渔业科学进展  2023, Vol. 44 Issue (2): 87-97  DOI: 10.19663/j.issn2095-9869.20211027002
0

引用本文 

程琳, 李旭鹏, 曹宝祥, 盖超伟, 栾生, 孔杰, 孟宪红. 温度渐变和骤变下凡纳滨对虾ddit4l基因的表达分析[J]. 渔业科学进展, 2023, 44(2): 87-97. DOI: 10.19663/j.issn2095-9869.20211027002.
CHENG Lin, LI Xupeng, CAO Baoxiang, GAI Chaowei, LUAN Sheng, KONG Jie, MENG Xianhong. Expression Analysis of the ddit4l Gene in Litopenaeus vannamei Under Sudden and Gradual Change of Temperature[J]. Progress in Fishery Sciences, 2023, 44(2): 87-97. DOI: 10.19663/j.issn2095-9869.20211027002.

基金项目

国家自然科学基金联合基金项目(U1706203)、山东省农业重大应用技术创新项目(SD2019YY001)、山东省农业良种工程项目(2019LZGC014)和中国水产科学研究院创新团队项目(2020TD26; 2021CG01)共同资助

作者简介

程琳,E-mail: chengmumua@outlook.com

通讯作者

孟宪红,研究员,E-mail: mengxianhong@ysfri.ac.cn

文章历史

收稿日期:2021-10-27
收修改稿日期:2021-11-29
温度渐变和骤变下凡纳滨对虾ddit4l基因的表达分析
程琳 1,3, 李旭鹏 2,3, 曹宝祥 2,3, 盖超伟 1,3, 栾生 2,3, 孔杰 2,3, 孟宪红 2,3     
1. 上海海洋大学 水产科学国家级实验教学示范中心 上海 201306;
2. 青岛海洋科学与技术试点国家实验室海洋渔业科学与食物产出过程功能实验室 山东 青岛 266071;
3. 中国水产科学研究院黄海水产研究所 农业农村部海洋渔业可持续发展重点实验室 山东 青岛 266071
摘要:为探索凡纳滨对虾(Litopenaeus vannamei) DNA损伤诱导因子-4 (DNA damage inducible transcript 4-like, ddit4l)的结构及功能,以转录组测序获得的unigene序列为基础,采用直接PCR扩增方法,获得ddit4l完整的ORF序列(Lv-ddit4l)。该基因的ORF长495 bp,编码164个氨基酸,分子量为18.51 kDa,理论等电点为5.35,包含1个RTP801C超基因家族功能结构域。多序列比对结果和系统进化树显示,Lv-ddit4l与北太平洋雪蟹(Chionoecetes opilio)的同源性最高,为59.76%,且与北太平洋雪蟹先聚为一支。组织表达结果显示,Lv-ddit4l在眼柄、鳃、肝胰腺、神经、肌肉5种组织中均表达,且表达量基本相同。在温度渐变和温度骤变条件下,Lv-ddit4l在不同组织中表达变化模式有较大差别。与26℃水温(对照组)相比,水温渐变至32℃时,眼柄中Lv-ddit4l表达量显著上调(P < 0.05)。之后水温缓慢升至最高温38℃再以同样的速度回温。回温至32℃时,鳃、肝胰腺中Lv-ddit4l表达量显著上调(P < 0.05)。在环境水温从26℃骤变至36℃后10 min时,鳃、肝胰腺、神经中Lv-ddit4l表达量显著上调(P < 0.05);24 h时,肌肉中Lv-ddit4l表达量显著上调(P < 0.05)。当环境温度分别从38℃、36℃恢复回26℃后,凡纳滨对虾体内原先上调表达的Lv-ddit4l表达量呈下调恢复趋势。研究表明,Lv-ddit4l可能与凡纳滨对虾响应高温胁迫过程相关。
关键词凡纳滨对虾    高温    Lv-ddit4l    基因表达    
Expression Analysis of the ddit4l Gene in Litopenaeus vannamei Under Sudden and Gradual Change of Temperature
CHENG Lin 1,3, LI Xupeng 2,3, CAO Baoxiang 2,3, GAI Chaowei 1,3, LUAN Sheng 2,3, KONG Jie 2,3, MENG Xianhong 2,3     
1. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University Shanghai 201306, China;
2. Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266071, China;
3. Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
Abstract: Temperature is an important environmental factor that affects the growth, development, and metabolism of shrimp. High temperatures tend to cause a decrease in the immunity and production performance of shrimp, resulting in a significant increase in shrimp disease and mortality. Based on transcriptome sequencing data, we screened for the involvement of DNA damage-inducible transcript 4 like (ddit4l) in the temperature stress process of Litopenaeus vannamei. Ddit4l (also known as Redd2 and Rtp801L) is involved in regulating cell survival, proliferation, and apoptosis by affecting DNA damage repair factors, hypoxia-inducible factors, and other signaling pathways when stimulated by DNA damage, hypoxia, ischemia, and oxidative stress, among others. Ddit4l may be an important transducer of pathological stress in autophagy through mammalian target of rapamycin (mTOR) signaling. Autophagy is a process in which cells use lysosomes to degrade their own damaged organelles and macromolecules, and the process plays an important role in maintaining the balance of protein metabolism and the stability of the intracellular environment, promoting cell growth and development. An important regulator of autophagy is the mTOR, which responds to various stimuli, such as growth factors, cellular energy status, oxygen concentrations, and stress, to regulate cell metabolism and growth. Ddit4l and its homolog ddit4 are upstream mTOR inhibitors in several