属鱼类; DNA条形码; 物种鉴定; 系统进化分析" />
  渔业科学进展  2022, Vol. 43 Issue (6): 89-101  DOI: 10.19663/j.issn2095-9869.20210908002
0

引用本文 

王开杰, 徐永江, 崔爱君, 姜燕, 王滨, 柳学周, 方璐, 薛志勇, 毛成全. 基于Cyt b、ND1及ND2的DNA条形码在属鱼类物种鉴定中的应用[J]. 渔业科学进展, 2022, 43(6): 89-101. DOI: 10.19663/j.issn2095-9869.20210908002.
WANG Kaijie, XU Yongjiang, CUI Aijun, JIANG Yan, WANG Bin, LIU Xuezhou, FANG Lu, XUE Zhiyong, MAO Chengquan. Application of DNA Barcoding Based on Cyt b, ND1 and ND2 in Seriola Species Identification[J]. Progress in Fishery Sciences, 2022, 43(6): 89-101. DOI: 10.19663/j.issn2095-9869.20210908002.

基金项目

国家重点研发计划项目(2019YFD0900901; 2018YFD0901204)、中国水产科学研究院基本科研业务费(2020TD47)、中国水产科学研究院黄海水产研究所基本科研业务费(20603022021011)、国家海洋水产种质资源库项目、财政部和农业农村部:国家现代农业产业技术体系(CARS-47)共同资助

