渔业科学进展  2023, Vol. 44 Issue (1): 115-124  DOI: 10.19663/j.issn2095-9869.20210916001
0

引用本文 

武之绚, 陈钟玲, 于建华, 胡宗福, 牛化欣, 常杰. 饲料不同脂肪和脂肪酶水平对细鳞鲑生长性能、血清生化指标和肝脏抗氧化性能的影响[J]. 渔业科学进展, 2023, 44(1): 115-124. DOI: 10.19663/j.issn2095-9869.20210916001.
WU Zhixuan, CHEN Zhongling, YU Jianhua, HU Zongfu, NIU Huaxin, CHANG Jie. Effects of Dietary Lipid and Lipase Levels on Growth Performance, Serum Biochemical Indices, and Liver Antioxidant Activity of Brachymystax lenok[J]. Progress in Fishery Sciences, 2023, 44(1): 115-124. DOI: 10.19663/j.issn2095-9869.20210916001.

基金项目

国家自然科学基金项目(31860730; 31460692)资助

作者简介

武之绚,E-mail: wzx851005@163.com

通讯作者

常杰,教授,E-mail: changjieouc@163.com

文章历史

收稿日期:2021-09-16
收修改稿日期:2021-09-29
饲料不同脂肪和脂肪酶水平对细鳞鲑生长性能、血清生化指标和肝脏抗氧化性能的影响
武之绚 1, 陈钟玲 1, 于建华 1, 胡宗福 1, 牛化欣 1, 常杰 2     
1. 内蒙古民族大学动物科技学院 内蒙古 通辽 028000;
2. 内蒙古民族大学生命科学与食品学院 内蒙古 通辽 028000
摘要:本实验旨在研究饲料不同脂肪和脂肪酶水平对细鳞鲑(Brachymystax lenok)生长性能、血清生化指标和肝脏抗氧化性的影响。采用2×3双因素实验设计,配制2个脂肪水平(180和220 g/kg)和3个脂肪酶水平(0、2500和5000 U/kg)的6种实验饲料,即C-0、C-2500、C-5000和H-0、H-2500、H-5000。挑选270尾初始体重为(7.34±0.16) g的细鳞鲑,随机分为6个组,每组3个重复,每个重复15尾鱼。各组实验鱼分别投喂6种不同的实验饲料,养殖63 d。结果显示,不同脂肪含量和脂肪酶水平对终末平均体重存在极显著交互作用(P < 0.01),对增重率(WGR)和特定生长率(SGR)存在显著的交互作用(P < 0.05),脂肪与脂肪酶二者均对机体的生长性能产生影响,其中,同一脂肪水平,鱼体重、WGR和SGR均以C-5000组最高。H-0、H-2500、H-5000组血液中的谷丙转氨酶(ALT)分别低于C-0、C-2500、C-5000组,其中,H-0、H-5000与C-0、C-5000组存在显著差异(P < 0.05);H-0、H-2500、H-5000组的低密度脂蛋白胆固醇(LDL-C)分别高于C-0、C-2500、C-5000组,其中,H-0、H-2500与C-0、C-2500组存在显著差异(P < 0.05)。随着脂肪酶水平升高,肝脏中谷胱甘肽过氧化物酶(GPX)水平提高,且相同脂肪酶水平的220 g/kg组GPX高于180 g/kg组。综上所述,在脂肪水平为183.7 g/kg、脂肪酶添加量为5000 U/kg时,可以明显改善细鳞鲑幼鱼的生长和抗氧化性能。
关键词细鳞鲑    外源脂肪酶    生长性能    血清生化指标    肝脏抗氧化性能    
Effects of Dietary Lipid and Lipase Levels on Growth Performance, Serum Biochemical Indices, and Liver Antioxidant Activity of Brachymystax lenok
WU Zhixuan 1, CHEN Zhongling 1, YU Jianhua 1, HU Zongfu 1, NIU Huaxin 1, CHANG Jie 2     
1. College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China;
2. College of Life and Food Science and Engineering, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
Abstract: With the increasing demand for marine fish and cold-water predatory fish, to ensure its scale and industrialization in the process of breeding and to provide safe, high-quality, and healthy aquatic animal food for the society, the quality requirements of aquatic compound feed in the industry are increasing. Among the three nutrients, predatory fish have a poor ability to use sugar. Protein is the most expensive raw material, and the final product of its metabolism is ammonia, which can lead to the deterioration of water quality. Fat provides energy for fish growth, and essential fatty acids promotes the absorption of fat-soluble vitamins, and promotes protein deposition and utilization as a non-protein energy substance. Therefore, increasing the oil content in predatory fish feed and reducing the use of protein as energy can save feed protein and increase economic benefit. Different fish have different responses to nutrients and energy in feed. The fat metabolism of cultured fish has a certain species-specificity. It is generally believed that cold-water fish have a higher dietary fat requirement. The fat requirement of juvenile salmonids is 20%~30%, much higher than that of warm water fish. As a cold-water fish, Brachymystax lenok has successfully evolved key genotypic or phenotypic traits to adapt to growing at low temperatures, with fat requirements in the range of 17%~19%, slightly below the recommended fat requirements for regular Salmonidae fish.The high-fat feed has been widely used in carnivorous cold-water fish. As physiological conditions limit the demand and utilization capacity of fat, long-term intake of high-fat feed will easily cause fat metabolism disorder and meat quality decline during the breeding period, which seriously affects the health and quality of fish. Nutritional regulation of fat metabolism has become feasible means to reduce body fat deposition and improve meat quality. Therefore, it is particularly urgent to elucidate the fat metabolism mechanism and nutrition regulation of predatory fish. Lipase plays an essential role in lipid metabolism. As an enzyme with affinity at the oil-water interface, glycerol and fatty acids obtained after lipid hydrolysis can provide energy for the animal body and be utilized for its growth. Therefore, adding lipase in feed to regulate body fat nutrition has garnered considerable attention. Exogenous lipase has been well used in broilers and pigs to improve growth performance and physiological metabolism. It is also widely used in fish. However, it is rarely reported in the studies on cold water and freshwater fish nutrition. B. lenok is a rare and cold-water fish found in clear rivers and streams in China. The optimum temperature range for its growth is 18~20℃, and it has very high economic, edible, and research value.This study aims to, through adding different levels of lipase in different fat feed, use lipase in fat metabolism under the effect of high-fat feedstuff stress B. lenok to fat metabolism regulation, nutrition research on B. lenok growth performance, serum biochemical indices, and liver antioxidant effect, for lipase in B. lenok feeds for young fish provide a reference for the application. In this experiment, a 2×3 two-factor experimental design was used to prepare six experimental diets with two lipid levels (180 and 220 g/kg) and three lipase levels (0, 2500, and 5000 U/kg): C-0, C-2500, C-5000 and H-0, H-2500, H-5000. A total of 270 B. lenok with an initial body weight of (7.34±0.16) g were randomly divided into six groups with three replicates and 15 fish per replicate. Fish in each group were fed six different experimental diets for 63 days. The results show that different fat content and lipase level had extremely significant interaction on average body weight (P < 0.01) and significant interaction on weight gain rate and specific growth rate (P < 0.05). Both fat and lipase had an impact on the growth performance of the body. The body weight, weight gain rate, and specific growth rate of fish in the C-5000 group were the highest. Serum alanine aminotransferase (ALT) levels in H-0, H-2500, and H-5000 groups were lower than those in C-0, C-2500, and C-5000 groups, respectively. There were significant differences between H-0 and H-5000 groups and those in C-0 and C-5000 groups (P < 0.05). The low-density lipoprotein cholesterol (LDL-C) in H-0, H-2500, and H-5000 groups was higher than in C-0, C-2500, and C-5000 groups, respectively. There was a significant difference between H-0 and H-2500 groups, and the C-0 and C-2500 groups (P < 0.05). With the increase of lipase level, liver glutathione peroxidase (GPX) level increased. The GPX of the 220 g/kg group with the same lipase level was higher than that of the 180 g/kg group. In conclusion, the growth and antioxidant performance of juvenile B. lenok can be significantly improved at a lipid level of 183.7 g/kg, and the lipase level of 5000 U/kg.
Key words: Brachymystax lenok    Exogenous lipase    Growth performance    Serum biochemical indices    Liver antioxidant activity    

