渔业科学进展  2023, Vol. 44 Issue (2): 77-86  DOI: 10.19663/j.issn2095-9869.20210908003
0

引用本文 

李琳, 张斐然, 刘长琳, 刘宝良, 李杰, 多吉欧珠, 热旦, 德吉措姆, 措姆, 卫育良, 梁萌青, 徐后国. 养殖和野生亚东鲑机体成分比较分析[J]. 渔业科学进展, 2023, 44(2): 77-86. DOI: 10.19663/j.issn2095-9869.20210908003.
LI Lin, ZHANG Feiran, LIU Changlin, LIU Baoliang, LI Jie, DUOJI Ouzhu, RE Dan, DEJI Cuomu, CUO Mu, WEI Yuliang, LIANG Mengqing, XU Houguo. Composition Analysis of Farmed and Wild Yadong Trout (Salmo trutta fario)[J]. Progress in Fishery Sciences, 2023, 44(2): 77-86. DOI: 10.19663/j.issn2095-9869.20210908003.

基金项目

中国水产科学研究院黄海水产研究所基本科研业务费(20603022021003)和中国水产科学研究院基本科研业务费(2020TD48)共同资助

作者简介

李琳,E-mail: 936839674@qq.com

通讯作者

徐后国,研究员,E-mail: xuhg@ysfri.ac.cn

文章历史

收稿日期:2021-09-08
收修改稿日期:2021-10-09
养殖和野生亚东鲑机体成分比较分析
李琳 1,2, 张斐然 1,2, 刘长琳 2, 刘宝良 2, 李杰 2, 多吉欧珠 3, 热旦 3, 德吉措姆 3, 措姆 3, 卫育良 2, 梁萌青 2, 徐后国 2     
1. 上海海洋大学水产与生命学院 上海 201306;
2. 中国水产科学研究院黄海水产研究所 山东青岛 266071;
3. 西藏自治区日喀则市亚东县农牧综合服务中心 西藏 日喀则 857600
摘要:亚东鲑(Salmo trutta fario)是鲑属鱼类在青藏高原仅有的鱼类种群,是亚东地区全国农产品地理标志产品。本研究对西藏亚东地区野生和养殖亚东鲑的常规营养成分及各组织氨基酸和脂肪酸组成进行分析,旨在比较野生和养殖亚东鲑营养成分的异同,为养殖亚东鲑的品质评价和饲料配方的完善提供参考信息。实验采集亚东河中野生亚东鲑和亚东渔业产业园中使用配合饲料养殖的亚东鲑各10尾用于相关成分分析,每尾为一个独立样本。结果显示,野生组肥满度显著低于养殖组,而全鱼水分和灰分显著高于养殖组。全鱼粗蛋白、粗脂肪以及肝脏常规成分在野生组和养殖组间无显著差异。野生组肌肉粗脂肪显著低于养殖组,而水分含量显著高于养殖组。野生组全鱼必需氨基酸总量显著高于养殖组,且野生组肌肉中苏氨酸、缬氨酸、苯丙氨酸、赖氨酸和甘氨酸含量显著高于养殖组。野生组全鱼、肌肉和肝脏中饱和脂肪酸、n-3多不饱和脂肪酸(n-3 PUFA)总量、EPA、C20:4n-6以及肌肉中DHA含量高于养殖组,而全鱼和组织中单不饱和脂肪酸和n-6 PUFA总量低于养殖组。综上所述,目前养殖亚东鲑和野生亚东鲑在机体成分上存在较大差异。由于养殖鱼类体成分很大程度上反映了饲料组成,因此,亚东鲑养殖中饲料营养组成可能有待进一步优化。
关键词亚东鲑    野生    养殖    营养成分    氨基酸    脂肪酸    
Composition Analysis of Farmed and Wild Yadong Trout (Salmo trutta fario)
LI Lin 1,2, ZHANG Feiran 1,2, LIU Changlin 2, LIU Baoliang 2, LI Jie 2, DUOJI Ouzhu 3, RE Dan 3, DEJI Cuomu 3, CUO Mu 3, WEI Yuliang 2, LIANG Mengqing 2, XU Houguo 2     
1. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China;
3. Agro-Pastoral Integrated Service Centre, Shigatse, Xizang 857600, China
Abstract: Yadong trout (Salmo trutta fario), the only salmonid fish in the Tibetan Plateau, is a national agricultural product with geographical indications in Yadong. The development of Yadong trout aquaculture has significant implications for local farmers. However, no study has yet investigated the nutrient requirements of this fish. This study aimed to analyze the proximate amino acid, and fatty acid composition of various tissues of wild and farmed Yadong trout, in order to provide a reference for the evaluation of fish fillets and the formulation of optimal feed. Ten wild fish captured in the Yadong River, and 10 fish farmed with formulated feed in Yadong Industry Park were used in this study. The farmed fish were F1 generation wild broodstock captured in the Yadong River and fed formulated feeds throughout their lifetime. The body length of wild Yadong trout was in the range of 13.4~28.7 cm, and the body weight was in the range of 38.48~346.85 g. The body length and body weight of farmed Yadong trout were in the range of 16.4~24.5 cm and 78.39~275.29 g, respectively. Frozen samples were transported to the laboratory by flight. The proximate composition of whole fish, muscle, and liver; fatty acid composition of whole fish and various tissues including muscle, liver, intestine, brain, and eye; as well as amino acid composition of whole fish, muscle, and liver were analyzed. The fatty acid composition (expressed as % total fatty acids) and amino acid composition (expressed as % dry matter basis) were assayed using gas chromatography and an automatic amino acid analyzer, respectively. In addition, t-tests were performed for independent samples; results are expressed as the mean ± standard deviation. The results showed that wild fish had lower condition factors but higher moisture and ash content than farmed fish. Wild fish muscle had lower crude lipid content but higher moisture content than farmed fish. The whole-body protein and lipid contents, as well as the proximate composition of the liver, were not significantly different between wild and farmed fish (P > 0.05). The contents of saturated fatty acids (mainly C16:0 and C18:0) and n-3 polyunsaturated fatty acid (PUFA) in whole fish, muscle, and liver were significantly higher (P < 0.05), whereas contents of monounsaturated fatty acids (MUFA) (mainly C16:1n-7 and C18:1n-9) and n-6 PUFA (mainly C18:2n-6) were significantly lower in wild Yadong trout than in farmed Yadong trout (P < 0.05). EPA and C20:4n-6 in whole fish, muscle, and liver, as well as DHA in the muscle of wild Yadong trout were significantly higher than those in farmed Yadong trout (P < 0.05). In the intestine of wild Yadong trout, the contents of C14:0, C16:0, C18:0, C16:1n-7, C20:5n-3, and C22:5n-3 were significantly higher (P < 0.05), while those of C18:1n-9 and C18:2n-6 were significantly lower (P < 0.05) than in the farmed fish. In the brain of wild Yadong trout, the contents of C16:1n-7, C20:5n-3, and C22:5n-3 were significantly higher (P < 0.05), while the contents of C18:1n-9 and C20:2n-6 were significantly lower (P < 0.05) than those of farmed fish. In the eyes of wild Yadong trout, the contents of C14:0, C16:0, and C18:0, C16:1n-7, C20:1n-9, C20:2n-6, C20:4n-6, C20:5n-3, and C22:5n-3 were significantly higher (P < 0.05), while the contents of C18:1n-9, C22:1n-9, C24:1n-9, C18:2n-6, and C18:3n-3 were significantly lower (P < 0.05) than those of farmed Yadong trout. The total essential amino acid content in wild fish was significantly higher than that in farmed fish. The contents of threonine, valine, phenylalanine, lysine, and glycine in the muscle of wild fish were significantly higher (P < 0.05) than those in farmed fish, while no significant difference (P > 0.05) was observed in other amino acids. These results indicate that wild Yadong trout were leaner than farmed trout in terms of muscle lipid content. For trout, which are mainly consumed fresh, this trait may make farmed Yadong trout more acceptable than wild trout. However, in terms of fatty acid composition and amino acids, the wild Yadong trout seemed to be more acceptable than farmed trout. In particular, n-3 PUFA content is an important nutritional trait in fish fillets. The wild Yadong trout had higher n-3 PUFA contents than the farmed trout. Thus, the fish oil in the feeds of Yadong trout should not be omitted, considering that fish chemical composition generally reflects that of their diets. In addition, the price of alternative oils such as soybean oil is no longer low; the use of lipid sources in the diets of Yadong trout should be reviewed. Similarly, the essential amino acid content in wild Yadong trout was higher than that in the farmed trout, suggesting that the protein sources should be reviewed, and a certain level of fish meal should be guaranteed. In conclusion, the results of this study indicate that the formulated feeds of Yadong trout need to be further optimized.
Key words: Salmo trutta fario    Wild    Farmed    Nutrient composition    Amino acid    Fatty acid    

