渔业科学进展  2023, Vol. 44 Issue (1): 90-102  DOI: 10.19663/j.issn2095-9869.20210913003
0

引用本文 

许聪, 王际英, 郝甜甜, 李宝山, 黄炳山, 孙永智, 王晓艳, 王成强, 曹体宏. 发酵鱼溶浆替代鱼粉对大菱鲆幼鱼生长、抗氧化能力、蛋白质代谢及相关基因表达的影响[J]. 渔业科学进展, 2023, 44(1): 90-102. DOI: 10.19663/j.issn2095-9869.20210913003.
XU Cong, WANG Jiying, HAO Tiantian, LI Baoshan, HUANG Bingshan, SUN Yongzhi, WANG Xiaoyan, WANG Chengqiang, CAO Tihong. The Effect of Replacing Fish Meal with Fermented Stickwater on Growth, Antioxidant Capacity, Protein Metabolism and Related Gene Expression of Juvenile Turbot (Scophthalmus maximus L.)[J]. Progress in Fishery Sciences, 2023, 44(1): 90-102. DOI: 10.19663/j.issn2095-9869.20210913003.

基金项目

烟台市科技计划(2018ZHGY066; 2020XDRH091)资助

作者简介

许聪,E-mail: 369838637@qq.com

通讯作者

王际英,研究员,E-mail: ytwjy@126.com

文章历史

收稿日期:2021-09-13
收修改稿日期:2021-10-14
发酵鱼溶浆替代鱼粉对大菱鲆幼鱼生长、抗氧化能力、蛋白质代谢及相关基因表达的影响
许聪 1,2, 王际英 2, 郝甜甜 2, 李宝山 2, 黄炳山 2, 孙永智 2, 王晓艳 2, 王成强 2, 曹体宏 2     
1. 上海海洋大学 水产科学国家级实验教学示范中心 农业农村部鱼类营养与环境生态研究中心 水产动物遗传育种中心上海市协同创新中心 上海 201306;
2. 山东省海洋资源与环境研究院 山东省海洋生态修复重点实验室 山东 烟台 264006
摘要:为研究发酵鱼溶浆(FSW)替代鱼粉对大菱鲆(Scophthalmus maximus)幼鱼生长、抗氧化能力、蛋白质代谢及相关基因表达的影响,实验设正对照组(50%鱼粉),负对照组(30%鱼粉),在负对照组基础上分别以2%、4%、6%、8%的FSW替代鱼粉,分别命名为FSW2、FSW4、FSW6和FSW8组,饲喂初始体重为(30.00±0.03) g的大菱鲆幼鱼8周。结果显示,各组间幼鱼成活率均无显著差异(P > 0.05),FSW2~FSW8组幼鱼增重率、蛋白质效率与正对照组无显著差异(P > 0.05),但均显著高于负对照组(P < 0.05)。FSW2~FSW8组全鱼和背肌粗蛋白含量与正对照组无显著差异,但显著高于负对照组(P < 0.05);负对照组全鱼和背肌粗脂肪含量显著高于其他组(P < 0.05)。负对照组血清谷丙转氨酶(ALT)、谷草转氨酶(AST)和甘油三脂(TG)均显著高于正对照组(P < 0.05),负对照组、FSW2 ~FSW8组血清中总胆固醇(T-CHO)、ALT和AST呈先降低后升高的趋势,肝脏中ALT和AST含量则呈相反趋势。负对照组血清中高密度脂蛋白胆固醇(HDL-C)含量显著低于正对照组(P < 0.05)。负对照组肝脏中蛋白激酶A(PKA)、蛋白激酶C(PKC)和乳酸脱氢酶(LDH)活性均显著低于正对照组(P < 0.05)。与正对照组相比,负对照组肠道中氨基酸转运载体b0at1和小肽转运载体pept1表达量上调,氨基酸转运载体cat1pat1表达量差异不显著,FSW2~FSW8组b0at1cat1pat1pept1表达量均显著高于正对照组和负对照组(P < 0.05)。综上所述,饲料中添加FSW显著改善了实验鱼对饲料蛋白质的利用率,缓解了植物蛋白造成的生长性能下降。以增重率为评价指标,添加FSW可使饲料中鱼粉的使用量降低至22%,且鱼体在生长和体组成上与50%鱼粉组无显著差异。
关键词发酵鱼溶浆    鱼粉    替代    代谢    
The Effect of Replacing Fish Meal with Fermented Stickwater on Growth, Antioxidant Capacity, Protein Metabolism and Related Gene Expression of Juvenile Turbot (Scophthalmus maximus L.)
XU Cong 1,2, WANG Jiying 2, HAO Tiantian 2, LI Baoshan 2, HUANG Bingshan 2, SUN Yongzhi 2, WANG Xiaoyan 2, WANG Chengqiang 2, CAO Tihong 2     
1. National Demonstration Center for Experimental Fisheries Science Education, Centre for Research on Environmental Ecology and Fish Nutrion of the Ministry of Agriculture and Rural Affairs, Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China;
2. Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, Shandong 264006, China
Abstract: With the rapid development of the aquaculture industry and the shortage of global fishery resources, the contradiction between supply and demand of fish meal has become increasingly significant. Therefore, finding new substitutes for fish meals and reasonably reducing the amount of fish meal in formula feed has become an important research topic in aquatic feed. Stickwater is a byproduct of fishmeal processing. It contains many water-soluble molecules, such as small molecular peptides, biogenic amines, taurine, and high unsaturated fatty acids. These components are regarded as particular nutrients or bioactive substances in the fish meal. Studies have shown that stickwater can replace part of fish meal in recent years and achieve good results in fish and other aquatic animals. The fermented feed has excellent advantages for fish meal replacement. Studies have shown that after fermentation, the contents of anti-nutritional factors in plant raw materials are decreased.In contrast, the contents of small peptides and free amino acids are increased, the nutrient composition is changed, and the intermediate metabolites of microorganisms are obtained, which can further improve the replacement level of fish meal. There are few studies on the fermentation of feed materials, such as fish meal and stickwater, which do not contain anti-nutritional factors. Our laboratory's preliminary study found that stickwater combined with other animal and plant proteins could replace 40% of fish meal in the feed. This experiment fermented stickwater first, then replace fish meal in high plant protein formula feed with fermented stickwater (FSW), aims to further increase the amount of fish meal replacement, reduce the negative effect of the plant protein source on the turbot, for FSW application in feeds for turbot provide a theoretical reference.The stickwater in the experiment was a brown viscous liquid, with a water content of 48.73%, dry matter crude protein content of 64.08%, and crude fat content of 8.91%. The strains used were Bacillus subtilis and Lactobacillus. The fermentation conditions were as follows: Temperature of 37℃, the addition of 1% sugar as auxiliary material, Bacillus subtilis and Lactobacillus (1:1) added to 1% of the total mass of the stickwater, and the fermentation period was five days. After fermentation, the content of acid-soluble protein decreased significantly. Still, the crude protein, crude fat, and free amino acids showed no significant changes. It was then used for turbot culture.Healthy juvenile turbot with an average bodyweight of (30.00±0.03) g were randomly divided into six groups with three replicates and 30 fish per replicate. The trial lasted for eight weeks. Six diets consisted of a positive control diet with 50% fish meal (positive control group), a harmful control diet with 30% fish meal (negative control group), and experimental diets formulated by FSW were used to replace 2%, 4%, 6%, and 8% of the fish meal with the harmful control diet, respectively (FSW2, FSW4, FSW6, and FSW8). The results showed: There were no significant differences in the survival rate of juvenile turbot among all groups (P > 0.05). There were no significant differences in juvenile turbot's weight gain rate and protein efficiency ratio in the FSW2~FSW8 group compared with that of the positive control group. Still, they were all higher than those in the negative control group. The crude protein content of whole fish and dorsal muscle in the FSW2~FSW8 group was not significantly different from that in the positive control group. Still, it was significantly higher than that in the negative control group. The highest crude lipid content of whole fish and dorsal muscle was found in the negative control group (P < 0.05). Serum ALT, AST, and TG levels in the negative control group were significantly higher than those in the positive control group; the negative control group and FSW2~FSW8 group showed first decreasing and subsequent increasing serum ALT, AST, and T-CHO levels. At the same time, the ALT and AST levels in the liver showed an opposite trend. The serum HDL-C content in the negative control group was significantly lower than that in the positive control group. The activities of PKA, KPC, and LDH in the liver were significantly lower in the negative control group than in the positive control group (P < 0.05). Compared with the positive control group, the expression of b0at1 and pept1 in the intestine was upregulated in the negative control group. In contrast, the expression of cat1 and pat1 was not significantly different. The expression levels of boat1, cat1, pat1, and pept1 in the FSW2~FSW8 group were significantly higher than those in the positive control and negative control groups (P < 0.05).The results showed that FSW was an excellent substitute for fish meals, and the added amount could be up to 8% in the feed. In the feed with high plant protein, the fish meal can be replaced by FSW to reduce the amount of fish meal further, reduce the metabolic abnormality caused by plant proteins, and improve juvenile turbot's antioxidant capacity. Under these experimental conditions, the group supplemented with FSW achieved the same growth effect as the positive control group. In conclusion, the fish meal content of juvenile turbot feed can be reduced to 22% by adding FSW without adverse effects on the growth of juvenile turbot. This provides a theoretical reference for the fermentation process of SW and subsequent application of FSW in seawater fish.
Key words: Fermented stickwater    Fish meal    Replacement    Metabolism    