作者简介

王开杰,E-mail: jasions@qq.com

通讯作者

徐永江,研究员,E-mail: xuyj@ysfri.ac.cn

文章历史

收稿日期:2021-09-08
基于Cyt b、ND1及ND2的DNA条形码在属鱼类物种鉴定中的应用
王开杰 1,2, 徐永江 2, 崔爱君 2, 姜燕 2, 王滨 2, 柳学周 2, 方璐 2, 薛志勇 3, 毛成全 3     
1. 浙江海洋大学国家海洋设施养殖工程技术研究中心 浙江 舟山 316022;
2. 中国水产科学研究院 黄海水产研究所 青岛海洋科学与技术试点国家实验室深蓝渔业工程联合实验室 山东 青岛 266071;
3. 海阳市黄海水产有限公司 山东 烟台 265122
摘要:为建立我国属(Seriola)鱼类快速有效的分子鉴别技术,从DNA条形码角度出发,分析了线粒体细胞色素b (Cyt b)、NADH脱氢酶(ND1和ND2)基因在黄条(Seriola lalandi)、高体(Seriola dumerili)和五条(Seriola quinqueradiata)等属鱼类物种鉴定和系统进化以及地理区域鉴别中的适用性。结果显示,Cyt b基因表现出明显的A+T偏倚性,ND2基因序列突变速率较高,变异率为20.52%,ND2基因(Hd=0.900, Pi=0.082)的遗传多样性高于ND1 (Hd=0.874, Pi=0.077)和Cyt b (Hd=0.814,Pi=0.061)。比较了属鱼类3种基因序列的结构特征,基于ND1和ND2基因计算的属鱼类种间遗传距离都为种内遗传距离的10倍以上,但Cyt b基因对高体和几内亚(Seriola carpenteri)辨识力不足。系统进化分析显示,每个物种都形成单系分支,3个基因均能对我国3种属鱼类进行鉴别,且都可有效区别来自全球3个不同水域的黄条种群。因此,Cyt b、ND1和ND2基因不仅可作为属鱼类物种鉴定的有效DNA条形码,还可作为不同地理种群划分和种质资源科学保护的依据,为我国鱼养殖产业的持续健康发展和种质资源的可持续利用提供技术依据。
关键词属鱼类    DNA条形码    物种鉴定    系统进化分析    
Application of DNA Barcoding Based on Cyt b, ND1 and ND2 in Seriola Species Identification
WANG Kaijie 1,2, XU Yongjiang 2, CUI Aijun 2, JIANG Yan 2, WANG Bin 2, LIU Xuezhou 2, FANG Lu 2, XUE Zhiyong 3, MAO Chengquan 3     
1. National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China;
2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Joint Laboratory for Deep Blue Fishery Engineering of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266071, China;
3. Haiyang Yellow Sea Fishery Company, Yantai, Shandong 265122, China
Abstract: Seriola is a genus of Carangidae in Perciforms; they are long-distance migratory oceanic species with global distribution and inhabit temperate and subtropical marine waters worldwide. There are nine species in Genus Seriola. Three species, including S. lalandi, S. dumerili, and S. quinqueradiata, are found in China's coastal waters. Seriola fish is large, fast-growing, and highly favored by the international consumption market due to its excellent taste, nutritional quality, and economic value; furthermore, they are promising for open ocean aquaculture. In 2017, a significant breakthrough was achieved in seedlings production of S. lalandi by Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences in China, and the scaled juveniles' production technology was established in 2019. In 2020, another breakthrough was achieved in seedlings production of S. quinqueradiata in China. Since 2017, the farming industry of Seriola fish in China has entered the fast development era. Nowadays, the Seriola species are farmed in Liaoning, Fujian, Shandong provinces of China, etc., and the annual farming yield was about 20 thousands of tons in China since 2018.These three Seriola species, natively distributed in China, have similar exterior morphology and are hard to differentiate with naked eye and traditional differentiation methods, especially in case of the juveniles. In addition, an allotype phenomenon exists in Seriola fish in global oceanic waters. Therefore, it is necessary to establish a simple and efficient molecular species identification method to facilitate the species and population determination of Seriola fishes in international oceanic waters. Moreover, it also could be beneficial for discrimination, conservation, and sustainable utilization of natural fishery resources in international public waters.Many scientists have studied the germplasm and population genetic characteristics of S. lalandi, S. dumerili, and S. quinqueradiata from international waters using nuclear genes and mitochondrial markers. Still, there is no information on the genetic background of Seriola fishes in China. DNA barcodes are widely applied to species identification, systematic analysis, and population genetics of fish because of their sensitivity, accuracy, and reliability, especially for CO I, cytochrome oxidase b (Cyt b) genes, etc. Furthermore, when DNA barcodes are applied to species identification or hidden species analysis, the combination of several DNA barcodes could be more high-efficient and accurate. Thus, in the present study, to explore the applicability of Cyt b and NADH dehydrogenase subunit 1 and 2 (ND1 and ND2) to species identification and evolutionary analysis of three Seriola species, including S. lalandi, S. dumerili, and S. quinqueradiata were investigated and determined. The finclips samples were collected from three native distributed Seriola species. S. lalandi samples were also collected from Australian and Japanese populations. Genomic DNA was extracted from finclips, specific primers for Cyt b, ND1, and ND2 genes were designed. The PCR reaction system of the three genes totalled 50 μL each, Including rTaq enzyme 25 μL, template 2 μL, upstream and downstream primer 1 μL each, and ddH2O 21 μL. The results showed that the target fragments of three genes could be amplified from the genomes of three Seriola species, and 68 gene sequences were obtained. The sizes of Cyt b, ND1, and ND2 fragments were 538 bp, 673 bp, and 907 bp in length, respectively, which were consistent with the predicted results, wherein Cyt b gene sequence showed obvious A+T bias characteristics. The mutation rate of the ND2 gene was 20.52%. The genetic diversity of ND2 gene (Hd = 0.900, Pi = 0.082) was higher than that of ND1 (Hd = 0.874, Pi = 0.077) and Cyt b (Hd= 0.814, Pi = 0.061). The results indicated that Cyt b, ND1, and ND2 could be used to identify the three Seriola species natively distributed in the China oceans. In Seriola species, the interspecific genetic distances of the three genes were more than ten times the intraspecific genetic distances.Furthermore, the evolutionary tree based on Cyt b, ND1, and ND2 shows that Chinese and Japanese S. lalandi are clustered into independent branches, effectively distinguishing Chinese, Japanese, and Australian S. lalandi populations. In addition, S. lalandi and S. quinqueradiata were clustered together, while S. dumerili and S. rivoliana were clustered together, showing similar genetic relationships with each other. Based on the Cytochrome b gene, S. carpenteri and S. dumerili showed high sequence homology, were clustered on the same node, and could not be effectively distinguished. It can be seen that except for Cyt b, the maximum-likelihood tree constructed based on ND1 and ND2 genes has accurate identification ability for different fish species from the Seriola genus.In summary, Cyt b, ND1, and ND2 could be used as DNA barcodes for species identification and geographical differentiation of Seriola fishes. A variety of DNA barcodes could be combined to achieve more precise identification results. These DNA barcodes could also be applied to evaluate and conserve the genetic diversity of farmed Seriola species, which could be beneficial for sustainable utilization of the germplasm resources of Seriola species.
Key words: Seriola species    DNA barcode    Species identification    Phylogenetic analysis    