亚东鲑(Salmo trutta fario)属于鲑形目(Salmoniformes)、鲑科(Salmonidae)、鲑属(Salmon),原产于欧洲、西亚和非洲北部地区(当地名为“褐鳟”),在我国自然水域中仅西藏自治区亚东县有分布。亚东鲑生存空间较为狭窄,数量有限,而其肉质鲜美、营养丰富,具有较高的经济价值。在西藏各级政府和水产科研单位的技术支持下,养殖亚东鲑产业正成为西藏亚东县培育的支柱产业之一。目前,有关亚东鲑的研究主要集中在形态学(蒲德永等, 2006)、胚胎发育(豪富华等, 2006)、生物学和遗传学(豪富华等, 2006; 王芳, 2015)、分子生物学(郭秀明等, 2014; 李福贵等, 2014)、生长(豪富华等, 2007; 王常安等, 2017; 王万良等, 2019; 张弛等, 2019; 王且鲁等, 2020)和病害防治方法(王且鲁等, 2021)等方面。在上海海洋大学相关专家的技术援助下,亚东鲑已实现全人工繁育,并依托当地渔业产业园和养殖合作社实现了中小规模养殖,目前正全力推进规模化养殖。亚东鲑养殖产业的发展对乡村振兴和守边固边具有重要意义。

目前,亚东鲑的养殖全程使用配合饲料,但对其营养需求参数却缺乏深入细致的研究。虽然世界其他区域“褐鳟”甚至其他鲑科鱼类的饲料营养学数据可以为亚东鲑配合饲料的开发提供依据,但亚东地区具有青藏高原独特的水文和养殖条件,相关参考资料是否能够适合本地区亚东鲑的养殖值得商榷。因此,为加快亚东鲑规模化养殖,其专用配合饲料的开发显得十分必要。

鱼类机体的营养组成大体上能够体现其饵料或饲料的营养组成。当某种鱼基础营养学数据缺乏时,其机体营养组成是非常重要的参考资料。关于野生与养殖亚东鲑机体成分、肌肉常规成分、各组织氨基酸和脂肪酸组成等信息,目前尚未见报道,无法给亚东鲑配合饲料的配制提供基础参考信息。本研究旨在分析对比野生和人工养殖亚东鲑的常规成分及各组织氨基酸和脂肪酸组成,了解二者的营养成分差异,以期为亚东鲑人工配合饲料配方的改进提供基础资料和理论依据。同时,相关营养成分还能够为养殖亚东鲑肉质品质的评估和改进提供参考数据。