鱼粉是水产养殖业的重要饲料原料之一,具有蛋白质含量高、氨基酸平衡、易被水产动物消化吸收等优点(周歧存等, 2005)。随着水产养殖业的快速发展及全球渔业资源的匮乏,鱼粉供求矛盾日益显著,因此,寻找新型鱼粉替代物并合理降低配合饲料中鱼粉使用量,成为水产饲料的重要研究课题(王裕玉等, 2019)。在肉食性鱼类的研究中,通常能将鱼粉含量降低至40%左右。研究表明,使用菌酶协同发酵豆粕可将饲料中的鱼粉含量降至40%且不会对大口黑鲈(Micropterus salmonides)的生长和饲料利用产生不利影响(陈晓瑛等, 2021),使用复合动植物蛋白饲料可将鱼粉使用量降低至30% (谢帝芝等, 2021)。然而,随着饲料中鱼粉比例的继续降低,会出现饲料适口性下降、鱼体生长缓慢等情况。

鱼溶浆(stickwater, SW)是鱼粉加工的副产品,含有大量水溶性小分子物质,如小分子多肽、牛磺酸、高不饱和脂肪酸等,其中,牛磺酸含量是鱼粉的数倍,这些成分被视为鱼粉中的特殊营养物质或生物活性物质。本实验室前期研究发现,鱼溶浆复合其他动植物蛋白可替代饲料中40%的鱼粉(郝甜甜等, 2019)。Najafian等(2018)发现,将新鲜鱼发酵会产生多种抗氧化活性肽,可起到调节免疫系统(Adesulu-Dahunsi et al, 2020)、预防多种疾病的功效。陈晓瑛等(2021)邓雪娟等(2019)研究也发现,一些原料经过发酵处理,其营养组成发生改变并获得微生物中间代谢产物,可进一步提高饲料鱼粉的替代水平。然而,发酵鱼溶浆(fermented stickwater, FSW)作为新型蛋白源,其在海水鱼饲料中的应用尚未见报道。鉴于此,本实验以大菱鲆(Scophthalmus maximus)幼鱼为研究对象,研究FSW替代鱼粉对其生长、抗氧化能力、蛋白质代谢及相关基因表达的影响,探讨FSW作为新型蛋白源替代鱼粉的可行性,以期为FSW在大菱鲆配合饲料中的应用提供参考。

1 材料与方法 1.1 实验材料

实验鱼溶浆(SW)购自荣成海圣饲料有限公司,水分含量为48.73%,干物质粗蛋白含量为64.08%,粗脂肪含量为8.91%。菌种选用枯草芽孢杆菌(Bacillus subtilis)和乳酸杆菌(Lactobacillus) (购自山东中科嘉亿生物工程有限公司)。发酵条件:温度37℃,添加1%绵白糖为辅料,枯草芽孢杆菌和乳酸杆菌(1∶1),添加量各占鱼溶浆总质量的0.5%,发酵周期为5 d。发酵前后营养成分见表 1,SW、FSW和鱼粉(FM)的氨基酸组成见表 2