鱼是鲈形目(Perciformes)、鲹科(Carangidae)、属(Seriola)鱼类的统称,是一类具有全球水域长距离洄游特性、栖息在海洋中上层的暖温性大型鱼类。全球共有属鱼类9种(Takeyama et al, 2001; Nwani et al, 2011),但存在“同种异名”、“同种异形”的现象。我国现分布有3种属鱼类,分别为黄条 (Seriola lalandi)、高体(Seriola dumerili)和五条(Seriola quinqueradiata),其肉质鲜嫩、营养丰富,深受消费者喜爱(柳学周等, 2017);其个体大、生长快,特别适合深远海大型设施养殖,是我国近年来发展深远海养殖的重要目标鱼类。3种属鱼类具有相似的体色和条纹,利用传统的形态学鉴定方法难以准确辨别,特别是受精卵和苗种形态上更难区分。属鱼类种苗、受精卵、商品鱼的国际流通与贸易较为旺盛,为防止外来物种入侵以及其他鱼类冒充属鱼类问题的发生(Iguchi et al, 2012),亟需建立一种适用、便捷、高效的物种鉴别方法。

线粒体DNA具有长度短、结构简单、排列紧凑、偏母性遗传和进化速度快的特性,目前,作为理想的分子标记被广泛应用在鱼类分子系统学、生态地理学和种群遗传学等领域(Wilson et al, 2010; 袁娟等, 2008)。DNA条形码作为分子鉴定中最常见、最直接、最准确的方法,是指生物体内能够代表该物种的、标准的、有足够变异的、易扩增且相对较短的DNA片段,最早由Barrent等(2005)提出,在物种鉴定和进化分析上都有较好的应用(Sepúlveda et al, 2019),弥补了传统形态学鉴定方法的不足,其中,以线粒体细胞色素氧化酶亚基Ⅰ(CO Ⅰ)应用于鱼类物种鉴定最为广泛(王敏等, 2015)。随着条形码技术的不断发展,进化速度适中的Cyt b和NADH脱氢酶基因(ND基因),也被用于亲缘关系较近的种间和种内的遗传差异分析(Clayton, 1992; 陈四海等, 2011)。Cyt b在不同物种中表现出明显的遗传差异。毕潇潇等(2009)通过线粒体16S rRNA、CO I和Cyt b基因片段比较分析,为4种鳕鱼(Gadidae)的鉴定提供了鉴别依据。ND基因在鱼类不同分类阶元的系统发育研究中发挥作用(Serb et al, 2003; Bowen et al, 2008)。梁日深等(2014)通过NADH脱氢酶亚基Ⅰ(ND1)基因分析了16种胡椒鲷属(Plectorhinchus)鱼类的亲缘关系;高志远(2013)分析了我国17个地理群体乌鳢(Channa argus)线粒体NADH脱氢酶亚基Ⅱ(ND2)序列的遗传多样性,为乌鳢分类和系统进化提供了依据。本研究探讨线粒体Cyt b、ND1和ND2基因在属鱼类物种鉴定和群体划分中的适用性,以期为属鱼类物种鉴别、种群划分和种质资源保护及可持续利用提供技术依据。

1 材料与方法 1.1 实验材料

我国3种属鱼类样品采集于福建宁德(26°62′N, 119°75′E),黄条(SL) [n=3, 体重为(2.97±0.15) kg]、高体(SD) [n=3, 体重为(3.40±0.48) kg]、五条(SQ) [n=3, 体重为(4.78±0.54) kg]。另外,采集了澳大利亚黄条(ASL)(33°44′S, 151°45′E)[n=2, 体重为(1.86± 0.26 kg)]和日本黄条(JSL) (32°45′N, 128°27′E) [n=2, 体重为(1.24±0.18) kg]野生群体样品。采集的所有样本通过形态学方法和图片资料分类确认。所有实验鱼用MS-222麻醉后,取胸鳍放入无水乙醇中保存,用于基因组DNA的提取。

1.2 实验方法 1.2.1 基因组DNA提取

取胸鳍组织样品25 mg,用解剖剪剪碎置于无菌离心管中,采用天根海洋动物组织DNA试剂盒提取DNA,参照说明书进行操作。通过琼脂糖凝胶电泳和核酸蛋白测定仪测定DNA浓度和纯度,–20℃保存。