随着水产养殖业的快速发展,养殖密度过高、日粮营养素不均衡等问题频发,造成养殖鱼类体脂过度沉积的现象也越来越多(程汉良等, 2006)。为降低饲料成本和缓解蛋白质资源短缺等问题,增加脂肪水平并适当降低蛋白质水平是行之有效的一种方法。脂肪作为良好的能量供体,饲料中添加适当的脂肪不仅能节约蛋白质,还可以有效缓解其产生的问题(吕云云等, 2015)。前期研究表明,细鳞鲑(Brachymystax lenok)幼鱼(均重约0.54 g)对饲料脂肪适宜需求量为173.8~ 195.0 g/kg (Chang et al, 2018)。由于对脂肪需求和利用能力受到生理条件的限制,长期摄食高脂饲料会引起脂肪代谢障碍和养殖后肉质下降,严重影响鱼类的健康(梁洪等, 2007)。脂肪酶在脂质代谢中具有重要作用,作为在油–水界面具有亲和力的一种酶,水解脂肪后所得到的产物(即甘油和脂肪酸)能够为动物体提供能量,使其更好地用于生长(李敬等, 2013)。因此,在饲料中添加脂肪酶成为人们关注的焦点。添加外源脂肪酶来改善动物生长性能和生理代谢,已在肉鸡和猪上得到很好的利用(范国歌等, 2013; 高映红等, 2016; 袁雅婷, 2017)。在鱼类中应用也很广泛,如在饲料中添加1 g/kg的脂肪酶可以提高鲤鱼(Cyprinus carpio)的生长、饲料利用和鱼类的防御系统(Monier, 2020)。在高脂低蛋白饲食中,草鱼(Ctenopharyngodon idella)的最佳外源脂肪酶补充水平为1193 U/kg (Liu et al, 2016)。在饲料中添加300 mg/kg脂肪酶时,瓦氏黄颡鱼(Pelteobagrus vachelli)的胰脂肪酶活性最高(谷金皇等, 2010)。在低蛋白质高脂肪饲料中添加100、200、400和800 mg/kg脂肪酶,与对照组相比,花鲈(Lateolabrax maculatus)的粗脂肪和部分脂肪酸表观消化率下降,脏体比和脂体比一定程度上降低,机体抗氧化能力增强(王国霞等, 2017)。在脂肪水平为100 g/kg的饲料中添加0.3 g/kg的脂肪酶可以提高南方鲇(Silurus meridionalis)胰脂肪酶活力,提高脂肪消化率,改善饲料利用率等(杨新文等, 2010)。然而在冷水性淡水鱼类营养研究中鲜有报道。细鳞鲑是一种我国内陆型冷水性名贵淡水鱼类,栖息于水质清澈的江河溪流,最适生长水温范围为18~20℃(尹文金等, 2021),具有非常高的经济价值、食用价值和研究价值。本研究旨在通过在不同脂肪饲料中添加不同水平的脂肪酶,利用脂肪酶在脂肪代谢中的作用,对高脂饲料胁迫下的细鳞鲑进行脂肪代谢营养调控,研究其对细鳞鲑生长性能、血清生化指标和肝脏抗氧化的影响,为脂肪酶在细鳞鲑幼鱼配合饲料中的应用提供参考。

