(Kitabchi et al, 1967; Montero et al, 1999; Deane et al, 2005; Henrique et al, 2005)。
3.3 饲料Vc对急性降温后花鲈血清HSPs的影响HSP70是细胞内的一类庞大蛋白质家族,当动物体受到应激或者胁迫时,它们在体内可以大量迅速表达(Hartl et al, 2002)。正常情况下,HSP70含量占细胞蛋白总量的5%~10%,但当机体处于应激状态时,HSP70的表达量会增加到15%甚至更高,并发挥其蛋白质质量调节的功能,维持细胞活性,保护抗氧化酶(如SOD等)活性,增强细胞抗自由基能力(Martín et al, 1998; Dong et al, 2008)。Wan等(2014)研究表明,当受到高pH胁迫时,24 h内,团头鲂HSP60、HSP70和HSP90表达量会升高,而高Vc组上调作用更显著,但当胁迫达到15 d后,它们的表达量下调。Deane等(2005)将热应激2 h的银鲷置于常温条件下24 h后,肝脏HSP70基因表达下调。本研究中,不添加Vc组花鲈血清HSP70含量随急性降温时间的增加而显著升高,说明降温导致花鲈产生应激,而Vc添加组HSP70含量先升高后降低,表明饲料Vc可增强花鲈对抗温度应激的能力,并促进机体更快适应温度变化。
4 结论急性降温胁迫实验(从33℃水体转入27℃水体)会在短时间内引起花鲈产生应激反应,适量补充饲料维生素C (46.90~167.43 mg/kg)能提高花鲈肝脏抗氧化能力,减轻脂质过氧化水平,提高花鲈抗应激能力。
AI Q H, MAI K S, ZHANG C X, et al. Effects of dietary vitamin C on growth and immune response of Japanese seabass (Lateolabrax japonicus). Aquaculture, 2004, 242(1/2/3/4): 489-500 |
BOSHRA H, LI J, SUNYER J O. Recent advances on the complement system of teleost fish. Fish and Shellfish Immunology, 2006, 20: 239-362 DOI:10.1016/j.fsi.2005.04.004 |
BUTLER M W, ARMOUR E M, MINNICK J A, et al. Effects of stress-induced increases of corticosterone on circulating triglyceride levels, biliverdin concentration, and heme oxygenase expression. Comparative Biochemistry and Physiology, Part A, Molecular and Integrative Physiology, 2020, 240: 110608 DOI:10.1016/j.cbpa.2019.110608 |
CHANG Y M, KUANG Y Y, CAO D C, et al. Effects of cooling temperature stress on hematology and serum chemistry values of Cyprinus carpio. Journal of Fisheries of China, 2006, 30(5): 701-706 [常玉梅, 匡友谊, 曹鼎臣, 等. 低温胁迫对鲤血液学和血清生化指标的影响. 水产学报, 2006, 30(5): 701-706] |
CHEN J J, CAO J L, LI X, et al. Effects of fluoride on the activities of antioxidant enzymes and MDA levels in hepatopancreas of Cipangopaludina cahayensis. Journal of Ecotoxicology, 2018, 13(1): 268-273 [陈剑杰, 曹谨玲, 李潇, 等. 氟对中华圆田螺肝胰脏抗氧化酶活性和MDA含量的影响. 生态毒理学报, 2018, 13(1): 268-273] |
CHEN S B. Study on feeding rhythm and respiratory metabolism of common carp at different temperature. Master′s Thesis of Northeast Agricultural University, 2004 [陈松波. 不同温度条件下鲤鱼摄食节律与呼吸代谢的研究. 东北农业大学硕士研究生学位论文, 2004] |
DABROWSKI K, HINTERLEITNER S. Simultaneous analysis of ascorbic acid, dehydroascorbic acid, and ascorbic sulfate in biological material. Analyst, 1989, 14: 83-87 |
DARIAS M J, MAZURAIS D, KOUMOUNDOUROS G, et al. Overview of vitamin D and C requirements in fish and their influence on the skeletal system. Aquaculture, 2011, 315: 49-60 DOI:10.1016/j.aquaculture.2010.12.030 |
DEANE E E, WOO N Y S. Cloning and characterization of the HSP70 multigene family from silver sea bream: Modulated gene expression between warm and cold temperature acclimation. Biochemical and Biophysical Research Communications, 2005, 330(3): 776-783 DOI:10.1016/j.bbrc.2005.03.039 |
DONG Y W, DONG S L, MENG X L. Effects of thermal and osmotic stress on growth, osmoregulation and Hsp70 in sea cucumber (Apostichopus japonicus Selenka). Aquaculture, 2008, 276(1/2/3/4): 179-186 |
GUAN B, WEN H S, LIU Q, et al. Effects of acute temperature stress on metabolic enzyme activity and gene expression related to growth in rainbow trout Oncorhynchus mykiss. Journal of Ocean University of China, 2014, 29(6): 566-571 [管标, 温海深, 刘群, 等. 急性温度胁迫对虹鳟肝脏代谢酶活性及生长相关基因表达的影响. 大连海洋大学学报, 2014, 29(6): 566-571 DOI:10.3969/J.ISSN.2095-1388.2014.06.005] |
HARTL F U, HAYER-HARTL M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 2002, 295: 1852-1858 DOI:10.1126/science.1068408 |