tissues and cell models. We set up sudden temperature change and gradual temperature change experiments to induce a stress response in L. vannamei. In the gradual change experiment, the water temperature was increased from 26℃ to 38℃ at a rate of 4℃ per day, and cooled back to 26℃ at the same rate. Two individuals were randomly selected from each of the three parallel experiments in the experimental group at each time point. The eyestalk, gill, hepatopancreas, nerve, and muscle were used for subsequent RNA extraction and gene expression quantification. RNA quality and concentration were also examined. The partial ddit4l cDNA (complete ORF and partial UTR) of L. vannamei was obtained directly by PCR amplification to evaluate the structure and function of the Lv-ddit4l gene. The Lv-ddit4l sequence contained a 495 bp open reading frame, encoding 164 amino acids, with a molecular weight of 18.51 kDa, and an isoelectric point of 5.35. The instability index was 65.83, which classifies the protein as unstable. Lv-ddit4l contains a highly conserved RTP801-C domain. BLAST alignment and phylogenetic tree analysis showed that the Lv-ddit4l gene had 59.76% similarity with the Chionoecetes opilio ddit4l gene, and first clustered with C. opilio. A real-time RT-PCR confirmatory experiment considered three parallel groups for each sample with 18S rRNA as the reference gene. Relative gene expression was analyzed using the 2–ΔΔCt method. Quantitative analysis of gene expression levels showed that Lv-ddit4l was widely expressed in all of the examined tissues, with similar expression levels at 26℃. When the temperature was increased gradually from 26℃ to 32℃, the Lv-ddit4l gene in the eyestalk was significantly increased (P < 0.05), and was 10.37 times higher than that in the control (A-26℃). Therefore, this gene is hypothesized to respond to temperature changes in the eyestalk of L. vannamei. The expression of Lv-ddit4l in the eyestalk, gills, hepatopancreas, nerves, and muscles did not change significantly when the water temperature was gradually increased to the highest temperature of 38℃; it is speculated that this gene may play a role in pre-heat stress. When the temperature was gradually cooled from 38℃ to 32℃, the expression of Lv-ddit4l increased significantly in the gill and hepatopancreas (P < 0.05), which were respectively 3.37 and 2.03 times higher than that of the control group (A-26℃). There was no significant difference in gene expression under different levels of gradual changes in temperature stress in the nerve and muscle. The expression in the gill, hepatopancreas, and nerve was significantly up-regulated (P < 0.05) at a sudden change in water temperature to 36℃ for 10 min, and the change in expression in the hepatopancreas was 24.06 times higher than that in the control group (A-26℃). Gene expression in the gills and nerves was 1.22-fold and 3.67-fold higher than that in the control (A-26℃), respectively. When the water temperature was increased to 36℃ suddenly for 24 h, Lv-ddit4l gene expression increased significantly in the muscle (P < 0.05). Lv-ddit4l showed significant up-regulation of expression in the gill, hepatopancreas, nerve, and muscle with sudden changes in temperature, suggesting that this gene may play a role in the stress induced by sudden increases in temperature. When the temperature was restored from 38℃ and 36℃ to 26℃, the expression of the Lv-ddit4l gene was downregulated in L. vannamei. The above results indicate that Lv-ddit4l is associated with the response to high-temperature stress.
Key words: Litopenaeus vannamei    High temperature stress    Lv-ddit4l    Gene expression    