1.2.2 PCR扩增

根据序列比对分别设计Cyt b、ND1和ND2基因扩增特异引物(表 1)。3个基因的PCR扩增体系均为50 μL,包括rTaq酶25 μL、模板2 μL、上下游引物各1 μL和ddH2O 21 μL,PCR扩增条件程序见表 2。产物经检测合格后送生工生物工程(上海)股份有限公司双向测序。

表 1 3种属鱼类线粒体DNA条形码PCR引物 Tab.1 Mitochondrial DNA barcode PCR primer of three Seriola species
表 2 3种基因PCR扩增条件 Tab.2 PCR amplification conditions of three genes
1.2.3 数据处理

将获得的测序结果采用DNAMAN和DNAstar软件进行序列拼接和校正,并在NCBI数据库进行BLAST比对。从GenBank数据库下载与本研究3种基因扩增区段一致的鲹科鱼类Cyt b、ND1和ND2基因序列,采用DnaSP5.10软件进行遗传多样性参数分析,包括单倍型数(h)、单倍型多样性指数(Hd)、核苷酸多样性指数(Pi)、平均核苷酸差异数(k)等。运用MEGA 7.0软件,统计序列碱基组成、密码子位点偏好性,计算序列保守位点、简约信息位点和变异位点等,运用最大似然法(maximum- likelihood, ML),自举检验1000次,采用Kimura 2-parameter模型计算遗传距离,并构建系统发育树。

2 结果与分析 2.1 基因序列分析

3种属鱼类的样本中均扩增出3个基因的目的片段,共获得68条序列,测序得到的Cyt b、ND1和ND2片段大小分别为538、673、907 bp,与预测结果一致。3种属鱼类的Cyt b、ND1和ND2基因片段中T、C、A和G平均含量见表 3Cyt b基因中A+T平均含量为50.9%,略高于G+C平均含量(49.1%),表现出A+T偏倚性;ND1基因(49.5%)和ND2基因(49.8%)中A+T平均含量均低于G+C平均含量(50.5%、50.2%);其中,五条ND2基因GC (51.1%)含量大于高体GC (48.7%)。除ND1和ND2基因外,Cyt b基因表现出A+T偏倚性。

表 3 3种属鱼类Cyt b、ND1和ND2基因的碱基组成 Tab.3 Base composition of Cyt b, ND1 and ND2 genes in three Seriola species

3个基因密码子碱基含量见表 4Cyt b序列中,第3密码子位点GC含量(56.6%)显著高于第1和第2密码子位点(46.8%和39.4%),且第1密码子变异位点最高(33)。ND1序列中,第3密码子位点GC含量(43.9%)低于第1和第2密码子位点(52.7%和55.0%)。ND2序列中,第3密码子位点GC含量(44.6%)低于第1和第2密码子位点(51.7%和54.0%)。ND1各密码子变异位点相差不大,ND2第1密码子变异位点最低(54),碱基使用频率Cyt b基因表现出明显A+T偏倚性。

表 4 3种属鱼类Cyt b、ND1和ND2基因序列片段各密码子碱基组成及变异位点 Tab.4 The sequence composition and variation of Cyt b, ND1and ND2 genes in three Seriola species

3种属鱼类遗传多样性参数统计如表 5所示。Cyt b基因序列变异率为16.73%,低于ND1 (17.53%)和ND2 (20.52%);ND2的单倍型多样型指数为0.900,高于Cyt b (0.814)和ND1 (0.874),表明其遗传多样性高。从平均核苷酸差异数和核苷酸多样性指数来看,ND2 (0.082)基因高于ND1 (0.077)和Cyt b (0.061),表明其分化快,核苷酸变异程度较高。

表 5 3种基因片段的遗传多样性参数 Tab.5 Genetic diversity parameters of three gene fragments
2.3 遗传距离分析

基于Cyt b基因的属鱼类的遗传距离分析结果见表 6,种内遗传距离为0~0.006 (平均为0.003),种间的平均遗传距离为0.121,为种内平均遗传距离的40倍,符合Hebert等(2004)提出的“10×规则”。其中,几内亚与高体的亲缘关系较近,遗传距离为(0.004~0.009),故Cyt b不能有效区分这2种鱼。中国与日本黄条的平均遗传距离为(0~0.002),与澳大利亚黄条的遗传距离均为0.029,可见Cyt b基因能有效区分中国、日本与澳大利亚黄条群体。属鱼类同4种鲹科鱼类之间的遗传距离均 > 0.12,表明Cyt b基因还可用于属鱼类与其他鲹科鱼类的区分。