1 材料与方法 1.1 实验饲料

配制6种实验饲料,其原料组成及营养水平见表 1 (常杰等, 2017)。饲料原料经粉碎后过80目分级筛,按表 1的比例精准称重,充分混匀。采用双螺杆挤压机(DS32-ⅡA,济南赛信机械有限公司)将饲料原料加工成直径约为2.0 mm的长条状,脂肪含量为180 g/kg的饲料,并切断至0.5~1.0 cm,通过后喷涂技术使饲料脂肪含量达到220 g/kg。65℃烘干24 h,密封置于–20℃冰柜中备用。

表 1 基础饲料组成及营养水平(%干物质) Tab.1 Composition and nutrient levels of basal diets (% dry matter)
1.2 养殖管理

实验鱼购自黑龙江大古洞河细鳞鱼科技繁育基地有限公司,养殖实验于室内循环水养殖系统中进行。预试期14 d后,挑选270尾健康、平均体重约为(7.34±0.16) g的实验鱼,随机分配到容量约为164 L的养殖桶中。随机分为6个组,每组3个重复,每个重复15尾鱼,分别投喂6种不同的实验饲料,养殖63 d。采用表观饱食的方法,每天投喂2次(08:30和18:00)。投喂结束0.5 h后换水并清理粪便和残饵,每次换水量为总水量的1/3。养殖期间水温为11~18℃,pH为7.7~7.9。

1.3 样品采集

养殖实验结束后,实验鱼禁食24 h,称重,记录体重和体长,用来分析生长性能指标,再从每个养殖桶中随机选取6尾鱼,麻醉(MS-222)后在超净台内使用2 mL注射器采集尾静脉血液,静置2 h后3500 r/min离心15 min,取上层血清分装后放入–80℃冰箱保存,用于分析血清生化指标。使用消毒后的手术器具解剖内脏,分别称重,编号后放入冻存管保存在–80℃冰箱用于分析肝脏抗氧化性能,提取的肌肉用来常规营养成分的分析。

1.4 样品测定

饲料和鱼肌肉水分含量采用105℃干燥法;粗蛋白质含量采用凯氏定氮法;饲料粗脂肪含量采用索氏抽取法;鱼肌肉粗脂肪含量采用氯仿–甲醇提取法(Folch法);粗灰分含量采用550℃灼烧法,具体测定方法参照《饲料分析与检测》(贺建华, 2020)。血清生化指标和肝脏抗氧化指标均由南京建成生物工程研究所测定。

1.5 计算公式
$ 成活率\text{(survival rate, SR, %)}=终末总尾数/初始总尾数×100 $
$ 增重率\text{(weight gain rate, WGR, %)}=(末重–初重)/初重×100 $
$ 特定生长率\text{(specific growth rate, SGR, %/d)}=(\ln末重–\ln初重)/饲养天数×100 $
$ 肥满度\text{(condition factor, CF)}=体重/体长^{3}×100 $
1.6 数据统计分析

实验数据利用Excel 2010整理后,采用SAS 9.1软件中GLM程序进行双因素方差分析(two-way ANOVA),模型主效应包括脂肪和脂肪酶以及二者之间的交互作用。P < 0.01为差异极显著水平,P < 0.05为差异显著水平。

2 结果 2.1 饲料中不同脂肪和脂肪酶水平对细鳞鲑生长性能和体组成的影响

表 2可知,不同脂肪含量和脂肪酶水平对终末平均体重存在极显著交互作用(P < 0.01);对WGR和SGR存在显著的交互作用(P < 0.05),其中,同一脂肪水平,鱼体重、WGR和SGR均以C-5000组最高;而对SR和CF不存在显著的交互作用(P > 0.05)。

表 2 饲料中不同脂肪和脂肪酶水平对细鳞鲑生长性能的影响 Tab.2 Effect of different fat and lipase levels in feed on the growth performance of B. lenok