表 1 鱼溶浆、发酵鱼溶浆营养成分表 Tab.1 Chemical compositions of SW and FSW
表 2 鱼粉、鱼溶浆和发酵鱼溶浆氨基酸组成/% Tab.2 Amino acid profiles of the FM, SW, and FSW/%
1.2 实验饲料

以鱼粉和大豆浓缩蛋白为主要蛋白源,鱼油和豆油为脂肪源,设计鱼粉含量为50%的正对照组,鱼粉含量为30%的负对照组,在负对照组基础上分别以2% (FSW2)、4% (FSW4)、6% (FSW6)、8% (FSW8)的FSW (干物质)替代鱼粉,以玉米蛋白粉和豆油分别调节蛋白和脂肪平衡,配制成6种实验饲料,所有原料粉碎后过80目筛,逐级混匀后加入鱼油、豆油和蒸馏水再次混匀,经螺旋挤压机加工成直径为4 mm和5 mm 2种规格的饲料颗粒,所有饲料在60℃烘干后置于−20℃冰箱保存待用。实验配方和营养组成见表 3

表 3 基础饲料配方及营养成分(%风干物质基础) Tab.3 Formulation and proximate analysis of the experimental diets (% air dry weight basis)
1.3 饲养管理

养殖实验在山东省海洋资源与环境研究院循环水养殖系统中进行。实验用大菱鲆购自山东科合海洋高技术有限公司,驯养时间为2周,驯养时投喂大菱鲆商品料。驯养结束后挑选出450尾规格整齐、体质健壮的幼鱼[(30.00±0.03) g]分成18个桶,每桶25尾鱼。每种饲料随机投喂3桶鱼,养殖周期为56 d。每天投喂2次(08:00和16:00),初始投喂量占总体质量的1.0%左右,并根据摄食情况及时调整投喂量。投喂30 min后排残饵并记录残饵数量。驯养及实验期间确保水温为15~17℃,氨氮和亚硝酸含量 < 0.1 mg/L,pH 7.6~8.2,溶氧含量 > 5.0 mg/L,盐度28~32。

1.4 样品采集

养殖实验结束后,禁食24 h后进行采样。称重每桶鱼的总重,记录存活鱼尾数,计算增重率和成活率;每桶随机取12尾鱼,其中,3尾作为全鱼样品,6尾测体重、体长后尾静脉采血,血样于4℃静止4 h后,4000 r/min离心10 min,取血清保存于−70℃冰箱待测;采血后分离内脏团、肝脏并称重,计算脏体比、肝体比;取背部肌肉,用于常规成分分析;剩余3尾无菌条件下取其前肠,立即放入无RNA酶管中,液氮速冻后转移至−70℃超低温冰箱保存。

1.5 检测指标和分析方法 1.5.1 生长指标
$ 存活率(\text{SR, %})=100×终末鱼尾数/初始鱼尾数 $
$ 增重率(\text{WGR, %})=100×(鱼体末重–鱼体初重)/鱼体初重 $
$ 饲料系数(\text{FCR})=总摄食量/(鱼末体重–鱼初体重) $ (FCR)
$ 蛋白质效率(\text{PER, %})=100×(鱼体末重–鱼体初重)/蛋白质总摄入量 $
$ 脏体比(\text{VSI, %})=100×内脏团重/鱼体末重 $
$ 肝体比(\text{HSI, %})=100×肝脏重/鱼体末重 $
$ 肥满度(\text{CF})=100×鱼体末重/体长^{3} $
1.5.2 常规成分测定

实验饲料及实验鱼水分、粗蛋白、粗脂肪和粗灰分分别采用105℃恒重法(GB/T6435-2014)、凯氏定氮法(GB/T6432-2018)、索氏抽提法(GB/T6433-2006)和550℃失重法(GB/T 6438-2007)测定。

1.5.3 血清和肝脏生化指标测定

丙二醛(MDA)、溶菌酶(LZM)、超氧化物歧化酶(SOD)、碱性磷酸酶(AKP)、谷草转氨酶(AST)、谷丙转氨酶(ALT)、乳酸脱氢酶(LDH)、总胆固醇(T-CHO)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)均采用南京建成生物工程的试剂盒进行测定,蛋白激酶A (PKA)、蛋白激酶C (PKC)采用ELISA试剂盒测定,组织蛋白含量采用考马斯亮蓝法测定,酶活性单位参照试剂盒说明书。

1.5.4 肠道氨基酸转运载体和小肽转运载体表达量的测定

采用Trizol法提取肝脏总RNA,用微量紫外分光光度计检测总RNA浓度后,按照Prime Script反转录试剂盒(TaKaRa)进行反转录(表 4)。反转录的cDNA置于–70℃保存,用于检测氨基酸转运载体b0at1cat1pat1和小肽转运载体pept1的表达量。以β-actin为内参基因,实时荧光定量结果采用2−ΔΔCt法进行计算。

表 4 荧光定量PCR所使用的引物序列 Tab.4 Primer pair sequences for real-time PCR in the present study
1.6 数据分析

采用SPSS 18.0进行单因素方差分析(one-way ANOVA),差异显著时采用Duncan氏法多重检验,显著水平为0.05。统计数据以平均值±标准差(mean±SD, n=3)的形式表示。

2 结果 2.1 发酵鱼溶浆替代鱼粉对大菱鲆生长、饲料利用和形体指标的影响

FSW替代鱼粉对大菱鲆生长、饲料利用和形体指标的影响见表 5。FSW替代鱼粉对大菱鲆幼鱼的成活率和肥满度无显著影响(P > 0.05)。幼鱼终末体重、增重率和蛋白质效率均在负对照组达到最低值,负对照组饲料系数、脏体比和肝体比显著高于其他各组(P < 0.05)。FSW2~FSW8组幼鱼终末体重、增重率、饲料系数、蛋白质效率、肝体比、脏体比均与正对照组无显著差异(P > 0.05)。

表 5 饲料发酵鱼溶浆替代鱼粉对大菱鲆生长性能、饲料利用和形体指标的影响 Tab.5 Effects of dietary FSW on the growth, feed utilization and figure index of turbot
2.2 发酵鱼溶浆替代鱼粉对大菱鲆幼鱼体成分的影响

表 6所示,各组间全鱼和背肌水分含量均无显著差异(P > 0.05)。负对照组全鱼及背肌粗蛋白含量显著低于其他各组(P < 0.05),粗脂肪含量则显著高于其他各组(P < 0.05)。正对照组全鱼和背肌粗灰分含量显著高于其他各组(P < 0.05)。