表 6 基于Cyt b的遗传距离分析 Tab.6 Genetic distance analysis based on Cyt b

基于ND1基因的属鱼类的遗传距离分析结果见表 7,种内遗传距离为0~0.007,平均遗传距离为0.002,属内种间遗传距离为0.048~0.173,平均遗传距离为0.077,为种内平均遗传距离的38.5倍。黄条与五条遗传距离最小(0.083~0.087),与高体的遗传距离最大(0.137~0.139)。中国和日本黄条种群遗传距离较小(0~0.003),中国与澳大利亚黄条遗传距离较大(0.048)。属鱼类与其他鲹科鱼类的遗传距离较大(0.142~0.250),表明ND1基因能将属鱼类不同地理群体和物种有效区分,还可用于鲹科鱼类属间高阶分类单元。

表 7 基于ND1的遗传距离分析 Tab.7 Genetic distance analysis based on ND1

基于ND2基因的属鱼类的遗传距离分析结果见表 8,种内遗传距离为0~0.003 (平均为0.002);种间的平均遗传距离为0.092,为种内平均遗传距离的46倍;黄条与五条遗传距离较小(0.091~0.098),高体与五条遗传距离较大(0.160~0.173)。中国和日本种群黄条的遗传距离(0~0.003)远小于中国和澳大利亚种群的遗传距离(0.055~0.058)。除小甘鲹(Seriolina nigrofasciata)外,属鱼类与另外3种鲹科鱼类的遗传距离均在0.23以上,亲缘关系较远,表明ND2基因可有效区分属鱼类甚至鲹科鱼类,也可有效辨识不同地理种群的黄条

表 8 基于ND2的遗传距离分析 Tab.8 Genetic distance analysis based on ND2
2.4 系统进化树分析

由基于Cyt b、ND1和ND2基因序列构建的属鱼类系统进化树发现,其拓扑结构与形态学结果一致,主要包括两大分支:由属鱼类和小甘鲹组成一大支;另一支则由长身圆鲹(Decapterus macrosoma)、乌鲹(Parastromateus niger)和竹荚鱼(Trachurus trachurus)组成。系统进化分析显示,每个鱼种都聚为独立分支,各物种均能有效区分且具有很高的支持度。同时,基于Cyt b、ND1和ND2构建的进化树显示,中国和日本黄条聚为独立分支,可有效区分中国、日本和澳大利亚黄条。此外,黄条和五条聚为一支,高体和长鳍聚为一支,表现出彼此相近的亲缘关系。基于Cyt b基因,几内亚与高体表现出高度的序列同源性,聚在同一结点上,无法进行有效区分。可见,除Cyt b外,ND1和ND2基因所建的ML树对属鱼类的不同鱼种具有准确的辨识力。

图 1 基于Cyt b基因构建的ML系统进化树(枝上数字为置信度值) Fig.1 Maximum-likelihood phylogenetic tree based on Cyt b gene (The number on branch is confidence value) SL:中国黄条;JSL:日本黄条;ASL:澳大利亚黄条;SQ:中国五条;SD:中国高体 SL: Seriola lalandi from China; JSL: Seriola lalandi from Japan; ASL: Seriola lalandi from Australia; SQ: Seriola quinqueradiata from China; SD: Seriola dumerili from China
3 讨论

DNA分子本身含有丰富的多态性信息,受外界环境和其他因素的影响较小,能够准确和稳定地反映物种间的遗传关系,加之线粒体DNA自身所具有的优点,在进行鱼类群体遗传研究中常被作为一种非常重要的分子标记(乔慧莹, 2014)。线粒体DNA序列的进化变异主要包括碱基的转换、倒置和易位等,可在任意时期进行检测,不需要考虑表达的影响因素,检测方法简单、高效(Sanger et al, 2003)。线粒体基因组不同编码基因的进化速率是不同的,各基因所表现出来的遗传信息量也不同(赵凯, 2006)。本研究共分析了Cyt b、ND1与ND2三个线粒体基因在属鱼类物种以及不同地理种群黄条鉴别方面的应用,结果表明,其对3种属鱼类的物种判别方面具有较好的适用性。研究发现,Cyt b基因核苷酸序列的变异率较高,分布广泛、序列易测定,系统发育信息展现的辨识度高,是探讨物种亲缘关系、遗传分化的良好标记(Irwin et al, 1991)。在本研究中,基于Cyt b基因分析,3种属鱼类的平均碱基含量为T 27.7%、C 32.2%、A 23.2%、G 16.9%,其中,A+T为50.9%,表现出明显的偏倚性。Cyt b序列中的转换频率高于颠换,转换与颠换比值R平均为4.63,普遍认为R > 2.0时,表明基因序列的突变未达到饱和(郑文娟等, 2008)。另外,本研究发现,基于Cyt b分析的属鱼类种间遗传距离和进化树分析结果一致,除几内亚与高体遗传距离较小而进化树中不能独立分支外,其他属鱼类的种间遗传距离显著大于种内遗传距离,单系性得到很好的支持,因此,需要结合其他DNA条形码进行多码验证,以便提高技术应用的准确性和可靠性。