1 材料与方法 1.1 实验材料与样品处理

本实验野生亚东鲑样本于2021年4月采集于西藏亚东河,体长为13.4~28.7 cm,体重为38.48~346.85 g,共10尾,每尾鱼作为一个独立样本;养殖亚东鲑样本采集于西藏亚东县产业园亚东鲑繁育养殖基地,体长为16.4~24.5 cm,体重为78.39~275.29 g,共10尾,每尾鱼作为一个独立样本。养殖亚东鲑为以野生亲本人工繁育的子一代,养殖过程投喂人工配合饲料,饲料平均水分含量为7.84%,粗蛋白和粗脂肪含量分别为46.33%和19.43% (均为占饲料鲜重)。根据性腺发育情况确定了野生组3尾雌鱼、养殖组3尾雌鱼、4尾雄鱼,其他个体尚无法辨别雌雄。将上述鲜鱼在冷冻保存下由实验人员乘飞机带回中国水产科学研究院黄海水产研究所并及时送达实验室后取样,将样品放入–20℃低温冰箱中冷冻保存备测。

各组10尾鱼准确测量体长、称量体重,计算肥满度。每组各取7尾鱼(野生116.01~346.85 g、养殖119.17~275.29 g)解剖,称量肝脏、内脏重量,计算肝体比、脏体比。取肌肉(背鳍正下方10~15 g)、肝脏等组织放入冻干机干燥,各组剩余3尾鱼进行全鱼冻干,测定营养成分及氨基酸和脂肪酸组成。

1.2 测定方法 1.2.1 常规营养成分的测定

常规营养成分包括水分、粗蛋白、粗脂肪和灰分。水分采用冷冻干燥法,粗蛋白含量测定采用凯氏定氮法,粗脂肪含量测定采用氯仿-甲醇法,灰分含量测定采用马弗炉550℃高温灼烧法。

1.2.2 脂肪酸的测定

脂肪酸的测定采用气相色谱法。先把样品进行冷冻干燥处理,再将冻干后的样品先后用KOH–甲醇和HCl–甲醇酯化(75℃水浴),然后用正己烷萃取6 h,用气相色谱仪(GC-2010 Pro, 岛津, 日本)进行测定。气相色谱仪条件:石英毛细管柱(SH-RT-2560, 100.00 m×0.25 mm×0.20 μm)、火焰电离探测器。升温程序:以15℃/min的速率从150℃升高至200℃;然后以2℃/min速率从200℃升高至250℃。进样器和探测器的温度为250℃。结果以每种脂肪酸相对于总脂肪酸的百分比表示。

1.2.3 氨基酸的测定

氨基酸采用盐酸水解法。将称量后的样品先在6 mol/L的盐酸中110℃水解22~24 h,再利用氨基酸分析仪(Hitachi L-8900 automatic amino acid analyzer, Hitachi, 日本)测定。

1.3 统计方法

实验数据以平均值±标准差(Mean±SD)表示, 采用SPSS 16.0进行独立样本t检验(independent-samples t test)分析,显著性水平为P < 0.05。

2 结果 2.1 形态学指标

表 1可知,野生与养殖亚东鲑的肝体比和脏体比差异不显著(P > 0.05),但养殖亚东鲑脏体比在数值上高于野生群体27.5%。野生组亚东鲑的肥满度显著低于养殖组(P < 0.05)。

表 1 野生与养殖亚东鲑的形体指标 Tab.1 Somatic indices of wild and farmed Yadong trout
2.2 常规营养成分

表 2可知,野生组亚东鲑全鱼的水分和灰分含量显著高于养殖组(P < 0.05),全鱼粗蛋白和粗脂肪在野生组含量略低,但差异不显著(P > 0.05)。野生组亚东鲑肌肉水分显著高于养殖组(P < 0.05),而肌肉粗脂肪显著低于养殖组(P < 0.05),野生组和养殖组肌肉粗蛋白和灰分含量差异不显著(P > 0.05)。野生组和养殖组亚东鲑肝脏水分、粗蛋白和粗脂肪含量差异不显著(P > 0.05)。

表 2 野生与养殖亚东鲑全鱼、肌肉及肝脏常规营养成分含量(%鲜重) Tab.2 Proximate nutritional components in whole body, muscle and liver of wild and farmed Yadong trout (% wet weight)
2.3 脂肪酸组成

表 3可知,野生组亚东鲑全鱼的饱和脂肪酸(SFA)总量(包括C16:0和C18:0单体)和n-3PUFA总量显著高于养殖组(P < 0.05),而单不饱和脂肪酸(MUFA)总量(包括C16:1n-7和C18:1n-9单体)和C18:2n-6显著低于养殖组(P < 0.05)。野生组全鱼C20:5n-3(EPA)、C20: 4n-6(ARA)显著高于养殖组(P < 0.05),但C22:6n-3(DHA)差异不显著(P > 0.05)。

表 3 野生与养殖亚东鲑全鱼、肌肉和肝脏脂肪酸组成(%总脂肪酸) Tab.3 Fatty acid composition in whole fish, muscle and liver of wild and farmed Yadong trout (% total fatty acids)

野生组肌肉中MUFA总量(包括C16:1n-7和C18:1n-9)和C18:2n-6显著低于养殖组(P < 0.05),n-3PUFA含量和∑n-3/∑n-6比例显著高于养殖组(P < 0.05),而SFA含量差异不显著(P > 0.05)。野生组肌肉中EPA、DHA和ARA都显著高于养殖组(P < 0.05)。

野生组亚东鲑肝脏中SFA总量(包括C16:0和C18:0单体)、n-3PUFA总量和∑n-3/∑n-6比例均显著高于养殖组(P < 0.05),MUFA总量(包括C16:1n-7、C18:1n-9和C20:1n-9单体)和n-6PUFA总量(包括C18:2n-6和C20:2n-6单体)显著低于养殖组(P < 0.05)。野生组亚东鲑肝脏中EPA和ARA显著高于养殖组(P < 0.05),但DHA差异不显著(P > 0.05)。