表 6 发酵鱼溶浆替代鱼粉对大菱鲆体组成的影响(%干物质) Tab.6 Effects of dietary FSW on proximate composition of turbot (% dry matter)
2.3 发酵鱼溶浆替代鱼粉对大菱鲆抗氧化能力的影响

表 7所示,血清中MDA含量随FSW替代量的增加呈先降低后升高的趋势,SOD呈相反趋势。负对照组AKP活性显著低于其他各组(P < 0.05)。LZM活性呈先升高后降低的趋势,FSW4~FSW8组显著高于负对照组(P < 0.05),与正对照组无显著差异(P > 0.05)。

表 7 发酵鱼溶浆替代鱼粉对大菱鲆抗氧化能力的影响 Tab.7 Effects of dietary FSW on the antioxidant capacity of turbot
2.4 发酵鱼溶浆替代鱼粉对大菱鲆代谢相关酶活性的影响

FSW替代鱼粉对大菱鲆幼鱼代谢相关酶活性的影响见表 8。血清ALT、AST活性随着FSW替代鱼粉水平的增加呈先上升后下降的趋势,肝脏中转氨酶呈相反的变化趋势。负对照组血清中TG含量显著高于正对照组(P < 0.05),HDL-C含量显著低于正对照组(P < 0.05)。负对照组和FSW2~FSW8组血清T-CHO含量呈先降低后升高的趋势,最小值和最大值分别出现在FSW4和FSW8组。肝脏中LDH活性呈先下降后上升的趋势,FSW6组显著高于负对照组,但显著低于正对照组(P < 0.05);PKC和PKA活性则分别在负对照组和FSW8组达到最低值,显著低于其他各组(P < 0.05)。

表 8 发酵鱼溶浆替代鱼粉对大菱鲆代谢相关酶活力的影响 Tab.8 Effects of dietary FSW on the activity of metabolism enzyme of turbot
2.5 发酵鱼溶浆替代鱼粉对大菱鲆前肠氨基酸转运载体和小肽转运载体表达量的影响

图 1所示,FSW2~FSW8组氨基酸转运载体b0at1 mRNA、cat1 mRNA、pat1 mRNA和小肽转运载体pept1 mRNA相对表达量均显著高于正对照组和负对照组(P < 0.05)。负对照组b0at1 mRNA相对表达量显著高于正对照组(P < 0.05)。正对照组和负对照组cat1 mRNA、pat1 mRNA和pept1 mRNA相对表达量无显著差异(P > 0.05)。

图 1 发酵鱼溶浆替代鱼粉对大菱鲆幼鱼氨基酸转运载体和小肽转运载体的影响 Fig.1 Effects of dietary FSW on amino acid transporters and small peptide transporters of turbot 柱上不同字母表示组间差异显著(P < 0.05)。 Different letters on each column show significant difference (P < 0.05).
3 讨论 3.1 发酵鱼溶浆替代鱼粉对大菱鲆幼鱼生长性能的影响

本研究表明,鱼粉水平下降到30% (负对照组),幼鱼增重率和特定生长率显著降低,说明植物蛋白替代鱼粉会造成大菱鲆幼鱼生长性能下降,与对大口黑鲈的研究结果一致(钟国防等, 2021)。而使用FSW替代负对照组饲料中8%鱼粉,幼鱼增重率、饲料系数与正对照组无显著差异。有研究表明,饲料原料发酵后,其中小肽、游离氨基酸和酸溶蛋白的含量通常会显著升高(李旺等, 2020),但在本研究中发现,发酵前后鱼溶浆中的游离氨基酸含量并未发生显著变化,酸溶蛋白含量反而降低,说明在该发酵条件下,发酵菌优先利用小肽而非游离氨基酸作为其氮源(Ling et al, 1995; Wallace, 1996)。FSW替代2%及以上鱼粉时,增重率和饲料系数与正对照组无显著差异,表明在本研究条件下,饲料中添加FSW替代鱼粉能缓解高植物蛋白对大菱鲆幼鱼生长产生的负面效应,其作用机理可能为:鱼溶浆经过发酵后保留了特有的牛磺酸、小肽等促生长的功能活性成分(石勇等, 2019; 敬庭森等, 2021);FSW中含有大量的菌体蛋白以及益生菌代谢产物,如芽孢杆菌发酵可产生诱食物质乙偶姻和蛋白酶及抗生素等有益物质(毛林静, 2020),对水产动物具有抗病毒和促消化等作用;FSW中存在一些活菌,能通过影响肠道菌群的结构而促进大菱鲆的生长(Zhang et al, 2021)。

3.2 发酵鱼溶浆替代鱼粉对大菱鲆幼鱼抗氧化能力的影响

MDA反映了鱼体内脂质过氧化的程度,间接反映了细胞损伤的程度。在本研究中,负对照组血清中的MDA含量显著高于其他各组,而FSW替代鱼粉能降低血清中的MDA含量,这与王晓艳等(2021)对珍珠龙胆石斑鱼(Epinephelus fuscoguttatus♀×E. lanceolatus♂)的研究结果一致。SOD能催化生物体内的超氧阴离子自由基发生歧化反应,进而生成过氧化氢和氧,在氧化还原平衡中起到非常关键的作用。本研究结果显示,FSW替代4%、6%、8%鱼粉,大菱鲆幼鱼血清中的SOD与正对照组无显著差异。表明FSW替代鱼粉能显著提高大菱鲆幼鱼的抗氧化能力,这可能与发酵菌的中间代谢产物有关。王迪等(2021)研究表明,菌种发酵的部分中间代谢产物与自由基清除能力具有显著的正相关性。

AKP是磷酸酶的一种,在动物代谢过程中起重要的调控作用,血清中AKP主要来源于肝脏和骨骼,数值偏低常表明肝胆系统的损伤(牟海津等, 1999)。LZM是一种能水解致病菌细胞壁黏多糖的碱性酶,具有抗菌、消炎、抗病毒等作用(陈艳等, 2009)。负对照组血清AKP、LZM活性显著低于其他各组,说明植物蛋白替代鱼粉会对幼鱼肝脏造成损伤,这与宋文新(2009)对黑鲷的研究相一致,同时也说明FSW替代鱼粉能缓解植物蛋白造成的损伤,可能与其中的小肽有关。小肽一般指2~3个氨基酸的寡肽,可被机体完整吸收利用,在氨基酸消化、吸收和代谢中起到重要的作用(王恬等, 2003)。在星斑川鲽(Platichthys stellatus)研究中发现,在饲料中添加适宜量的小肽能促进鱼体生长,提升免疫和抗氧化能力(姜柯君, 2013; 王际英等, 2014)。综上,高植物蛋白饲料中,FSW替代鱼粉可提高大菱鲆幼鱼的抗氧化能力。