凡纳滨对虾(Litopenaeus vannamei)俗称南美白对虾,原产于太平洋西岸水域秘鲁北部至墨西哥桑诺拉一带,是当今世界上养殖产量最高的对虾种类,也是我国主要养殖的对虾种类(陈昌生等, 2001)。水温是影响对虾生长、发育及代谢强度的重要环境因子之一。对虾为变温动物,其体温随着环境温度的变化而变化,而环境温度的不同会影响机体的新陈代谢和生理调节机制(景福涛等, 2006)。凡纳滨对虾幼体的最适生长温度为30~33℃(陈昌生等, 2001; 欧黄思, 2015),虾苗生长的最适温度为28~32℃(杨锋等, 2001),成虾的适宜温度为23~33℃(景福涛等, 2006)。长期生活在低温或高温环境中的凡纳滨对虾始终处于胁迫状态,导致其免疫适应不良(李强等, 2008)。高温易造成对虾的免疫力和生产性能下降,导致对虾患病及死亡率明显增加(胡利杰等, 2020)。在夏季高温期,对虾病毒病发病严重,该现象主要与环境温度相关(Cheng et al, 2000; 丁志起等, 2005)。但目前对凡纳滨对虾温度胁迫的调控关键基因尚无确切的研究结果。

DNA损伤诱导因子-4 (DNA damage inducible transcript-4 like, ddit4l),也称为REDD2或RTP801L,是首次发现于白血病细胞系THP-1的一种应激诱导蛋白,主要存在于细胞浆、肌动蛋白微丝与核浆中(张少校等, 2017)。ddit4l受到DNA损伤、缺氧、缺血、氧化应激等刺激时,通过影响DNA损伤修复因子、缺氧诱导因子等信号通路来参与调节细胞生存、增殖与凋亡(Shoshani et al, 2002; Cuaz-Pérolin et al, 2004; Miyazaki et al, 2009; Simonson et al, 2017)。细胞自噬是细胞利用溶酶体降解自身受损的细胞器和大分子物质的过程,在维持蛋白代谢平衡与细胞内环境稳定、促进细胞的生长发育等方面发挥重要作用(李国东等, 2009; 马骊等, 2018)。饥饿、活性氧自由基(ROS)的氧化应激、生长因子缺乏、蛋白质折叠错误或聚集以及DNA损伤等刺激均会诱导细胞发生自噬(焦寒伟等, 2019)。自噬的一个重要调节因子是哺乳动物雷帕霉素靶蛋白(mTOR),对生长因子、氧浓度、压力等刺激做出反应,以控制细胞的代谢和生长。ddit4l被证明是mTOR的上游抑制剂(Corradetti et al, 2005),能够通过抑制mTOR介导的蛋白质来降低细胞增殖和分化(Polman et al, 2012)。目前,关于ddit4l基因在甲壳动物免疫防御方面的研究较少,在对虾中的研究更为缺乏。本研究对在不同温度胁迫下凡纳滨对虾ddit4l (Lv-ddit4l)的应激表达特性进行分析,可为进一步探究凡纳滨对虾高温胁迫应答机制提供参考。