2.4 氨基酸组成

表 4可知,共检测氨基酸17种,其中,必需氨基酸9种,非必需氨基酸8种。野生组和养殖组亚东鲑的氨基酸含量存在一些差异。野生组亚东鲑必需氨基酸总量(ƩEAA)和非必需氨基酸总量(ƩNEAA)显著高于养殖组(P < 0.05),ƩEAA/ƩNEAA比例差异不显著(P > 0.05)。在17种氨基酸中,除精氨酸和甘氨酸差异不显著(P > 0.05)外,其他氨基酸含量均为野生组显著高于养殖组(P < 0.05)。野生组肌肉中必需氨基酸总量、非需须氨基酸总量和ƩEAA/ƩNEAA均与养殖组差异不显著(P > 0.05),但野生组肌肉中苏氨酸、缬氨酸、苯丙氨酸、赖氨酸和甘氨酸显著高于养殖组(P < 0.05)。野生组亚东鲑肝脏中必需氨基酸总量、非必需氨基酸总量、ƩEAA/ƩNEAA和17种氨基酸均高于养殖组(P < 0.05)。

表 4 野生与养殖亚东鲑全鱼、肌肉和肝脏氨基酸组成(%干物质基础) Tab.4 Amino acid composition in whole fish, muscle and liver of wild and farmed Yadong trout (% dry matter basis)
3 讨论 3.1 养殖和野生亚东鲑常规成分的比较

鱼类常规成分是其营养品质的重要指标,也是配合饲料配方的重要参考。从亚东鲑全鱼、肌肉和肝脏常规成分来看,其肌肉蛋白含量高(鲜重20%左右),具有较高的营养价值。整体上来看,跟其他的鲑鳟鱼类一样,亚东鲑全鱼具有较高的脂肪含量,其全鱼脂肪含量高达15%~17%,但考虑到其肌肉脂肪含量在4%以内且肝脏脂肪含量只有6%以内,由此可见,其腹部脂肪组织较为发达。跟其他的鲑鳟鱼类一样,亚东鲑的烹饪方式以食用生鱼片为主,因此,其肌肉脂肪含量对其口感影响甚大。肌肉脂肪含量的增加通常会降低肌肉硬度。亚东鲑肌肉脂肪含量在4%以内,低于大西洋鲑(Salmo salar) (满庆利等, 2014)、虹鳟(Oncorhynchus mykiss) (朱龙等, 2018)、金鳟(张殿福等, 2020)等其他鲑鳟鱼类。在一些富脂型鲑鳟鱼类中,肌肉脂肪含量可高达15%~20% (张殿福等, 2020)。虽然低于其他鲑鳟鱼类,但亚东鲑肌肉脂肪含量仍高于鲈鱼(Lateolabrax japonicus)、大菱鲆(Scophthalmus maximus)、鲤鱼(Cyprinus carpio)、罗非鱼(Oreochromis niloticus)、大口鳒(Psettodes erumei)和草鱼(Ctenopharyngodon idellu)等鱼类(程汉良等, 2013; Ren et al, 2018; Khieokhajonkhet et al, 2019)。尤其远远高于大西洋鳕(Gadus morhua)、红鳍东方鲀(Takifugu rubripes)及大菱鲆等一些瘦肌型鱼类,这些瘦肌型鱼类的肌肉脂肪含量通常仅有1%左右(Xu et al, 2021)。

野生和养殖亚东鲑的机体成分差异主要集中在全鱼水分、全鱼灰分、肌肉水分和肌肉脂肪4个方面。在这些组分差异中,肌肉脂肪含量对品质影响较大,养殖组粗脂肪含量显著高于野生组。在马苏大麻哈鱼(Oncorhynchus masou) (魏凯等,2020)、半刺厚唇鱼(Acrossocheilus hemispinus) (林建斌等, 2017)和鳡鱼(Elopichthys bambusa) (戴阳军等, 2012)等鱼类中也有类似的结果,而在鳙鱼(Aristichthys nobilis) (王金娜等, 2013)中养殖和野生组粗脂肪差异不明显。导致野生组和养殖组粗脂肪差异的原因,一方面是由于养殖亚东鲑摄食配合饲料,饲料中脂肪含量较高,而野生亚东鲑在自然环境中以甲壳动物和水生昆虫为食,食物中脂肪含量相对较低;另一方面,养殖亚东鲑生存空间较小,食物充足,运动量较少,而野生亚东鲑生活在河川的山间河段,水流湍急,捕食和游泳运动消耗大量能量,所以脂肪含量相对较少。然而,从另一方面来看,在目前的市场需求中,肌肉脂肪含量的升高有助于提高鱼片的柔顺口感,因此,养殖亚东鲑肌肉脂肪的升高在一定程度上可以视为正面影响。而且,在亚东鲑中仍存在通过饲料进一步提高肌肉脂肪含量的空间和潜力。

3.2 养殖和野生亚东鲑脂肪酸的比较

整体上,亚东鲑的脂肪酸组成同其他鱼类类似(Xu et al, 2021)。SFA以C16:0为主(野生含量在17.67%左右),MUFA以C18:1n-9为主(野生含量在14.01%左右),n-6脂肪酸以C18:2n-6为主(野生含量在4.98%左右),n-3脂肪酸以C20:5n-3为主(野生含量在7.79%左右)。在表征肌肉脂肪酸营养品质的脂肪酸方面,肌肉DHA和EPA含量分别为17.24%和6.67% (占总脂肪酸比例),与其他鱼类相比,DHA相对含量高于乌鳢(Channa argus)、大麻哈鱼(Oncorhynchus keta)、草鱼,低于红鳍东方鲀、茎柔鱼(Dosidicus gigas)和莱氏拟乌贼(Sepioteuthis lessoniana)等;而EPA相对含量高于草鱼和大麻哈鱼,低于红鳍东方鲀、茎柔鱼、莱氏拟乌贼和克氏原螯虾(Procambarus clarkii)等(程汉良等, 2013; 赵立等, 2015; 于久翔等, 2016; 王继隆等, 2019; 贡艺等, 2018; 王峥等, 2020; 周剑等, 2021)。