表 3可知,不同脂肪含量和脂肪酶水平对细鳞鲑肌肉的粗蛋白质、粗脂肪和粗灰分存在极显著的交互作用(P < 0.01),而对肌肉水分不存在交互作用(P > 0.05)。220 g/kg组比180 g/kg组的水分含量低,其中,H-0与C-0组存在显著差异(P < 0.05)。随着脂肪酶添加剂量的升高,H-0、H-2500、H-5000组的粗蛋白质分别低于C-0、C-2500、C-5000组,其中,H-0与C-0组存在显著差异(P < 0.05)。而随着脂肪酶添加剂量的升高,H-0、H-2500、H-5000组的粗脂肪分别显著高于C-0、C-2500、C-5000组(P < 0.05)。

表 3 饲料中不同脂肪和脂肪酶水平对细鳞鲑肌肉体组成的影响(%干物质) Tab.3 Effects of dietary lipid and lipase levels on muscle body composition of B. lenok (dry matter, %)
2.2 饲料中不同脂肪和脂肪酶水平对细鳞鲑血清生化指标的影响

表 4可知,不同脂肪含量和脂肪酶水平对ALT、谷草转氨酶(AST)和甘油三酯存在极显著的交互作用(P < 0.01);对总蛋白、总胆固醇、LDL-C和高密度脂蛋白胆固醇(HDL-C)存在显著的交互作用(P < 0.05),对葡萄糖、白蛋白不存在交互作用(P > 0.05)。随着脂肪酶添加剂量的升高,H-0、H-2500、H-5000组的葡萄糖分别高于C-0、C-2500、C-5000组;H-0、H-2500、H-5000组的ALT分别低于C-0、C-2500、C-5000组,其中,H-0、H-5000与C-0、C-5000组存在显著差异(P < 0.05);H-0、H-2500、H-5000组的LDL-C分别高于C-0、C-2500、C-5000组,其中,H-0、H-2500与C-0、C-2500组存在显著差异(P < 0.05)。H-0组的AST显著低于C-0组(P < 0.05)。H-2500、H-5000组的总蛋白和白蛋白高于C-2500、H-5000组,且H-5000组的总蛋白与C-5000组存在显著差异(P < 0.05)。180 g/kg组中随着脂肪酶添加剂量的升高,甘油三酯显著提高(P < 0.05)。

表 4 饲料中不同脂肪和脂肪酶水平对细鳞鲑血清生化指标的影响 Tab.4 Effects of dietary lipid and lipase levels on serum biochemical indices of B. lenok
2.3 饲料中不同脂肪和脂肪酶水平对细鳞鲑肝脏抗氧化指标的影响

表 5可知,不同脂肪含量和脂肪酶水平对丙二醛(MDA)和过氧化氢酶(CAT)活力存在极显著的交互作用(P < 0.01),对超氧化物歧化酶(SOD)活力存在显著的交互作用(P < 0.05),对GPX不存在交互作用(P > 0.05)。随着脂肪酶添加剂量的升高,180和220 g/kg组的GPX均提高,且H-0、H-2500、H-5000组的GPX分别高于C-0、C-2500、C-5000组。随着脂肪酶添加剂量的升高,180 g/kg组的MDA含量有所降低,220 g/kg组的MDA和CAT有所升高,H-0、H-2500、H-5000组的SOD分别显著低于C-0、C-2500、C-5000组(P < 0.05)。

表 5 饲料中不同脂肪和脂肪酶水平对细鳞鲑肝脏抗氧化指标的影响 Tab.5 Effects of dietary lipid and lipase levels on liver antioxidant indices of B. lenok
3 讨论 3.1 饲料中不同脂肪和脂肪酶水平对细鳞鲑生长性能和体组成的影响

脂肪是动物维持生命活动的主要能源物质,是饲料中不可或缺的营养成分,饲料中脂肪含量不足或过多均会影响动物的生长,甚至导致一些代谢性疾病(张琴等, 2011)。徐革锋等(2016)研究发现,随着脂肪水平增加,细鳞鲑肌肉脂肪含量也随之提高。Li等(2018)研究发现,在饲料中添加较高比例的脂肪可降低生长并增加内脏中的脂肪含量,这与本研究结果一致。类延菊等(2020)研究发现,饲喂高脂肪水平饲料的洞庭青鲫(Tungtingking crucian carp)幼鱼可以获得较好的生长效果。赵巧娥(2011)研究发现,鳡(Elopichthys bambusa)的最适饲料脂肪含量为77.1 g/kg,而过高的脂肪含量会使鳡生长缓慢,并发生脂肪代谢异常。李伟东(2014)研究表明,饲料脂肪水平对黑尾近红鲌(Ancherythroculter nigrocauda)的生长有显著影响。脂肪酶又称三酰甘油酰基水解酶,是可以催化脂水解反应、脂合成反应和转脂反应的一类分解和合成脂的酶。动物内源脂肪酶不足和脂肪不易消化,可以通过添加外源脂肪酶来改善并促进动物生长(陈枫等, 2014)。Monier (2020)Liu等(2016)研究发现,在饲料中添加外源脂肪酶可以改善鲤鱼和草鱼幼鱼的生长性能和健康状况。综上所述,不同的脂肪含量和脂肪酶水平均对鱼的生长性能和体组成产生影响,但如何影响可能由于物种及所需营养不同而有所不同。本研究从细鳞鲑生长性能分析表明,最适宜的脂肪水平为183.7 g/kg,与前期研究的细鳞鲑幼鱼结果一致,脂肪酶添加量为5000 U/kg。