3.3 发酵鱼溶浆替代鱼粉对大菱鲆幼鱼代谢和体组成的影响

正对照组大菱鲆幼鱼的全鱼和背肌灰分显著高于其他各组,这是因为正对照组相比于其他组含有更多的鱼粉,而鱼粉中的高含量的钙和磷会造成全鱼和背肌灰分的增加(刘颖, 2018)。负对照组的全鱼和背肌脂肪含量均高于其他各组,血清中TG含量也显著高于其他组,表明高植物蛋白饲料会导致鱼体脂肪含量升高(刘兴旺等, 2018),这与对牙鲆(Paralichthys olivaceus)的研究结果一致(邓君明, 2006; 刘襄河等, 2010)。T-CHO的代谢平衡对鱼体健康具有重要的意义,血清中的T-CHO含量反映了脂肪的代谢状况(吴智鸿等, 2005),而HDL-C是血清T-CHO的主要运输者,可以以促进T-CHO代谢的方式影响脂质代谢(史连义等, 2009),负对照组与正对照组血清T-CHO含量无显著差异,但随着FSW含量的增加,血清中的T-CHO含量呈先降低后上升的趋势,而血清中的HDL-C随着FSW的替代水平的增加呈先升高后降低的趋势,FSW6组与正对照组血清中的HDL-C无显著差异。说明FSW相较于鱼粉更能影响大菱鲆幼鱼的脂肪代谢,与草鱼(Ctenopharyngodoni dellus)和黄颡鱼(Pelteobagrus fulvidraco)的研究结果一致(吴代武等, 2015; 高敏敏等, 2019)。负对照组和FSW2~FSW8组全鱼及背肌粗脂肪含量呈先降低后平稳的趋势,表明FSW替代饲料中的鱼粉会降低幼鱼全鱼和背肌脂肪的沉积,这与黄颡鱼(高敏敏等, 2019)的研究结果一致。刘兴旺等(2018)研究表明,高植物蛋白饲料中添加牛磺酸在促进大菱鲆幼鱼的生长的同时,会降低其全鱼的脂肪含量,表明FSW2~ FSW8组脂肪沉积的变化可能与FSW中的牛磺酸含量较高有关。

负对照组饲料中的高植物蛋白导致其全鱼和背肌粗蛋白含量显著低于正对照组(王晓艳等, 2021; 杨英豪, 2014)。本研究发现,添加FSW能增加其粗蛋白的沉积,可从相关酶活性进行解释。转氨酶是动物蛋白质代谢的关键酶,主要存在于机体的肝细胞内,通过转氨基和脱氨基作用进行蛋白质代谢与转化,肝脏转氨酶水平代表了蛋白质代谢的强弱(Berge et al, 1998),当肝细胞发生炎症、中毒等情况时,受损的肝细胞会将大量转氨酶释放进血液中,引起血清转氨酶的升高(Kouba et al, 2014)。随着饲料的变化,血清中AST和ALT酶活性呈先降低后升高的趋势,在负对照组达到最高值,在肝脏中则呈相反趋势,说明高植物蛋白对肝细胞造成了损伤,导致蛋白质代谢能力的下降及转氨酶的释放,这与大口黑鲈的研究结果相一致(张改改等, 2019)。而在饲料中添加不同水平的FSW替代鱼粉均能缓解高植物蛋白对肝脏的损伤,其中FSW6组效果最好。

PKA是依赖于cAMP蛋白激酶,在细胞中具有影响糖原、糖和脂质的代谢等多种功能。在本研究中,高植物蛋白替代鱼粉导致PKA的活性降低,FSW4和FSW6组PKA活性稍有升高,但与其他组无显著差异,说明适宜量FSW能在一定程度上提高大菱鲆幼鱼的PKA活性。PKC是G蛋白偶联受体系统中的效应物,而G蛋白偶联受体可识别各种配体和刺激物,参与基因表达、细胞分化及糖代谢的调控(曹铮, 2020)。负对照组PKC活性显著低于其他各组,说明高植物蛋白饲料能降低大菱鲆幼鱼肝脏的PKC活性,而FSW替代鱼粉则能降低高植物蛋白带来的负面影响。LDH是糖代谢的关键酶,它的作用是为机体的代谢提供能量,其活性同时反映了氨基酸的代谢强度(Jiang et al, 2014)。正对照组大菱鲆幼鱼肝脏中LDH活性显著高于其他各组,对LDH活性而言,本研究条件下低鱼粉饲料不能达到高鱼粉饲料相同的效果,但LDH的活性随着FSW替代量的增加而升高。综上,在本研究条件下,不同梯度FSW替代鱼粉均能一定程度提高幼鱼肝脏代谢水平。

3.4 发酵鱼溶浆替代鱼粉对大菱鲆幼鱼小肽转运载体及氨基酸转运载体表达的影响

氨基酸转运载体是介导氨基酸跨膜转运的膜蛋白,根据转运底物的不同,可以分为酸性氨基酸转运系统、中性氨基酸转运系统、碱性氨基酸转运系统、β氨基酸转运系统和亚氨基转运载体(何庆华等, 2007)。本实验主要研究了转运中性氨基酸的b0at1、转运碱性氨基酸的cat1和转运亚氨基和甘氨酸的pat1。饲料高植物蛋白替代鱼粉导致了大菱鲆幼鱼前肠b0at1基因表达量上调,但对cat1pat1的表达量无显著影响。许丹丹(2014)的研究也表明,在植物蛋白替代鱼粉的实验中,肠道中氨基酸转运载体b0at1比其他氨基酸转运载体的表达更敏感。与负对照组相比,FSW2~FSW8组幼鱼前肠中boat1cat1pat1的表达量均显著升高,与FSW中大量游离氨基酸有关,游离氨基酸能刺激氨基酸转运载体的基因表达量升高(Garcia-Villalobos et al, 2012; Morales et al, 2013)。Liao等(2009)研究表明,增加肠腔微生物蛋白产量,会降低肠细胞膜对碱性氨基酸的转运能力。在本研究条件下,FSW是否能通过影响大菱鲆幼鱼的肠道菌群结构及菌群微生物蛋白产量而对小肽转运载体的表达水平产生影响还有待进一步研究。