本研究发现,野生和养殖亚东鲑肌肉脂肪酸组成差异较大。整体上,与野生亚东鲑相比,养殖亚东鲑具有更低的C16:0等SFA和DHA、EPA等n-3PUFA,更高的C18:1n-9等MUFA和C18:2n-6。鱼体脂肪酸具有很高的可塑性,很大程度上体现了饲料的脂肪酸组成(Xu et al, 2020)。在其他鱼种中进行的养殖和野生脂肪酸对比实验中发现,在白鲷(Diplodus sargus)肌肉中,与野生个体相比,养殖的白鲷具有更低的ARA等n-6PUFA,更高的C14:0等SFA和EPA等n-3PUFA (Cejas et al, 2004);在高体(Seriola dumerili)肌肉中,与野生个体相比,养殖的高体具有更低的C16:0等SFA和ARA等n-6PUFA,更高的C14:0等SFA和EPA等n-3PUFA (Rodríguez-Barreto et al, 2012);在章鱼(Octopus vulgaris)肌肉中,与野生个体相比,养殖的章鱼有更低的C18:1n-9等MUFA和EPA等n-3PUFA,更高的ARA等n-6PUFA (Estefanell et al, 2015)。从本研究的野生和养殖差异对比来看,目前的亚东鲑配合饲料中具有更高的C18:1n-9和C18:2n-6,而更低的C16:0、EPA和DHA等。推测这主要是因为配合饲料中使用了较多的豆油(以C18:2n-6为特征性脂肪酸)和菜籽油(以C18:1n-9为特征性脂肪酸)。SFA和MUFA对n-3PUFA的节约效应在已有很多报道,尤其是在一些肉食性鱼类中效果较好(Bendiksen et al, 2003; Salini et al, 20152017; Rombenso et al, 2018)。在如今豆油价格较高的情况下,拓宽脂肪源的供应渠道,如使用SFA和MUFA含量较高的动物脂肪或者棕榈油可能会同时满足降低饲料成本和提高动物生长性能的需求。

从肌肉脂肪酸品质来看,野生组n-3PUFA显著高于养殖组,而SFA和MUFA等影响要小一些。类似的结果在草鱼(程汉良等, 2013)、光唇鱼(Acrossocheilus yunnanensis) (李正友等, 2016)等鱼类中也有报道。有许多研究表明,环境和饲料中的脂肪酸组成对鱼体中不饱和脂肪酸影响较明显,但对饱和脂肪酸影响较小。但无论如何,如果仅从n-3PUFA含量来看,养殖亚东鲑的脂肪酸品质是下降的,这也是所有养殖鱼类中普遍存在的问题。目前,常采用投喂高n-3PUFA含量的油类(如藻油和单细胞发酵的油类)或改变投喂策略(鱼油和替代油源交替投喂或者替代油源投喂后重新投喂鱼油)等方式来重新提高养殖鱼类肌肉中的n-3PUFA含量(Osmond et al, 2019; Bi et al, 2021; Liao et al, 2021; Xu et al, 2021)。

3.3 养殖和野生亚东鲑氨基酸的比较

野生亚东鲑和养殖亚东鲑肌肉中氨基酸总量(干物质)分别为80.73%和75.64%。与其他鱼类相比,肌肉氨基酸总量高于齐尔白鲑(Coregonus nasus) (张钰等, 2020)、梭鲈(Sander lucioperca) (孙志鹏等, 2020)、半滑舌鳎(Cynoglossus semilaevis) (马爱军等, 2006)、菊黄东方鲀(Takifug flavidu) (周裕华等, 2021)和草鱼(程汉良等, 2013)等种类。肌肉中谷氨酸含量最高,其次是天冬氨酸,牛磺酸含量最低。众所周知,谷氨酸和天冬氨酸是呈味氨基酸,呈味氨基酸使肉质更鲜美,这可能也是亚东鲑鱼肉味道鲜美的原因之一。

鱼类的生长主要是靠体内蛋白质的积累,而蛋白质是由氨基酸组成。养殖亚东鲑与野生亚东鲑相比,其氨基酸总量和必需氨基酸总量均明显低于野生亚东鲑。对鱼类而言,组成蛋白质的必需氨基酸有10种:赖氨酸、色氨酸、苯丙氨酸、亮氨酸、异亮氨酸、苏氨酸、蛋氨酸、缬氨酸、组氨酸和精氨酸。本研究检测了除色氨酸外其他的9种必需氨基酸,这些必需氨基酸除精氨酸外,养殖组其他必需氨基酸均低于野生亚东鲑,在银鲳(Pampus argenteus)幼鱼(彭士明等, 2008)中也有类似的结果,推测原因可能饲料中氨基酸含量并没有达到所需的平衡状态。