1 材料与方法 1.1 凡纳滨对虾样品及胁迫处理

实验动物选取于2020年构建的同一个凡纳滨对虾家系,平均体长为(10.0±0.5) cm,平均体重为(6.5± 0.5) g。实验地点为中国水产科学研究院黄海水产研究所遗传育种中心。在规格为130 cm×80 cm×60 cm的水箱中暂养5 d,水温为26℃,保持连续充气;每日投喂3次饲料,日换水量1/2。

高温胁迫实验分为温度渐变实验和温度骤变实验,均设置3个平行实验,整个实验过程无对虾死亡。

温度渐变实验组:暂养结束后,采用静水法,在130 cm×80 cm×60 cm的水箱中,自动恒温加热器调整水温。在26℃(对照)恒温之后,以每12 h升高2℃的速度从26℃升至38℃,38℃维持12 h后,再以每12 h降低2℃的速度回温至26℃。取样时间点见图 1

图 1 温度渐变取样时间点示意图 Fig.1 Schematic diagram of sample collection under gradual change of temperature

温度骤变实验组:凡纳滨对虾在56 cm× 44 cm× 36 cm水箱中养殖。在26℃(对照)恒温之后,将凡纳滨对虾直接从26℃海水中移至36℃海水中养殖24 h,再将凡纳滨对虾直接从36℃海水中移至26℃海水中养殖48 h。分别在3个时间点取样,设置骤变早期和晚期,取样时间点见图 2

图 2 温度骤变取样时间点示意图 Fig.2 Schematic diagram of sample collection under acute change of temperature

每个时间点分别从实验组3个平行实验中随机抽取2尾,共计6尾凡纳滨对虾。每尾凡纳滨对虾取眼柄、鳃、肝胰腺、神经和肌肉5种组织,神经取腹神经索部分,共计48尾虾的240份组织保存于RNAstore reagent (TIANGEN)中,用于后续的RNA提取和基因表达定量实验。

1.2 总RNA的提取和cDNA的合成

使用RNA-easyTM isolation reagent (Vazyme)提取眼柄、肝胰腺、鳃和肌肉组织的总RNA,使用RNAprep pure micro kit (TIANGEN)提取凡纳滨对虾神经的总RNA。使用琼脂糖凝胶电泳检测RNA的质量及完整性。使用NanoDrop 2000 UV/Vis分光光度计(Thermo Fisher Scientific)在260 nm和280 nm下定量总RNA。使用试剂盒ReverTra Ace® qPCR RT master mix with gDNA remover (TOYOBO)反转录获得cDNA。

1.3 Lv-ddit4l基因序列的验证

基于高温胁迫实验样品转录组测序获得的ddit4l基因的参考序列,使用Primer Premier 5.0软件设计cDNA序列扩增和基因表达定量所用引物,引物信息见表 1,由生工生物工程(上海)股份有限公司合成。

表 1 引物名称及序列 Tab.1 The name and sequence of the primers

以反转录获得的cDNA为模板,利用上游引物ddit4l-F和下游引物ddit4l-R通过PCR扩增cDNA序列。PCR反应程序:94℃预变性2 min;98℃变性30 s,61℃退火30 s,68℃延伸1 min,35个循环;68℃ 5 min。反应后进行琼脂糖凝胶电泳确定扩增产物特异性和片段大小。PCR产物委托生工生物工程(上海)股份有限公司进行Sanger测序。将测序结果与转录组中序列进行对比,验证Lv-ddit4l的cDNA序列。