pept1是肠肽转运载体,在肠胃中表达量较高,其功能为吸收蛋白质降解的小肽及多肽类似物(Daniel et al, 2004)。pept1的表达水平通常受饲料营养成分的影响(李本相, 2019)。在瓦氏黄颡鱼(Pelteobagrus vachelli)幼鱼的实验中,与鱼粉组和水解鱼蛋白组相比,大豆浓缩蛋白组pept1的表达水平更高(杨英豪, 2014),说明植物蛋白替代鱼粉能提高pept1的表达水平,这与本研究结果相一致。与负对照组相比,FSW2~FSW8组前肠pept1的表达水平再次升高,可能的原因有2点:一方面FSW替代鱼粉提高了饲料中的游离氨基酸及小肽含量,而游离氨基酸和小肽含量的增加可显著提高pept1 mRNA的表达水平(Ostaszewska et al, 2010);另一方面与鱼粉相比,FSW含有更多非蛋白质氮,随着FSW替代水平的增加,饲料可利用氨基酸总量降低,氨基酸水平的降低也会提高pept1 mRNA的表达水平(Terova et al, 2009; 许丹丹, 2014)。

4 小结

以增重率为判断依据,在30%鱼粉水平下,在饲料中添加FSW可有效将鱼粉含量降低至22%,并且可缓解高植物蛋白导致的生长性能下降。

参考文献
ADESULU-DAHUNSI A T, DAHUNSI S O, OLAYANJU A. Synergistic microbial interactions between lactic acid bacteria and yeasts during production of Nigerian indigenous fermented foods and beverages. Food Control, 2020, 110: 106963 DOI:10.1016/j.foodcont.2019.106963
BERGE G E, SVEIER H, LIED E. Nutrition of Atlantic salmon (Salmo salar): The requirement and metabolic effect of lysine. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 1998, 120(3): 477-485 DOI:10.1016/S1095-6433(98)10049-1
CAO Z. Elucidation of mechanism(s) involved in the G protein-coupled receptor-mediated activation of protein kinase C and its downstream signaling. Doctoral Dissertation of Zhejiang University, 2020 [曹铮. G蛋白偶联受体介导的蛋白激酶C激活及其下游信号通路机制研究. 浙江大学博士研究生学位论文, 2020]
CHEN X Y, CHEN S J, HUANG W, et al. Effects of fishmeal replacement by fermented soybean meal with bacteria and enzyme on growth performance, serum biochemical, immune and antioxidant indexes and hepatic histology of largemouth bass (Micropterus salmonides). Chinese Journal of Animal Nutrition, 2021, 33(5): 2848-2863 [陈晓瑛, 陈绍坚, 黄文, 等. 菌酶协同发酵豆粕替代鱼粉对大口黑鲈生长性能、血清生化、免疫和抗氧化指标及肝脏组织形态的影响. 动物营养学报, 2021, 33(5): 2848-2863]
CHEN Y, JIANG M F, YE Y H, et al. Advanced oin the study of lysozyme. Journal of Biology, 2009, 26(2): 64-66 [陈艳, 江明锋, 叶煜辉, 等. 溶菌酶的研究进展. 生物学杂志, 2009, 26(2): 64-66]
DANIEL H, KOTTRA G. The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. European Journal of Physiology, 2004, 447(5): 610-618 DOI:10.1007/s00424-003-1101-4
DENG J M. Effects of animal and plant protern sources on feed intake, growth and protern and lipid metabolism of Japanese flounder, Paralichthys olivaceus. Doctoral Dissertation of Ocean University of China, 2006 [邓君明. 动植物蛋白源对牙鲆摄食、生长和蛋白质及脂肪代谢的影响. 中国海洋大学博士研究生学业论文, 2006]
DENG X J, YU J Y, LIU J J, et al. Research and application progress of biological fermented feed in China. Chinese Journal of Animal Nutrition, 2019, 31(5): 1981-1989 [邓雪娟, 于继英, 刘晶晶, 等. 我国生物发酵饲料研究与应用进展. 动物营养学报, 2019, 31(5): 1981-1989]
GAO M M, WU D W, ZHOU L Y, et al. Effects of stickwater on bile acid and lipid metabolism of yellow catfish (Pelteobagrus fulvidraco). Acta Hydrobiologica Sinica, 2019, 43(4): 731-738 [高敏敏, 吴代武, 周露阳, 等. 饲料鱼溶浆影响黄颡鱼的胆汁酸代谢及脂肪沉积. 水生生物学报, 2019, 43(4): 731-738]
GARCIA-VILLALOBOS H, MORALES-TREJO A, ARAIZA- PINA B A, et al. Effects of dietary protein and amino acid levels on the expression of selected cationic amino acid transporters and serum amino acid concentration in growing pigs. Archiv für Tierernaehrung, 2012, 66(4): 257-270
HAO T T, WANG J Y, LI B S, et al. Effects of replacement of fish meal with an animal andplant protein mixture on growth, body composition, and physiological and biological indices of juvenile turbot (Scophthalmus maximus L.). Progress in Fishery Sciences, 2019, 40(4): 11-20 [郝甜甜, 王际英, 李宝山, 等. 复合动植物蛋白部分替代鱼粉对大菱鲆幼鱼生长、体成分及生理生化指标的影响. 渔业科学进展, 2019, 40(4): 11-20]
HE Q H, KONG X F, WU Y N, et al. Advances in amino acid transporters. Biotic Resources, 2007(2): 42-45 [何庆华, 孔祥峰, 吴永宁, 等. 氨基酸转运载体研究进展. 生物资源, 2007(2): 42-45]
JIANG K J. Effects of dietary small peptides levels on growth performance, muscle quality, physiological and biochemical indexes in juvenile starry flounder (Platichthys stellatus). Master's Thesis of Shanghai Ocean University, 2013 [姜柯君. 小肽对星斑川鲽(Platichthys stellatus)幼鱼生长、肌肉品质和生理生化指标的影响. 上海海洋大学硕士研究生学位论文, 2013]
JIANG M, HUANG F, ZHAO Z Y, et al. Dietary thiamin requirement of juvenile grass carp, Ctenopharyngodon idella. Journal of the World Aquaculture Society, 2014, 45(4): 461-468 DOI:10.1111/jwas.12132
JING T S, ZHOU M R, LI Z, et al. Effects of fish meal replacement with soy peptide protein on the growth performance, digestive enzymes, and antioxidant capacity of juvenile yellow catfish (Pelteobagrus fulvidraco). Progress in Fishery Sciences, 2021, 42(5): 149-157 [敬庭森, 周明瑞, 李哲, 等. 大豆小肽蛋白替代鱼粉对黄颡鱼幼鱼生长性能、消化酶活性和抗氧化功能的影响. 渔业科学进展, 2021, 42(5): 149-157]