图 2 基于ND1基因构建的ML系统进化树(枝上数字为置信度值) Fig.2 Maximum-likelihood phylogenetic tree based on ND1 gene (The number on branch is confidence value) SL:中国黄条;JSL:日本黄条;ASL:澳大利亚黄条;SQ:中国五条;SD:中国高体 SL: Seriola lalandi from China; JSL: Seriola lalandi from Japan; ASL: Seriola lalandi from Australia; SQ: Seriola quinqueradiata from China; SD: Seriola dumerili from China

ND1和ND2基因进化速率较快,能较好地反映出种内与群体间的遗传变化差异及系统分类地位,已被广泛用于节肢动物、鱼类、爬行类、鸟类和哺乳类等系统发育和种群划分(Cecilia, 1994; Yu et al, 2000)。在本研究中,ND1和ND2基因中碱基A+T的平均含量分别为49.5%和49.8%,低于GC含量。单倍型多样型指数(Hd)和核苷酸多样性指数(Pi)作为衡量物种遗传多样性丰富度的重要指标,物种丰富度越高,在环境中的耐受性越强(陆键萍等, 2020)。本研究发现,属鱼类中ND2基因(Hd=0.900, Pi=0.082)的遗传多样性高于ND1 (Hd=0.874, Pi=0.077)和Cyt b (Hd=0.814, Pi= 0.061),这可能与ND2基因本身具有较高的突变速率有关(郑德育等, 2019)。本研究发现ND1和ND2基因序列均可作为属鱼类物种鉴定的有效DNA条形码。

近年来,生物地理学成为鱼类分子群体遗传学的研究热点之一,在检测地理隔离对鱼类群体遗传结构的影响的研究中,线粒体DNA是比较理想的分子标记(祁得林等, 2008)。Iguchi等(2012)基于PCR-RFLP技术对日本4种属鱼类和澳大利亚属鱼类的种群进行鉴定,结果表明,通过设计Cyt b基因特异引物能有效区分日本和澳大利亚属鱼类属于不同的种群。Premachandra等(2017)利用基因组测序、线粒体DNA、微卫星标记分析等方法研究发现,太平洋海域的黄条分为3个明显地理隔离的群体,分别是东北、西北和南太平洋群体,且群体间基本不存在基因交流。本研究发现,Cyt b、ND1和ND2基因能有效辨识中国与澳大利亚黄条,但不能区分中国和日本黄条,这与崔爱君(2020)采用SNP分子标记、基因组分析的不同水域黄条种群遗传划分的结果一致,进一步支持了中国与日本黄条可能属于同一群体,而与澳大利亚黄条种群存在显著的地理隔离。

图 3 基于ND2基因构建的ML系统进化树(枝上数字为置信度值) Fig.3 Maximum-likelihood Phylogenetic tree based on ND2 gene (The number on branch is confidence value) SL:中国黄条;JSL:日本黄条;ASL:澳大利亚黄条;SQ:中国五条;SD:中国高体 SL: Seriola lalandi from China; JSL: Seriola lalandi from Japan; ASL: Seriola lalandi from Australia; SQ: Seriola quinqueradiata from China; SD: Seriola dumerili from China

综上所述,本研究发现,ND1和ND2基因序列均可作为属鱼类物种鉴定的有效DNA条形码,而Cyt b对属鱼类中序列同源性较高的鱼种辨识能力不足。另外,3种基因均可作为不同地理群体黄条的鉴别DNA条形码。在DNA条形码应用于物种鉴定或隐藏种分析时,综合采用多种DNA条形码技术来监测属鱼类的遗传多样性水平,以便实现其种质资源合理保护和可持续利用。