HE J, QIANG J, XU P, et al. Change in serum cortisol and immune-related indices in four strains of tilapia during low-temperature acclimation. Journal of Fishery Sciences of China, 2014, 21(2): 266-274 [何杰, 强俊, 徐跑, 等. 低温驯化下4种不同品系罗非鱼血清皮质醇与免疫相关指标的变化. 中国水产科学, 2014, 21(2): 266-274] |
HENRIQUE M M F, GOMES E F, GOUILLOU-COUSTANS M F, et al. Influence of supplementation of practical diets with vitamin C on growth and response to hypoxic stress of sea bream (Sparus aurata). Aquaculture, 1998, 161: 415-426 DOI:10.1016/S0044-8486(97)00289-5 |
HU P L, WU R, LU K L, et al. Effects of replacing fish meal with composite protein on growth, diet digestibility, and gut health in Japanese seabass (Lateolabrax maculatus). Progress in Fishery Sciences, 2019, 40(6): 56-65 [胡鹏莉, 吴瑞, 鲁康乐, 等. 复合蛋白替代鱼粉对花鲈生长、消化能力和肠道健康的影响. 渔业科学进展, 2019, 40(6): 56-65] |
HUANG G Q, WEI L Z, ZHANG X M, et al. The growth and energy allocation of the brown flounder (Paralichthys olivaceus) during thermal manipulation. Journal of Ocean University of China (Natural Science), 2010, 40(2): 38-46 [黄国强, 韦柳枝, 张秀梅, 等. 温度操作对褐牙鲆幼鱼的生长和能量分配的影响. 中国海洋大学学报(自然科学版), 2010, 40(2): 38-46] |
KITABCHI A E. Ascorbic acid in steroidogenesis. Nature, 1967, 215: 1385-1386 DOI:10.1038/2151385a0 |
KLESIUS P H. Effect of size and temperature on the quantity of immunoglobulin in channel catfish, Ictalurus punctatus. Veterinary Immunology and Immunopathology, 1990, 24(2): 187-195 DOI:10.1016/0165-2427(90)90021-J |
LIAO C Y, SHAO L, WANG X X. Influence of dietary vitamin C on non-specific immunity of larval and juvenile Symphysodon aequifasciatus. Process in Fishery Sciences, 2012, 33(3): 54-59 [廖畅宇, 邵力, 王旭霞. 饲料中维生素C对七彩神仙鱼仔幼鱼非特异性免疫的影响. 渔业科学进展, 2012, 33(3): 54-59 DOI:10.3969/j.issn.1000-7075.2012.03.008] |
LUO Q, OU Y J, AI L, et al. Effects of temperature and pH on the digestive enzymes activities of juvenile striped beakperch (Oplegnathus fasciatus). Journal of Tropical Oceans, 2010, 29(5): 154-158 [罗奇, 区又君, 艾丽, 等. 温度和pH对条石鲷幼鱼消化酶活力的影响. 热带海洋学报, 2010, 29(5): 154-158] |
MAGNADÓTTIR B, JÓNSDÓTTIR H, HELGASON S, et al. Humoral immune parameters in Atlantic Cod (Gadus morhua L. ): Ⅰ. The effects of environmental temperature. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1999, 122(2): 173-183 DOI:10.1016/S0305-0491(98)10156-6 |
MARTÍN M, HERNÁNDEZ C, BODEGA G, et al. Heat-shock proteins expression in fish central nervous system and its possible relation with water acidosis resistance. Neuroscience Research, 1998, 31(2): 97-106 DOI:10.1016/S0168-0102(98)00028-5 |
MONTERO D, MARRERO M, IZQUIERDO M S, et al. Effect of vitamin E and C dietary supplementation on some immune parameters of Gilthead Seabream (Sparus aurata) juveniles subjected to crowding stress. Aquaculture, 1999, 171: 269-278 DOI:10.1016/S0044-8486(98)00387-1 |
MUNILLÁ-MORAN R, SABORIDOREY F. Digestive enzymes in marine species. Ⅱ. Amylase activities in gut from seabream (Sparus aurata), turbot (Scophthalmus maximus) and redfish (Sebastes mentella).. Comparative Biochemistry and Physiology, Part B: Biochemistry and Molecular Biology, 1996, 113(2): 395-402 |
ORTUNO J, ESTEBAN M A, MESEGUER J. Effects of short-term crowding stress on the gilthead seabream (Sparus aurata L. ) innate immune response. Fish and Shellfish Immunology, 2001, 11(2): 187-197 DOI:10.1006/fsim.2000.0304 |
ORTUNO J, ESTEBAN M A, MESEGUER J. Lack of effect of combining different stressors on innate immune responses of seabream (Sparus aurata L. ). Veterinary Immunology and Immunopathology, 2002, 84(1/2): 17-27 |