1.4 Lv-ddit4l基因的生物信息学分析

使用EditSeq软件分析该基因开放阅读框(ORF)及推导其氨基酸序列。使用ExPASy-ProtParam tool (https://web.expasy.org/protparam/)软件预测蛋白质分子质量、理论等电点、不稳定系数等。使用TMHMM (http://www.cbs.dtu.dk/services/TMHMM/)软件分析蛋白质的跨膜区。使用SignalP 5.0 (http://www.cbs.dtu.dk/services/SignalP/)软件进行信号肽预测。使用NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/services/NetNGlyc/)软件进行糖基化位点分析。使用NetPhos 3.1 Server (http://www.cbs.dtu.dk/services/NetPhos/)软件进行磷酸化位点分析。使用InterProScan (http://www.ebi.ac.uk/InterProScan/)软件进行蛋白质功能结构域预测分析。使用SOPMA (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html)软件进行二级结构预测。基于BLAST搜索结果,对ddit4l在氨基酸水平上进行同源比较和进化树分析,使用DNAMAN 6.0软件进行同源多序列比对,使用MEGA 7.0软件通过邻接法(neighbour-joining method, NJ)进行Lv-ddit4l基因进化树构建。

1.5 Lv-ddit4l基因的表达定量分析

以凡纳滨对虾5种组织的cDNA为模板,使用SYBR Green Real time PCR Master Mix(TOYOBO),使用Applied BiosystemsTM 7500 Real Time PCR instrument定量仪,采用2–ΔΔCt计算方法进行荧光定量RT-PCR (qRT-PCR),分析ddit4l在不同温度时5种组织中的表达水平。反应体系为25 µL:12.5 µL SYBR Real time PCR Master Mix,2.5 µL样品溶液,8 µL蒸馏水,1 µL上游引物和1 µL下游引物。每个样品实验设置3个平行重复以及内参对照。反应条件:95℃ 60 s;95℃15 s,60℃ 15 s,72℃ 45 s,共40个循环。

使用IBM SPSS Statistics 26软件对计算结果进行单因素方差分析(one-way ANOVA),P < 0.05表示差异显著,并通过prism将统计结果整理成柱状图。

2 结果与分析 2.1 Lv-ddit4l基因ORF序列的验证及特征分析结果

Lv-ddit4l基因扩增产物凝胶电泳结果如图 3所示,产物单一,且长度在750 bp左右,符合序列扩增引物设计的预计产物大小。

图 3 Lv-ddit4l基因扩增产物凝胶电泳结果 Fig.3 Gel electrophoresis of Lv-ddit4l gene amplification products

Lv-ddit4l序列包含1个495 bp的ORF,编码164个氨基酸,预测其带负电荷的氨基酸残基为24个(Asp+Glu),带正电荷的氨基酸残基为18个(Arg+ Lys),分子量为18.51 kDa,理论等电点为5.35,不稳定性系数为65.83,归类为不稳定性蛋白,脂肪族指数为96.28,亲水性总平均值为–0.307,无跨膜蛋白和信号肽结构,预测无糖基化位点,磷酸化位点分析预测有8个Ser、4个Thr和1个Tyr,在62~160氨基酸位置处包含1个RTP801C超基因家族功能结构域,且该结构域在物种间相当保守(图 4图 5)。预测的二级结构中,α-螺旋(62个氨基酸)占37.80%,β-折叠(33个氨基酸)占20.12%,β-转角(7个氨基酸)占4.27%,无规卷曲(62个氨基酸)占37.80%,说明Lv-ddit4l基因编码的蛋白以α-螺旋、延伸链和无规卷曲为主,含少量的β-折叠,间或有β-转角。Lv-ddit4l蛋白质的三维结构如下(图 6)。

图 4 Lv-ddit4l基因cDNA序列和对应的氨基酸序列 Fig.4 cDNA and amino acid sequence of Lv-ddit4l 启动子和终止子用红色字体表示,“ ”表示磷酸化位点,“–”表示结构域 The start and stop codons are indicated in red, " " for phosphorylation site, "–" for domain
图 5 Lv-ddit4l基因的功能结构域 Fig.5 Functional domain of Lv-ddit4l
图 6 Lv-ddit4l蛋白质的三维结构 Fig.6 Three-dimensional structure of the Lv-ddit4l protein
2.2 Lv-ddit4l基因的同源性分析