3.2 饲料中不同脂肪和脂肪酶水平对细鳞鲑血清生化指标的影响

鱼类的健康、营养和对环境的适应状况等能通过血液中的各种指标来反映(程春, 2014)。血糖指标则能反映机体糖代谢、内分泌机能和全身组织细胞状态等(赵万鹏等, 2002)。Chatzifotis等(2010)认为,饲料脂肪水平不影响鱼类对葡萄糖的利用。本研究中,不添加脂肪酶时,220 g/kg组的葡萄糖含量与180 g/kg组相近,添加脂肪酶后,220 g/kg组的葡萄糖均高于180 g/kg组,葡萄糖含量升高的原因可能是脂肪酶影响了糖代谢。血清中的总蛋白在一定程度上代表日粮中蛋白质的营养水平和动物对蛋白质的消化程度以及鱼体健康状况(黄林等, 2009)。作为机体蛋白质来源之一的白蛋白,它可以修补组织,使胶体物质的渗透压在血液中达到平衡,从而影响鱼体的免疫能力(涂贵雄等, 2012)。本实验在不添加脂肪酶时,220 g/kg组的总蛋白和白蛋白均低于180 g/kg组,说明随着脂肪含量的升高,机体的调节功能和对蛋白质的吸收能力有所下降。在添加脂肪酶后,220 g/kg组的总蛋白和白蛋白均比180 g/kg组高,说明脂肪酶可以改善机体对蛋白质的吸收能力。总胆固醇和甘油三酯含量能反映脂类的吸收状况,二者合并升高是脂肪肝病主要的血脂特点(李红霞等, 2010)。本研究中,220 g/kg组的总胆固醇和甘油三酯大多数比180 g/kg组要高,说明随着脂肪水平的升高,总胆固醇和甘油三酯也明显提高。而随着脂肪酶的添加,总胆固醇和甘油三酯在不同脂肪酶水平中有所下降,说明脂肪酶可以改善脂肪代谢紊乱、预防脂肪肝病变。谷金皇等(2010)也有类似报道,在饲料中添加100、300和500 mg/kg的脂肪酶后与对照组相比,总胆固醇和甘油三酯的含量有所降低。脂蛋白是机体的油脂动力系统,脂类在体内的分解与转运可以被机体中高密度脂蛋白(HDL)和低密度脂蛋白(LDL)的含量反映(贺喜等, 2007)。HDL在血液中携带胆固醇后形成HDL-C,LDL则形成LDL-C。本研究中,220 g/kg组的HDL-C和LDL-C的含量比180 g/kg组高,随着脂肪酶含量的升高,实验鱼的HDL-C和LDL-C含量也升高,这与杨新文等(2010)在南方鲇的结论相反。在饲料中添加0.1和0.3 g/kg的脂肪酶对血液中HDL和LDL的含量未产生显著影响,即不能充分携带血液中的胆固醇形成HDL-C和LDL-C,使胆固醇过剩,影响机体脂肪代谢。分析认为,这可能是脂肪酶添加剂量不足导致的。血清中的转氨酶能够衡量肝细胞是否正常,血清转氨酶升高表明肝细胞有损伤。这在其他研究中也有所证明,如赵巧娥等(2012)在鳡幼鱼的研究中发现,实验鱼肝脏受损严重是高脂饲料导致的。本研究中,添加脂肪酶220 g/kg组的ALT比180 g/kg组低,这说明添加脂肪酶可以防止肝细胞损伤。其他研究也有类似报道,如王国霞等(2017)在对花鲈的研究中发现,饲料添加脂肪酶后血清ALT活性显著降低。综上所述,脂肪酶确实能够调节细鳞鲑机体脂肪代谢并改善其血清生化指标,但最适宜的脂肪酶添加量还没有明确,有待于今后进一步研究。