PADAYATTY S J, LEVINE M. New insights into the physiology and pharmacology of vitamin C. Canadian Medical Association Journal, 2001, 164: 353-355 |
POLJSAK B, GAZDAG Z, JENKO-BRINOVEC S, et al. Pro-oxidative vs antioxidative properties of ascorbic acid in Chromium (Ⅵ) -induced damage: An in vivo and in vitro approach. Journal of Applied Toxicology, 2005, 25(6): 535-548 DOI:10.1002/jat.1093 |
QIANG J, YANG H, WANG H, et al. The effect of acute temperatures stress on biochemical indices and expression of liver HSP70 mRNA in gift Nile tilapia juveniles (Oreochomics niloticus). Oceanologia et Limnologia Sinica, 2012, 43(5): 943-953 [强俊, 杨弘, 王辉, 等. 急性温度应激对吉富品系尼罗罗非鱼(Oreochromis niloticus)幼鱼生化指标和肝脏HSP70 mRNA表达的影响. 海洋与湖沼, 2012, 43(5): 943-953] |
QIAO L J, WANG Y R, ZHANG M. Research progress of Nrf2/HO-1 pathway in mechanism of oxidative damage and protection. Chinese Occupational Medicine, 2013, 40(1): 82-84 [乔丽杰, 王延让, 张明. Nrf2/HO-1通路在氧化损伤保护机制中研究进展. 中国职业医学, 2013, 40(1): 82-84] |
SCAPIGLIATI G, ROMANO N, ABELLI L. Monoclonal antibodies in fish immunology: Identification, ontogeny and activity of T- and B-Lymphocytes. Aquaculture, 1999, 172(1/2): 3-28 |
SUNYER J O, GOMEZ E, NAVARRO V, et al. Physiological responses and depression of humoral components of the immune system in gilthead seabream (Sparus aurata) following daily acute stress. Canadian Journal of Fisheries and Aquatic Sciences, 1995, 52: 23-39 DOI:10.1139/f95-003 |
TOLBERT B M. Ascorbic acid metabolism and physiological function. International Journal Vitamin Nutrition Research Supplement, 1979, 19: 127-142 |
TORT L, GÓMEZ E, MONTERO D, et al. Serum haemolytic and agglutinating activity as indicators of fish immune competence: Their suitability in stress and dietary studies. Aquaculture International, 1996, 4(1): 31-41 DOI:10.1007/BF00175219 |
WAKELING J M, COLE N J, KEMP K M, et al. The biomechanics and evolutionary significance of thermal acclimation in the common carp (Cyprinus carpio). American Journal of Physiology Regulatory Integrative and Comparative Physiology, 2000, 279(2): 657-665 DOI:10.1152/ajpregu.2000.279.2.R657 |
WAN J J, GE X P, LIU B, et al. Effect of dietary vitamin C on non-specific immunity and mRNA expression of three heat shock proteins (Hsps) in juvenile Megalobrama amblycephala under pH stress. Aquaculture, 2014, 434: 325-333 DOI:10.1016/j.aquaculture.2014.08.043 |
WAN J J. Effects of dietary vitamin C levels on growth and immunity of juvenile Wuchang bream (Megalobrama amblycephala). Master′s Thesis of Nanjing Agricultural University |
万金娟. 维生素C对团头鲂幼鱼生长及免疫的影响. 南京农业大学硕士研究生学位论文, 2012 |
WANG C F, XIE S Q, ZHU X M, et al. Effects of age and dietary protein level on digestive enzyme activity and gene expression of Pelteobagrus fulvideaco larvae. Aquaculture, 2006, 254(1/2/3/4): 554-562 |
WILSON R P, POE W E. Impaired collagen formation in the scorbutic channel catfish. Journal of Nutrition, 1973, 103(9): 1359-1364 DOI:10.1093/jn/103.9.1359 |
YANG J H, XU Z F, YIN Z W, et al. Experimental study on effects of vitamin C and vitamin E on the acute nephrotoxicity of mercury. Chinese Journal of Industrial Medicine, 2004, 17(2): 91-93 [杨敬华, 徐兆发, 尹忠伟, 等. 维生素C、E对汞急性肾毒作用影响的实验研究. 中国工业医学杂志, 2004, 17(2): 91-93] |
ZHANG C X, RAHIMNEJAD S, WANG Y R, et al. Substituting fish meal with soybean meal in diets for Japanese seabass (Lateolabrax japonicus): Effects on growth, digestive enzymes activity, gut histology, and expression of gut inflammatory and transporter genes. Aquaculture, 2018, 483: 173-182 DOI:10.1016/j.aquaculture.2017.10.029 |