参考文献
BARRETT R D H, HEBERT P D N. Identifying spiders through DNA barcodes. Canadian Journal of Zoology, 2005, 83(3): 481-491 DOI:10.1139/z05-024
BI X X, GAO T X, XIAO Y S, et al. Sequence comparison of mtDNA 16S rRNA, CO Ⅰ and Cyt b gene fragments in four species of Gadidae fish. South China Fisheries Science, 2009, 5(3): 46-52 [毕潇潇, 高天翔, 肖永双, 等. 4种鳕鱼线粒体16S rRNA、CO Ⅰ和Cyt b基因片段序列的比较研究. 南方水产, 2009, 5(3): 46-52 DOI:10.3969/j.issn.1673-2227.2009.03.008]
BOWEN B R, KREISER B R, MICKLE P F, et al. Phylogenetic relationships among North American Alosa species (Clupeidae). Journal of Fish Biology, 2008, 72(5): 1188-1201 DOI:10.1111/j.1095-8649.2007.01785.x
CECILIA S. The evolution of mitochondrial DNA. Current Opinion in Genetics and Development, 1994, 4(6): 875-881 DOI:10.1016/0959-437X(94)90073-6
CHEN S H, OU Y J, LI J E. Mitochondrial DNA and its progresses in fish. Biotechnology Bulletin, 2011(3): 13-20 [陈四海, 区又君, 李加儿. 鱼类线粒体DNA及其研究进展. 生物技术通报, 2011(3): 13-20]
CLAYTON D A. Transcription and replication of animal mitochondrial DNAs. International Review of Cytology, 1992, 141: 217-232
CUI A J. Study on population genetics of yellowtail kingfish. Master´ s Thesis of Shanghai Ocean University, 2020, 5-6 [崔爱君. 黄条种群遗传特性研究. 上海海洋大学硕士研究生学位论文, 2020, 5-6]
GAO Z Y. Genetic diversity of wild populations of Channa argus in China. Master´ s Thesis of Jinan University, 2013, 20-36 [高志远. 中国野生乌鳢(Channa argus)遗传多样性分析. 暨南大学硕士研究生学位论文, 2013, 20-36]
HEBERT P D N, STOECKLE M Y, ZEMLAK T S, et al. Identification of birds through DNA barcodes. PLoS Biology, 2004, 2(10): e312 DOI:10.1371/journal.pbio.0020312
IGUCHI J, TAKASHIMA Y, NAMIKOSHI A. Species identification method for marine products of Seriola and related specie. Fisheries Science, 2012, 78(1): 197-206 DOI:10.1007/s12562-011-0433-9
IRWIN D M, KOCHER T D, WILSON A C. Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution, 1991, 32(2): 128-144 DOI:10.1007/BF02515385
LIANG R S, LIANG Z G, FANG H H, et al. Molecular phylogenetic relationships of 16 sweetlips fishes based on the sequence of NADH dehydrogenase subunit 1. Haiyang Xuebao, 2014, 36(10): 25-32 [梁日深, 梁志刚, 方浩航, 等. 基于ND1基因序列的16种胡椒鲷鱼类分子系统进化关系研究. 海洋学报, 2014, 36(10): 25-32 DOI:10.3969/j.issn.0253-4193.2014.10.003]
LIU X Z, XU Y J, LI R, et al. Analysis and evaluation of nutritional composition of the muscle of yellowtail kingfish (Seriola aureovittata). Progress in Fishery Sciences, 2017, 38(1): 128-135 [柳学周, 徐永江, 李荣, 等. 黄条(Seriola aureovittata)肌肉营养组成分析与评价. 渔业科学进展, 2017, 38(1): 128-135]
LU J P, YAO L, XIN H M, et al. Applicability analysis of mitochondrial CO Ⅰ, Cyt b and 16S rRNA genes in identification of six tuna species. Progress in Fishery Sciences, 2020, 41(5): 73-81 [陆键萍, 姚琳, 信红梅, 等. 线粒体CO Ⅰ、Cyt b和16S rRNA基因在6种金枪鱼鉴定中的适用性分析. 渔业科学进展, 2020, 41(5): 73-81]
NWANI C D, BECKER S, BRAID H E, et al. DNA barcoding discriminates freshwater fishes from southeastern Nigeria and provides river system-level phylogeographic resolution within some species. Mitochondrial DNA: Journal of DNA Mapping, Sequencing and Analysis, 2011, 22(S1): 43-51