3.3 饲料中不同脂肪和脂肪酶水平对细鳞鲑肝脏抗氧化指标的影响

长期的进化使生物体逐渐形成了特定的抗氧化防御系统,能够防止氧自由基对机体造成损伤,其中,鱼的酶抗氧化能力是应对氧化应激的一种保护系统(Ben et al, 2012)。众所周知,SOD、CAT和GPX是主要的抗氧化酶(Krajcovicova et al, 2003),而MDA含量分别被广泛用作脂类和蛋白质氧化损伤的生物标志物(Chen et al, 2009; Xiao et al, 2019)。Monier (2020)研究发现,喂养富含脂肪酶饮食的鱼肝脏中,随着脂肪酶的添加,MDA值显著下降,SOD、CAT和GPX的活性显著增加,这表明SOD、CAT和GPX等抗氧化酶可以抑制脂质过氧化(Xiao et al, 2019),而脂肪酶对这些酶的活性有改善作用。脂肪酶作为在动植物中广泛存在的一种酶,在生物体内具有相当重要的生理功能,它对三酰甘油的酯键水解有催化作用,能够释放较少的甘油酯或甘油和脂肪酸。在本研究中,脂肪酶的添加也提高了GPX的活力,但SOD和CAT没有较规律的变化,在180 g/kg组中,随着脂肪酶添加,MDA下降,表明脂肪酶可以抑制鱼体脂质过氧化和蛋白质氧化,但在220 g/kg组结果却相反,分析由于鱼机体脂肪沉积过多,造成机体氧化损伤,从而使值变高,而脂肪酶添加效果不明显或添加量不足,无法对其进行改善。但也有例外,Liu等(2021)在对虹鳟的研究中发现,喂食高脂饮食可以促进脂质分解代谢、抑制脂质合成、提高抗氧化能力。综上所述,饲料中添加脂肪酶可以改善细鳞鲑机体的抗氧化能力,也是提高器官抗氧化能力的有效方法(Wu et al, 2017),但添加的水平和所需的饲料脂肪水平二者之间的关系有待深入研究。

4 结论

饲料脂肪为220 g/kg时,添加脂肪酶对细鳞鲑幼鱼的各生长指标均不明显,但饲料脂肪为180 g/kg时,脂肪酶添加量为5000 U/kg可以显著提高细鳞鲑幼鱼的生长性能,即脂肪含量实测值为183.7 g/kg,脂肪酶含量为5000 U/kg细鳞鲑幼鱼的生长效果最好;另外,通过测定血液中总蛋白、白蛋白、总胆固醇、甘油三酯和ALT的含量发现,添加脂肪酶可提高总蛋白和白蛋白含量,降低总胆固醇、甘油三酯和ALT的含量,说明添加脂肪酶能够调节细鳞鲑机体脂肪代谢并改善其血清生化指标;另外,通过测定肝脏中的抗氧化酶活性发现,脂肪酶的添加提高了GPX的活力,说明脂肪酶对肝脏的抗氧化性也有明显的改善作用。