KOUBA A, VELÍŠEK J, STARÁ A, et al. Supplementation with sodium selenite and selenium-enriched microalgae biomass show varying effects on blood enzymes activities, antioxidant response, and accumulation in common barbel (Barbus barbus). BioMed Research International,, 2014, 2014: 408270
LI B X. The effects of different peptide on the growth, muscle tissue structure, amino acid metabolism of turbot. Master's Thesis of Shanghai Ocean University, 2019 [李本相. 不同小肽对大菱鲆幼鱼生长性能、肌肉组织结构、氨基酸代谢的影响. 上海海洋大学硕士研究生学位论文, 2019]
LI W, HE W L, DING K, et al. Effect of different treatment methods on antigen protein andacid soluble protein in soybean meal. Journal of Northwest A & F University (Natural Science), 2020, 48(1): 25-32 [李旺, 何万领, 丁轲, 等. 不同处理方法对豆粕中抗原蛋白和酸溶蛋白的影响. 西北农林科技大学学报(自然科学版), 2020, 48(1): 25-32]
LIAO S F, VANZANT E S, HARMON D L, et al. Ruminal and abomasal starch hydrolysate infusions selectively decrease the expression of cationic amino acid transporter mRNA by small intestinal epithelia of forage-fed beef steers. Journal of Dairy Science, 2009, 92(3): 1124-1135 DOI:10.3168/jds.2008-1521
LING J R, ARMSTEAD I P. The in vitro uptake and metabolism of peptides and amino acids by five species of rumen bacteria. Journal of Applied Bacteriology, 1995, 78(2): 116-124 DOI:10.1111/j.1365-2672.1995.tb02831.x
LIU X H, YE J D, WANG Z J, et al. Partial replacement of fishmeal by soybean meal in diets for juvenile Japanese flounder (Paralichthys olivaceus). Journal of fisheries of China, 2010, 34(3): 450-458 [刘襄河, 叶继丹, 王子甲, 等. 饲料中豆粕替代鱼粉比例对牙鲆生长性能及生化指标的影响. 水产学报, 2010, 34(3): 450-458]
LIU X W, MAI K S, LIU FU Z G, et al. Interactive effect of dietary taurineand protein sourceson feed intake growth performance and body composition of turbot (Scophthalmus maximus). Periodical of Ocean University of China (Natural Science), 2018, 48(5): 25-31 [刘兴旺, 麦康森, 刘付志国, 等. 动植物蛋白源及牛磺酸对大菱鲆摄食、生长及体组成的影响. 中国海洋大学学报(自然科学版), 2018, 48(5): 25-31]
LIU Y. Effects of dietary phosphorus and calcium levels on growth, tissue deposition and digestive physiology of juvenile discus fish (Symphysodon haraldi). Doctoral Dissertation of Shanghai Ocean University, 2018 [刘颖. 饵料中不同钙磷水平对七彩神仙鱼(Symphysodon haraldi)幼鱼生长性能、钙磷沉积及消化生理的影响. 上海海洋大学博士研究生学位论文, 2018]
MAO L J. Study on the fermentation production and application of fish attractant acetoin. Master's Thesis of Shandong Agricultural University, 2020 [毛林静. 鱼类诱食剂乙偶姻的发酵生产与应用研究. 山东农业大学硕士研究生学位论文, 2020]
MORALES A, BARRERA M A, ARAIZA A B, et al. Effect of excess levels of lysine and leucine in wheat-based, amino acid-fortified diets on the mRNA expression of two selected cationic amino acid transporters in pigs. Journal of Animal Physiology and Animal Nutrition, 2013, 97(2): 263-270
MU H J, JIANG X L, LIU S Q, et al. Effects of immunopolysaccharide on the activities of acid phosphatase, alkaline phosphatase and superoxide dismutase in Chlamys farreri. Journal of Ocean University of Qingdao (Natural Science), 1999, 29(3): 463-468 [牟海津, 江晓路, 刘树青, 等. 免疫多糖对栉孔扇贝酸性磷酸酶、碱性磷酸酶和超氧化物歧化酶活性的影响. 青岛海洋大学学报(自然科学版), 1999, 29(3): 463-468]
NAJAFIAN L, BABJI A S. Fractionation and identification of novel antioxidant peptides from fermented fish (pekasam). Journal of Food Measurement and Characterization, 2018, 12(3): 2174-2183
OSTASZEWSKA T, KAMASZEWSKI M, GROCHOWSKI P, et al. The effect of peptide absorption on pept1 gene expression and digestive system hormones in rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2010, 155(1): 107-114
SHI L Y, JIANG L L. Transmembrane outward transport and regulation of cholesterol. Journal of Medical Postgraduates, 2009, 22(2): 198-200 [史连义, 姜玲玲. 胆固醇的跨膜外向转运及调控. 医学研究生学报, 2009, 22(2): 198-200]
SHI Y, HU Y, TIAN Q Q, et al. Effects of taurine supplementation on growth, immunity and resistance ability of juvenile black carp (Mylopharyngodon piceus) under different stocking densities. Chinese Journal of Animal Nutrition, 2019, 31(9): 4131-4143 [石勇, 胡毅, 田芊芊, 等. 饲料中添加牛磺酸对不同养殖密度下青鱼幼鱼生长、免疫及抗胁迫能力的影响. 动物营养学报, 2019, 31(9): 4131-4143]
SONG W X. Partial replacement of fish meal by fermented soybean meal in diets for juvenile black sea bream, Sparus macrocephalus. Master's Thesis of Zhejiang University, 2009 [宋文新. 黑鲷幼鱼饲料中发酵豆粕部分替代鱼粉的研究. 浙江大学硕士研究生学位论文, 2009]