4 结论

从机体成分来看,亚东鲑机体蛋白含量较高,肌肉脂肪含量在鲑鳟鱼类中处于偏低水平。与野生种群相比,养殖亚东鲑具有更高的肥满度、脏体比和肌肉脂肪含量,更低的全鱼水分和灰分。在脂肪酸组成方面,与野生群体相比,养殖亚东鲑具有更高的C18:1n-9和C18:2n-6含量,而具有更低的饱和脂肪酸和n-3长链多不饱和脂肪酸。养殖亚东鲑必需氨基酸含量普遍低于野生群体。成分分析研究表明,目前的亚东鲑配合饲料在营养组成上仍需进一步完善,尤其是饱和脂肪酸和n-3长链多不饱和脂肪酸的供应及氨基酸平衡方面。

参考文献
BENDIKSEN E A, OBLING M J. Effects of temperature and feed composition on essential fatty acid (n-3 and n-6) retention in Atlantic salmon (Salmo salar L.) parr. Fish Physiology and Biochemistry, 2003, 29(2): 133-140 DOI:10.1023/B:FISH.0000035937.68098.83
BI Q Z, LIAO Z B, WEI Y L, et al. Effects of alternate feeding between fish oil- and terrestrially sourced oil-based diets on fatty acid composition of different tissues of turbot. Aquaculture Research, 2021, 52: 3475-3482 DOI:10.1111/are.15154
CEJAS J R, ALMANSA E, JÉREZ S, et al. Lipid and fatty acid composition of muscle and liver from wild and captive mature female broodstocks of white seabream, Diplodus sargus. Comparative Biochemistry and Physiology, Part B, Biochemistry and Molecular Biology, 2004, 138(1): 91-102 DOI:10.1016/j.cbpc.2004.03.003
CHENG H L, JIANG F, PENG Y X, et al. Comparison of nutrient composition of muscles of wild and farmed grass carp, Ctenopharyngodon idellus. Food Science, 2013, 34(13): 266-270 [程汉良, 蒋飞, 彭永兴, 等. 野生与养殖草鱼肌肉营养成分比较分析. 食品科学, 2013, 34(13): 266-270 DOI:10.7506/spkx1002-6630-201313056]
DAI Y J, LIU Z Z, WANG X F, et al. Comparison of nutrient composition in muscles of wild and farmed yellowcheek carp. Food Science, 2012, 33(17): 258-262 [戴阳军, 刘峥兆, 王雪锋, 等. 野生与养殖鳡鱼肌肉的营养成分比较. 食品科学, 2012, 33(17): 258-262]
ESTEFANELL J, SOCORRO J, IZQUIERDO M, et al. Effect of two fresh diets and sexual maturation on the proximate and fatty acid profile of several tissues in Octopus vulgaris: Specific retention of arachidonic acid in the gonads. Aquaculture Nutrition, 2015, 21(3): 274-285 DOI:10.1111/anu.12163
GONG Y, LI Y K, CHEN L, et al. A comparative analysis of fatty acid profiles in muscle of Dosidicus gigas from different harvest locations in the Eastern Pacific Ocean. Progress in Fishery Sciences, 2018, 39(6): 147-154 [贡艺, 李云凯, 陈玲, 等. 东太平洋不同海区茎柔鱼肌肉脂肪酸组成分析与比较. 渔业科学进展, 2018, 39(6): 147-154]
GUO X M, LI F G, JIANG X Y, et al. Evolution analysis of Tc1-like transposon in Salmo trutta fario. Journal of Shanghai Ocean University, 2014, 23(1): 15-21 [郭秀明, 李福贵, 蒋霞云, 等. 亚东鲑基因组中Tc1-like转座子的序列歧化特征分析. 上海海洋大学学报, 2014, 23(1): 15-21]
HAO F H, CHEN Y F, CAI B. Embryonic development of Salmo trutta fario from Yadong River, Tibet. Journal of Fisheries of China, 2006, 30(3): 289-296 [豪富华, 陈毅峰, 蔡斌. 西藏亚东鲑的胚胎发育. 水产学报, 2006, 30(3): 289-296 DOI:10.3321/j.issn:1000-0615.2006.03.001]
HAO F H, CHEN Y F, TANG W X, et al. Age and growth of Salmo trutta fario L. from Yadong River, Tibet. Acta Hydrobiologica Sinica, 2007, 31(5): 731-737 [豪富华, 陈毅峰, 唐卫星, 等. 亚东鲑的年龄与生长的研究. 水生生物学报, 2007, 31(5): 731-737 DOI:10.3321/j.issn:1000-3207.2007.05.020]
HAO F H. Studies on the biology and genetic diversity of Salmo trutta fario L., from Yadong River, Tibet. Doctor Dissertation of Institute of Hydrobiology, Chinese Academy of Sciences, 2006 [豪富华. 亚东鲑的生物学和遗传多样性研究. 中国科学院研究生院(水生生物研究所), 2006]
KHIEOKHAJONKHET A, KLONGCHAI S, MAPHUM O, et al. Lipid distribution patterns of nine commercial fish in Thailand. Aquaculture Research, 2019, 50(4): 1348-1360 DOI:10.1111/are.14011
LI F G, ZOU S M. Genetic diversity analysis of Salmo trutta fario based on COⅠ and COⅡ. Journal of Anhui Agricultural Sciences, 2014, 42(23): 7710-7713 [李福贵, 邹曙明. 亚东鲑线粒体COⅠ与COⅡ基因遗传多样性分析. 安徽农业科学, 2014, 42(23): 7710-7713 DOI:10.3969/j.issn.0517-6611.2014.23.005]
LI Z Y, WANG Y Y, ZHAN H X, et al. Comparison of nutrient components in muscles of cultured and wild groups of Acrossocheilus yunnanensis. Guizhou Agricultural Sciences, 2016, 44(11): 104-107 [李正友, 王艳艳, 詹会祥, 等. 人工养殖与野生云南光唇鱼肌肉的营养成分测定及比较. 贵州农业科学, 2016, 44(11): 104-107 DOI:10.3969/j.issn.1001-3601.2016.11.022]