参考文献
BEN AMEUR W, DE LAPUENTE J, EL MEGDICHE Y, et al. Oxidative stress, genotoxicity and histopathology biomarker responses in mullet (Mugil cephalus) and sea bass (Dicentrarchus labrax) liver from Bizerte Lagoon (Tunisia). Marine Pollution Bulletin, 2012, 64(2): 241-251 DOI:10.1016/j.marpolbul.2011.11.026
CHANG J, NIU H X, HU Z F, et al. Requirement of dietary n-3 highly unsaturated fatty acids for juvenile Brachymystax lenok. Freshwater Fisheries, 2017, 47(6): 81-87 [常杰, 牛化欣, 胡宗福, 等. 细鳞鲑幼鱼n-3HUFA需求量的研究. 淡水渔业, 2017, 47(6): 81-87]
CHANG J, NIU H X, JIA Y D, et al. Effects of dietary lipid levels on growth, feed utilization, digestive tract enzyme activity and lipid deposition of juvenile Manchurian trout, Brachymystax lenok (Pallas). Aquaculture Nutrition, 2018, 24(2): 694-701 DOI:10.1111/anu.12598
CHATZIFOTIS S, PANAGIOTIDOU M, PAPAIOANNOU N, et al. Effect of dietary lipid levels on growth, feed utilization, body composition and serum metabolites of meagre (Argyrosomus regius) juveniles. Aquaculture, 2010, 307(1): 65-70
CHEN F, WEI S H. Application of microbial lipase in animal feed. Contemporary Animal Husbandry, 2014(17): 84-85 [陈枫, 韦仕航. 微生物脂肪酶在动物饲料中的应用探讨. 当代畜牧, 2014(17): 84-85]
CHEN J, ZHOU X Q, FENG L, et al. Effects of glutamine on hydrogen peroxide-induced oxidative damage in intestinal epithelial cells of Jian carp (Cyprinus carpio var. Jian). Aquaculture, 2009, 288(3/4): 285-289
CHENG C. Study on blood physiological and biochemical indexes of Monopterus albus. Master′s Thesis of Jiangxi Agricultural University, 2014, 6 [程春. 黄鳝血液生理生化指标的研究. 江西农业大学硕士研究生学位论文, 2014, 6]
CHENG H L, XIA D Q, WU T T. Regulation of lipid metabolism and fatty liver in fish. Acta Zoonutrimenta Sinica, 2006(4): 294-298 [程汉良, 夏德全, 吴婷婷. 鱼类脂类代谢调控与脂肪肝. 动物营养学报, 2006(4): 294-298]
FAN G G, HU H, ZHANG X J, et al. Effect of lipase on performance of weaned piglets. Henan Science, 2013, 31(8): 1180-1182 [范国歌, 胡虹, 张秀江, 等. 脂肪酶对断奶仔猪生产性能的影响研究. 河南科学, 2013, 31(8): 1180-1182]
GAO Y H, BAI H Y, WANG G Y, et al. Effects of lipase on growth performance and nutrient utilization of white brors. Feed Industry, 2016, 37(23): 37-41 [高映红, 白华毅, 王桂瑛, 等. 脂肪酶对白羽肉鸡生长性能与养分利用的影响. 饲料工业, 2016, 37(23): 37-41]
GU J H, YANG Y, LENG X J, et al. Effects of exogenous lipase on growth, digestive enzymes and serum biochemical indices of yellow catfish (Pelteobagrus fulvidraco). Journal of Shanghai Ocean University, 2010, 19(6): 798-804 [谷金皇, 杨毅, 冷向军, 等. 添加外源脂肪酶对瓦氏黄颡鱼的生长、消化酶及血清生化指标的影响. 上海海洋大学学报, 2010, 19(6): 798-804]
HE J H. Feed analysis and detection. Beijing: China Agriculture Press, 2020 [贺建华. 饲料分析与检测. 北京: 中国农业出版社, 2020]
HE X, DAI Q Z, ZHANG S R, et al. Effects of dietary conjutated linoleic acid on growth performance and lipid metabolism of two broilers. Acta Zoonutrimenta Sinica, 2007, 19(5): 581-587 [贺喜, 戴求仲, 张石蕊, 等. 日粮共轭亚油酸对两个品种肉仔鸡生长性能及脂类代谢的影响. 动物营养学报, 2007, 19(5): 581-587]
HUANG L, ZHAO H P, JIN L, et al. Changes of serum parameters for Spinibarbus sinensis Bleeker infected with muscle ulceration. Freshwater Fisheries, 2009, 39(5): 67-70 [黄林, 赵海鹏, 金丽, 等. 患肌肉溃烂病中华倒刺鲃血清生化指标变化. 淡水渔业, 2009, 39(5): 67-70]
KRAJCOVICOVA-KUDLACKOVA M, URSINYOVA M, BLAZICEK P, et al. Free radical disease prevention and nutrition. Bratislavske Lekarske Listy, 2003, 104(2): 64-68
LEI Y J, YAN J, TANG Z T, et al. Effects of dietary lipid level on growth performance and meat quality of juvenile Dongting carp. Acta Zoonutrimenta Sinica, 2020, 32(12): 5839-5849 [类延菊, 晏锦, 唐忠天, 等. 饲料脂肪水平对洞庭青鲫幼鱼生长性能及肉品质的影响. 动物营养学报, 2020, 32(12): 5839-5849]
LI H X, LIU W B, LI X F, et al. Effects of dietary addition of choline chloride, betaine and lysophlecithin on growth, lipid metabolism and blood indexes of allogynogenetic crucian carp. Journal of Fisheries of China, 2010, 34(2): 292-299 [李红霞, 刘文斌, 李向飞, 等. 饲料中添加氯化胆碱、甜菜碱和溶血卵磷脂对异育银鲫生长、脂肪代谢和血液指标的影响. 水产学报, 2010, 34(2): 292-299]
LI J, LI Y L, ZHAO Y C, et al. Study on the application of feed lipase in animal production. Sichuan Animal and Veterinary Sciences, 2013(3): 28-29 [李敬, 李玉林, 赵迎春, 等. 饲用脂肪酶在动物生产中的研究应用. 四川畜牧兽医, 2013(3): 28-29]
LI W D. Effects of dietary lipid levels on growth performance, body composition and digestive enzyme activities of black- tailed Erythroculter ilishaeformis. Master′s Thesis of Wuhan Polytechnic University, 2014, 6 [李伟东. 饲料脂肪水平对黑尾近红鲌生长性能、鱼体成分及消化酶活性的影响. 武汉轻工大学硕士研究生学位论文, 2014, 6]
LI Y, JIA Z, LIANG X, et al. Growth performance, fatty-acid composition, lipid deposition and hepatic-lipid metabolism- related gene expression in juvenile pond loach Misgurnus anguillicaudatus fed diets with different dietary soybean oil levels. Journal of Fish Biology, 2018, 92(1): 17-33