TEROVA G, CORÀ S, VERRI T, et al. Impact of feed availability on pept1 mRNA expression levels in sea bass (Dicentrarchus labrax). Aquaculture, 2009, 294(3/4): 288-299
WALLACE R J. Ruminal microbial metabolism of peptides and amino acids. Journal of Nutrition, 1996, 126(Suppl 4): 1326-1334S
WANG D, WANG Y, ZHAGN Y L, et al. Components and antioxidant activityduring the fermentation process of kidney bean enzyme. Science and Technology of Food Industry, 2021, 42(18): 18-24 [王迪, 王颖, 张艳莉, 等. 芸豆酵素发酵过程中组分及抗氧化功能研究. 食品工业科技, 2021, 42(18): 18-24]
WANG J Y, JIANG K J, XIA B, et al. Effects of small dietary peptides on digestive enzyme activity, antioxidative capability, and biochemical composition in tissues of juvenile starry flounder Platichthys stellatus. Journal of Fishery Sciences of China, 2014, 21(6): 1154-1164 [王际英, 姜柯君, 夏斌, 等. 小肽对星斑川鲽幼鱼消化酶活性、抗氧化能力和生化组成的影响. 中国水产科学, 2014, 21(6): 1154-1164]
WANG T, FU Y M, LÜ J L, et al. Effects of small peptide nutrients on performance and small intestine development of weaned piglets. Animal Husbandry and Veterinary Medicine, 2003(6): 4-8 [王恬, 傅永明, 吕俊龙, 等. 小肽营养素对断奶仔猪生产性能及小肠发育的影响. 畜牧与兽医, 2003(6): 4-8]
WANG X Y, MA J, WAGN J Y, et al. Studies on supplementation of stickwater meal to high plant protein diets of juvenile Epinephelus fuscoguttatus♀×E. lanceolatus♂ pearl gentian. Periodical of Ocean University of China (Natural Science), 2021, 51(1): 31-43 [王晓艳, 马季, 王际英, 等. 鱼溶浆粉在珍珠龙胆石斑鱼幼鱼的高植物蛋白饲料中的应用. 中国海洋大学学报(自然科学版), 2021, 51(1): 31-43]
WANG Y G, XU G C, NIE Z J, et al. Research progress on substitution of fish meal by animal protein source in aquatic animal feed. Jiangsu Agricultural Sciences, 2019, 47(16): 24-29 [王裕玉, 徐钢春, 聂志娟, 等. 水产动物饲料中动物蛋白源替代鱼粉研究进展. 江苏农业科学, 2019, 47(16): 24-29]
WU D W, YE Y T, CAI C F, et al. Effects of fish meal replacement by stickwater meal on growth and health of grass carp (Ctenopharyngodoni dellus). Chinese Journal of Animal Nutrition, 2015, 27(7): 2094-2105 [吴代武, 叶元土, 蔡春芳, 等. 鱼溶浆粉替代鱼粉对草鱼生长及健康的影响. 动物营养学报, 2015, 27(7): 2094-2105]
WU Z H, ZHAO S P. Cholesterol metabolism of adipocyte and its pathophysiological significance. Chinese Journal of Endocrinology and Metabolism, 2005(6): 576-578 [吴智鸿, 赵水平. 脂肪细胞胆固醇代谢及其病理生理意义. 中华内分泌代谢杂志, 2005(6): 576-578]
XIE D Z, CHEN H Y, XU C, et al. Effects of compounded animal and vegetable protein feeds on growth performance, muscle quality and nitrogen and phosphorus emissions of Micropterus salmoides. Chinese Journal of Animal Nutrition, 2021, 33(5): 2836-2847 [谢帝芝, 陈汉毅, 徐超, 等. 复合动植物蛋白质饲料对大口黑鲈生长性能、肌肉品质及氮、磷排放的影响. 动物营养学报, 2021, 33(5): 2836-2847]
XU D D. Preliminary study on the mechanisms of nutrient sensing and responses of different protein sources in juvenile turbot (Scophthalmus maximus L.). Doctoral Dissertation of Ocean University of China, 2014 [许丹丹. 大菱鲆幼鱼对不同蛋白源营养感知与应答机制的初步研究. 中国海洋大学博士研究生学位论文, 2014]
YANG Y H. Study about regulation of dietary soy protein concentrate on feed intake and protein metabolism in juvenile darkbarbel catfish (Pelteobagrus vachelli). Doctoral Dissertation of Ocean University of China, 2014 [杨英豪. 大豆浓缩蛋白调控瓦氏黄颡鱼幼鱼摄食和蛋白质代谢的研究. 中国海洋大学博士研究生学位论文, 2014]
ZHANG G G, LI X, CAI X B, et al. Effects of enzymatic hydrolyzed soybean meal on growthperformance, liver function and metabolism of largemouth bass (Micropterus salmoides). Acta Hydrobiologica Sinica, 2019, 43(5): 1001-1012 [张改改, 李向, 蔡修兵, 等. 酶解豆粕替代鱼粉对大口黑鲈的生长性能、消化酶活性、肝脏功能及代谢的影响. 水生生物学报, 2019, 43(5): 1001-1012]
ZHANG J X, HUANG M Y, FENG J C, et al. Effects of dietary Bacillus licheniformis on growth performance, intestinal morphology, intestinal microbiome, and disease resistance in common carp (Cyprinus carpio L.). Aquaculture International, 2021, 29(1): 1343-1358
ZHONG G F, TIAN X X, XIE C Y, et al. Effects of replacing fish meal with bacillus aerobically fermented soybeanmeal on the growth performance, serum biochemical indices and intestinal histology of largemouth bass (Micropterus salmoides). Progress in Fishery Sciences, 2021, 42(5): 1-11 [钟国防, 田鑫鑫, 谢春元, 等. 芽孢杆菌有氧发酵豆粕替代鱼粉对大口黑鲈幼鱼生长性能、血清生化指标及肠组织结构的影响. 渔业科学进展, 2021, 42(5): 1-11]
ZHOU Q C, MAI K S, LIU Y J, et al. Advances in animal and plant protein sources in place of fish meal. Journal of Fisheries of China, 2005, 29(3): 404-410 [周歧存, 麦康森, 刘永坚, 等. 动植物蛋白源替代鱼粉研究进展. 水产学报, 2005, 29(3): 404-410]