PREMACHANDRA H K A, TAKEUCHI Y, ADAM M, et al. Genomic DNA variation confirmed Seriola lalandi comprises three different populations in the Pacific, but with recent divergence. Scientific Reports, 2017, 7(1): 314-325 DOI:10.1038/s41598-017-00387-2
QI D L, CHAO Y, GUO S C, et al. Genetic structure of five Huanghe schizothoracin Schizopygopsis pylzovi populations based on mtDNA control region sequences. Journal of Zoology, 2008, 54(6): 972-980 [祁得林, 晁燕, 郭松长, 等. 黄河裸裂尻鱼五种群mtDNA控制区的遗传结构. 动物学报, 2008, 54(6): 972-980]
QIAO H Y. Phylogeny of Schizothoracinae fishes and genetic structure of Pampus argenteus population based on mitochondrial DNA sequences. Master´ s Thesis of Shanghai Ocean University, 2014, 16-17 [乔慧莹. 基于线粒体基因序列分析裂腹鱼亚科的系统进化关系及中国沿海银鲳群体的遗传结构. 上海海洋大学硕士研究生学位论文, 2014, 16-17]
SANGER O I, CARMONA J A, DOADRIO I. Evolutionary and biogeographical patterns within Iberian populations of the genus Squalius inferred from molecular data. Molecular Phylogenetics and Evolution, 2003, 29(1): 20-30 DOI:10.1016/S1055-7903(03)00088-5
SEPULVEDA F A, GONZALEZ M T. DNA barcoding evidence for the first recorded transmission of Neobenedenia sp.from wild fish species to Seriola lalandi cultured in an open recirculating system on the coast of Northern Chile. Aquaculture, 2019, 501: 239-246
SERB J M, BUHAY J E, LYDEARD C. Molecular systematics of the North American freshwater bivalve genus Quadrula (Unionidae: Ambleminae) based on mitochondrial ND1 sequences. Molecular Phylogenetics and Evolution, 2003, 28(1): 1-11 DOI:10.1016/S1055-7903(03)00026-5
TAKEYAMA H, CHOW S, TSUZUKI H, et al. Mitochondrial DNA sequence variation within and between tuna Thunnus species and its application to species identification. Journal of Fish Biology, 2001, 58(6): 1646-1657 DOI:10.1111/j.1095-8649.2001.tb02319.x
WANG M, LIU H, HUANG H, et al. Identifying fish products in Shenzhen through DNA barcoding. Food Science, 2015, 36(20): 247-251 [王敏, 刘荭, 黄海, 等. DNA条形码技术在深圳鱼肉制品鉴定中的应用. 食品科学, 2015, 36(20): 247-251 DOI:10.7506/spkx1002-6630-201520048]
WILSON A C, CANN R L, CARR S M, et al. Mitochondrial DNA and two perspectives on evolutionary genetics. Biology Journal of Society, 2010, 26(4): 375-400
YU N, ZHENG C L, ZHANG Y P, et al. Molecular systematics of pikas (genus Ochotona) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 2000, 16(1): 85-95
YUAN J, ZHANG Q Z, LUO F. Mitochondrial DNA and its application to the molecular population genetics of fish. Ecological Science, 2008, 27(4): 272-276 [袁娟, 张其中, 罗芬. 鱼类线粒体DNA及其在分子群体遗传研究中的应用. 生态科学, 2008, 27(4): 272-276]
ZHAO K. Mitochondrial DNA (mtDNA) of fish and application in molecular phylogenetic. Journal of Qinghai University (Natural Science), 2006, 24(2): 49-53 [赵凯. 鱼类线粒体DNA(mtDNA)及其在分子系统学中的应用. 青海大学学报(自然科学版), 2006, 24(2): 49-53]
ZHENG D Y, GUO Y J, YANG T Y, et al. Genetic diversity analysis of Sillago japonica based on mitochondrial DNA ND2 gene. South China Fisheries Science, 2019, 15(5): 84-91 [郑德育, 郭易佳, 杨天燕, 等. 基于线粒体ND2基因序列的少鳞鱚遗传多样性研究. 南方水产科学, 2019, 15(5): 84-91]
ZHENG W J, ZHU S H, ZHOU J X, et al. Molecular phylogenetic relationship of Carangidae based on partial sequence of mitochondrial 16S ribosomal RNA gene. Journal of Fisheries of China, 2008, 32(6): 847-854 [郑文娟, 朱世华, 邹记兴, 等. 基于16S rRNA部分序列探讨12种鲹科鱼类的分子系统进化关系. 水产学报, 2008, 32(6): 847-854]