LIANG H, QIAN Y X. Effects of food on fat metabolism of cultured fish. Fisheries Science, 2007, 26(9): 521-524 [梁洪, 钱云霞. 食物对养殖鱼类脂肪代谢的影响. 水产科学, 2007, 26(9): 521-524]
LIU S, FENG L, JIANG W D, et al. Impact of exogenous lipase supplementation on growth, intestinal function, mucosal immune and physical barrier, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). Fish and Shellfish Immunology, 2016, 55: 88-105
LIU Z L, ZHAO W, HU W S, et al. Lipid metabolism, growth performance, antioxidant ability and intestinal morphology of rainbow trout (Oncorhynchus mykiss) under cage culture with flowing water were affected by dietary lipid levels. Aquaculture Reports, 2021, 19: 100593
LÜ Y Y, CHEN S Q, YU C L, et al. The Effects of the ratio of dietary protein to lipid on the growth, digestive enzyme activities and blood biochemical parameters in spotted halibut, Verasper variegates. Progress in Fishery Sciences, 2015, 36(2): 118-124 [吕云云, 陈四清, 于朝磊, 等. 饲粮蛋白脂肪比对圆斑星鲽(Verasper variegates)生长、消化酶及血清生化指标的影响. 渔业科学进展, 2015, 36(2): 118-124]
MONIER M N. Efficacy of dietary exogenous enzyme supplementation on growth performance, antioxidant activity, and digestive enzymes of common carp (Cyprinus carpio) fry. Fish Physiology and Biochemistry, 2020, 46(2): 713-723
TU G X, CHEN G, ZHOU H, et al. Effects of three protein sources replacing fish meal on blood indexes of juvenile Epinephelus brownspot. Journal of Zhanjiang Ocean University, 2012, 32(4): 12-19 [涂贵雄, 陈刚, 周晖, 等. 3种蛋白源替代鱼粉对褐点石斑鱼幼鱼血液指标的影响. 广东海洋大学学报, 2012, 32(4): 12-19]
WANG G X, WANG M, SUN Y P, et al. Effects of exogenous lipase on growth performance, body composition, serum biochemical indices, digestive enzyme activities and nutrient apparent digestibilities of Lateolabrax japonicas. Chinese Journal of Animal Nutrition, 2017, 29(12): 4542-4553 [王国霞, 王敏, 孙育平, 等. 外源脂肪酶对花鲈生长性能、体组成、血清生化指标、消化酶活性及营养物质表观消化率的影响. 动物营养学报, 2017, 29(12): 4542-4553]
WU P, LIU Y, JIANG W D, et al. A Comparative study on antioxidant system in fish hepatopancreas and intestine affected by choline deficiency: Different change patterns of varied antioxidant enzyme genes and Nrf2 signaling factors. PLoS One, 2017, 12(1): e0169888
XIAO W, JIANG W, FENG L, et al. Effect of dietary enzyme- treated soy protein on the immunity and antioxidant status in the intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture Research, 2019, 50(5): 1411-1421
XUN G F, LIU Y, HAO Q R, et al. Effects of different protein and lipid levels on the growth and muscle amino acid content of juvenile salmon. Journal of Fishery Sciences of China, 2016, 23(6): 1311-1319 [徐革锋, 刘洋, 郝其睿, 等. 不同蛋白质和脂肪水平对细鳞鲑幼鱼生长和肌肉氨基酸含量的影响. 中国水产科学, 2016, 23(6): 1311-1319]
YANG X W, YANG Y, LENG X J, et al. Effects of lipase on growth performance, digestive enzyme activities and blood biochemical indexes of southern catfish. Freshwater Fisheries, 2010, 40(3): 23-27 [杨新文, 杨毅, 冷向军, 等. 脂肪酶对南方鲇生长性能、消化酶活性及血液生化指标的影响. 淡水渔业, 2010, 40(3): 23-27]
YIN W J, ZHAO J, YANG J S. Prevention and control techniques of cold water fish virus diseases. Special Economic Animal and Plant, 2021, 24(1): 31-32 [尹文金, 赵静, 杨敬爽. 冷水鱼病毒性疾病防控技术. 特种经济动植物, 2021, 24(1): 31-32]
YUAN Y T. Effects of sorghum diets with emulsifier and lipase on performance and nutrient utilization efficiency of broilers. Master′s Thesis of Hunan Agricultural University, 2017, 6 [袁雅婷. 高粱型饲粮添加乳化剂和脂肪酶对肉鸡生产性能和养分利用率的影响. 湖南农业大学硕士研究生学位论文, 2017, 6]
ZHANG Q, TONG W P, DONG L F, et al. Effects of dietary lipid levels on growth performance, body composition and digestive enzyme activities of juvenile peanut worm, Sipunculus nudus Linnaeus. Progress in Fishery Sciences, 2011, 32(6): 99-106 [张琴, 童万平, 董兰芳, 等. 饲料中脂肪水平对方格星虫稚虫生长性能、体组成及消化酶活性的影响. 渔业科学进展, 2011, 32(6): 99-106]
ZHAO Q E, ZHU B K, SHEN F, et al. Effects of dietary lipid level on growth, body composition and serum biochemical indices of juvenile yellowcheek carp. Journal of Huazhong Agricultural University, 2012, 31(3): 357-363 [赵巧娥, 朱邦科, 沈凡, 等. 饲料脂肪水平对鳡幼鱼生长、体成分及血清生化指标的影响. 华中农业大学学报, 2012, 31(3): 357-363]
ZHAO Q E. Effects of dietary lipid level on growth, blood biochemical indices and digestive physiology of juvenile yellowcheek carp. Master′s Thesis of Huazhong Agricultural University, 2011, 6 [赵巧娥. 饲料脂肪水平对鳡幼鱼生长、血液生化指标及消化生理的影响. 华中农业大学硕士研究生学位论文, 2011, 6]
ZHAO W P, LIU Y J, PAN Q, et al. Changes of blood glucose and liver glycogen mass fraction in grass carp after ingestion. Journal of Sun Yat-Sen University (Natural Science), 2002, 41(3): 64-67 [赵万鹏, 刘永坚, 潘庆, 等. 草鱼摄食后血糖和肝糖原质量分数的变化. 中山大学学报(自然科学版), 2002, 41(3): 64-67]