LIAO Z B, SUN Z Y, BI Q Z, et al. Application of the fish oil-finishing strategy in a lean marine teleost, tiger puffer (Takifugu rubripes). Aquaculture, 2021, 534(1/2): 736306
LIN J B, LIANG P, QIN Z Q, et al. Analysis of nutrition in the muscle of wild and cultured Acrossocheilus hemispinus. China Feed, 2017(22): 27-30 [林建斌, 梁萍, 秦志清, 等. 野生与养殖半刺厚唇鱼肌肉营养成分比较分析. 中国饲料, 2017(22): 27-30]
MA A J, LIU X F, ZHAI Y X, et al. Biochemical composition in muscle of wild and cultivated tongue sole (Cynoglossus semilaevis Günther). Marine Fisheries Research, 2006, 27(2): 49-54 [马爱军, 刘新富, 翟毓秀, 等. 野生及人工养殖半滑舌鳎肌肉营养成分分析研究. 海洋水产研究, 2006, 27(2): 49-54]
MAN Q L, CAO Y F, YANG Z N, et al. Analysis on nutritional composition of muscle of Salmo salar. Hebei Fisheries, 2014(1): 12-14 [满庆利, 曹永芬, 杨质楠, 等. 大西洋鲑肌肉营养成分分析. 河北渔业, 2014(1): 12-14]
OSMOND A T Y, COLOMBO S M. The future of genetic engineering to provide essential dietary nutrients and improve growth performance in aquaculture: Advantages and challenges. Journal of the World Aquaculture Society, 2019, 50(3): 490-509 DOI:10.1111/jwas.12595
PENG S M, HUANG X X, ZHAO F, et al. Comparison on the contents of the somatic aminoacid both in wild and cultured young fish of silvery pomfret Pampus argenteus. Marine Fisheries, 2008(1): 26-30 [彭士明, 黄旭雄, 赵峰, 等. 野生与养殖银鲳幼鱼氨基酸含量的比较. 海洋渔业, 2008(1): 26-30 DOI:10.3969/j.issn.1004-2490.2008.01.005]
PU D Y, WANG Z J, ZHAO H P, et al. Morphological and histological observation of digestive system in Salmo trutta fario Linne. Sichuan Journal of Zoology, 2006, 25(4): 825-828 [蒲德永, 王志坚, 赵海鹏, 等. 亚东鲑消化系统的形态学和组织学观察. 四川动物, 2006, 25(4): 825-828 DOI:10.3969/j.issn.1000-7083.2006.04.040]
REN W, LI J Q, TIAN P, et al. Lipid deposition patterns among different sizes of three commercial fish species. Aquaculture Research, 2018, 49(2): 1046-1052 DOI:10.1111/are.13553
RODRÍGUEZ-BARRETO D, JEREZ S, CEJAS J R, et al. Comparative study of lipid and fatty acid composition in different tissues of wild and cultured female broodstock of greater amberjack (Seriola dumerili). Aquaculture, 2012, 360/361: 1-9
ROMBENSO A N, TRUSHENSKI J T, DRAWBRIDGE M. Saturated lipids are more effective than others in juvenile California yellowtail feeds-Understanding and harnessing LC-PUFA sparing for fish oil replacement. Aquaculture, 2018, 493: 192-203
SALINI M J, TURCHINI G M, GLENCROSS B D. Effect of dietary saturated and monounsaturated fatty acids in juvenile barramundi Lates calcarifer. Aquaculture Nutrition, 2017, 23(2): 264-275
SALINI M, IRVIN S, BOURNE N, et al. Marginal efficiencies of long chain-polyunsaturated fatty acid use by barramundi (Lates calcarifer) when fed diets with varying blends of fish oil and poultry fat. Aquaculture, 2015, 449: 48-57
SUN Z P, CAO D C, PEI Y, et al. Analysis and evaluation of nutritional composition in muscle of wild and farmed pikeperch Sander lucioperca. Chinese Journal of Fisheries, 2020, 33(4): 15-22 [孙志鹏, 曹顶臣, 裴玥, 等. 野生和养殖梭鲈肌肉营养组成分析与评价. 水产学杂志, 2020, 33(4): 15-22]
WANG C A, HU G, SUN P, et al. Effects of dietary protein and lipid levels on growth performance, digestive enzyme activities and serum indices of Salmo trutta fario broodstock. Chinese Journal of Animal Nutrition, 2017, 29(2): 571-582 [王常安, 户国, 孙鹏, 等. 饲料蛋白质和脂肪水平对亚东鲑亲鱼生长性能、消化酶活性和血清指标的影响. 动物营养学报, 2017, 29(2): 571-582]
WANG F. Studies on several culture biology characteristics of Salmo trutta. Master´s Thesis of Shanghai Ocean University, 2015 [王芳. 亚东鲑若干养殖生物学特性研究. 上海海洋大学硕士研究生学位论文, 2015]
WANG J L, LIU W, LI P L, et al. Evaluation of nutritive quality and nutrient components in the muscles of wild and farmed chum salmon (Oncorhynchus keta). Journal of Guangdong Ocean University, 2019, 39(2): 126-132 [王继隆, 刘伟, 李培伦, 等. 野生和养殖大麻哈鱼肌肉营养成分与品质评价. 广东海洋大学学报, 2019, 39(2): 126-132]
WANG J N, TANG L, LIU K Q, et al. Analysis of nutritions in the muscle between cultured and wild variegated carp. Hebei Fisheries, 2013(2): 8-14 [王金娜, 唐黎, 刘科强, 等. 人工养殖与野生鳙鱼肌肉营养成分的比较分析. 河北渔业, 2013(2): 8-14]
WANG Q L, WANG J L, LIU F, et al. Effect of different stocking density on growth performance of sub-adult of Salmo trutta. Journal of Aquaculture, 2020, 41(4): 8-10 [王且鲁, 王金林, 刘飞, 等. 不同养殖密度对亚东鲑亚成鱼生长性能的影响. 水产养殖, 2020, 41(4): 8-10]
WANG Q L, ZHOU J S, WANG W L, et al. Disease diagnosis and common diseases control methods of cultured trout in Tibet. Tibet Journal of Agricultural Sciences, 2021, 43(2): 43-45 [王且鲁, 周建设, 王万良, 等. 西藏人工养殖鲑鳟鱼病害诊断及常见病害防治方法. 西藏农业科技, 2021, 43(2): 43-45]
WANG W L, ZHANG B B, ZHOU J S, et al. Effects of different water temperature on growth and survival of juvenile Salmo trutta. Fisheries Science and Technology Information, 2019, 46(1): 24-27 [王万良, 张忭忭, 周建设, 等. 不同水温对亚东鲑幼鱼生长及存活的影响. 水产科技情报, 2019, 46(1): 24-27]
WANG Z, LIU C L, ZHAI J M, et al. Analysis and evaluation of muscle nutrition of Sepioteuthis lessoniana. Progress in Fishery Sciences, 2020, 41(4): 102-109 [王峥, 刘长琳, 翟介明, 等. 莱氏拟乌贼肌肉营养成分分析及评价. 渔业科学进展, 2020, 41(4): 102-109]
WEI K, ZHENG W, GENG Y, et al. Comparative analysis of nutritional composition in muscles between wild and cultured masu salmon Oncorhynchus masou. Chinese Journal of Fisheries, 2020, 33(6): 1-6 [魏凯, 郑伟, 耿琰, 等. 野生与养殖苏大麻哈鱼肌肉营养成分的比较. 水产学杂志, 2020, 33(6): 1-6]
XU H G, BI Q Z, LIAO Z B, et al. Long-term alternate feeding between fish oil- and terrestrially sourced oil-based diets mitigated the adverse effects of terrestrially sourced oils on turbot fillet quality. Aquaculture, 2020, 531: 735974
XU H G, BI Q Z, PRIBYTKOVA E, et al. Different lipid scenarios in three lean marine teleosts having different lipid storage patterns. Aquaculture, 2021, 536(1): 736448
XU H G, TURCHINI G M, FRANCIS D S, et al. Are fish what they eat? A fatty acid's perspective. Progress in Lipid Research, 2020, 80: 101064
YU J X, GAO X Q, HAN C, et al. Comparative analysis on nutritional quality between wild and cultured Takifugu rubripes. Chinese Journal of Animal Nutrition, 2016, 28(9): 2987-2997 [于久翔, 高小强, 韩岑, 等. 野生和养殖红鳍东方鲀营养品质的比较分析. 动物营养学报, 2016, 28(9): 2987-2997]
ZHANG C, ZHANG B B, MOU Z B, et al. Effects of salinity on growth and survival of Salmo trutta. Southwest China Journal of Agricultural Sciences, 2019, 32(7): 1659-1663 [张驰, 张忭忭, 牟振波, 等. 盐度对亚东鲑鱼苗生长及存活的影响. 西南农业学报, 2019, 32(7): 1659-1663]
ZHANG D F, WU L, ZHANG X Z, et al. Nutrient components and texture profiles in the flesh of Atlantic salmon, triploid rainbow trout, and golden trout. Journal of Fishery Sciences of China, 2020, 27(2): 186-194 [张殿福, 吴雷, 张学振, 等. 大西洋鲑、三倍体虹鳟和金鳟的肌肉营养成分与品质特性. 中国水产科学, 2020, 27(2): 186-194]
ZHANG Y, CAI L G, CHENG X Y, et al. Comparative analysis of nutrient composition in muscles between wild and flowing-water farmed broad whitefish Coregonus nasus. Chinese Journal of Fisheries, 2020, 33(6): 7-13 [张钰, 蔡林钢, 程先友, 等. 野生与流水养殖齐尔白鲑肌肉营养成分比较分析. 水产学杂志, 2020, 33(6): 7-13]
ZHAO L, CHEN J, ZHAO C G, et al. Composition analysis and nutritional evaluation of wild and farmed Channa argus. Modern Food Science and Technology, 2015, 31(9): 244-249 [赵立, 陈军, 赵春刚, 等. 野生和养殖乌鳢肌肉的成分分析及营养评价. 现代食品科技, 2015, 31(9): 244-249]
ZHOU J, ZHAO Z M, HUANG Z P, et al. Comparison of nutrient components in muscles and hepatopancreas of pond-and paddy field-cultured Procambarus clarkii. Progress in Fishery Sciences, 2021, 42(2): 162-169 [周剑, 赵仲孟, 黄志鹏, 等. 池塘和稻田养殖模式下克氏原螯虾肌肉和肝脏营养成分比较. 渔业科学进展, 2021, 42(2): 162-169]
ZHOU Y H, ZHOU W Y, PAN G P, et al. Comparison of muscle characteristics between wild and cultured Takifug flavidus. Fisheries Science and Technology Information, 2021, 48(4): 210-213 [周裕华, 周文玉, 潘桂平, 等. 野生菊黄东方鲀与养殖菊黄东方鲀肌肉品质比较. 水产科技情报, 2021, 48(4): 210-213]
ZHU L, YUAN C, ZHU C K, et al. Comparison of nutritional compositions in muscles of diploid and triploid rainbow trouts (Oncorhynchus mykiss). Acta Nutrimenta Sinica, 2018, 40(2): 206-208 [朱龙, 袁聪, 朱成科, 等. 二倍体和三倍体虹鳟肌肉营养成分比较及分析. 营养学报, 2018, 40(2): 206-208]