利用NCBI BLASTP对Lv-ddit4l基因编码的氨基酸序列进行同源序列比对(图 7),发现Lv-ddit4l与北太平洋雪蟹(Chionoecetes opilio)的同源性较高,为59.76%,与其他物种同源性为:人(Homo sapiens) (23.20%)、家鼠(Mus musculus) (23.59%)、牛(Bos taurus) (23.71%)、黑猩猩(Pan troglodytes) (23.20%)、野猪(Sus scrofa) (21.65%)、热带爪蟾(Xenopus tropicalis) (20.11%)、斑点叉尾(Ictalurus punctatus) (25.13%)、斑马鱼(Danio rerio) (17.96%)、尖吻鲈(Lates calcarifer) (24.74%)、眼斑鳗狼鱼(Anarrhichthys ocellatus) (24.23%)、海龟(Chelonia mydas) (21.88%)、鸸鹋(Dromaius novaehollandiae)(19.44%)、鲸鲨(Rhincodon typus) (21.35%)、豌豆蚜(Acyrthosiphon pisum) (29.65%)、佛州文昌鱼(Branchiostoma floridae) (20.48%)、大型蚤(Daphnia magna) (27.33%)、紫色海胆(Strongylocentrotus purpuratus) (19.13%)、日本刺参(Apostichopus japonicus) (22.22%)、马蹄蟹(Limulus polyphemus) (23.39%)、美国龙虾(Homarus americanus) (34.12%)。

图 7 Lv-ddit4l氨基酸序列比对 Fig.7 The alignment of Lv-ddit4l amino acid sequence ddit4l序列GenBank登录号:人(NP_660287.1)、家鼠(NP_084419.2)、北太平洋雪蟹(KAG0695771.1)、牛(NP_001074988.1)、黑猩猩(XP_001168002.1)、野猪(XP_013834460.1)、热带爪蟾(XP_004911505.2)、斑点叉尾(XP_017326609.1)、斑马鱼(NP_001245246.1)、尖吻鲈(XP_018546478.1)、眼斑鳗狼鱼(XP_031707148.1)、海龟(XP_027681253.1)、鸸鹋(XP_025965069.1)、鲸鲨(XP_020378872.1)、豌豆蚜(NP_001155726.1)、佛州文昌鱼(XP_035668797.1)、大型蚤(JAL45518.1)、紫色海胆(XP_787042.1)、日本刺参(PIK42874.1)、马蹄蟹(XP_022254613.1)、美国龙虾(XP_042214560.1)。 The GenBank accession numbers of ddit4l amino acid sequences are as follows: Homo sapiens (NP_660287.1), Mus musculus (NP_084419.2), Chionoecetes opilio (KAG0695771.1), Bos taurus (NP_001074988.1), Pan troglodytes (XP_001168002.1), Sus scrofa (XP_013834460.1), Xenopus tropicalis (XP_004911505.2), Ictalurus punctatus (XP_017326609.1), Danio rerio (NP_001245246.1), Lates calcarifer (XP_018546478.1), Anarrhichthys ocellatus (XP_031707148.1), Chelonia mydas (XP_027681253.1), Dromaius novaehollandiae (XP_025965069.1), Rhincodon typus (XP_020378872.1), Acyrthosiphon pisum (NP_001155726.1), Branchiostoma floridae (XP_035668797.1), Daphnia magna (JAL45518.1), Strongylocentrotus purpuratus (XP_787042.1), Apostichopus japonicas (PIK42874.1), Limulus polyphemus (XP_022254613.1), Homarus americanus (XP_042214560.1).
2.3 Lv-ddit4l基因的系统进化树分析

ddit4l编码的蛋白序列进行系统进化树分析,结果如图 8所示,凡纳滨对虾先与北太平洋雪蟹紧密聚为一支,再与美国龙虾相聚,它们的亲缘关系最近,形成一个独立的分支。接着与日本刺参、紫色海胆、佛州文昌鱼、马蹄蟹、大型蚤、豌豆蚜聚为一支。

图 8 ddit4l系统进化发育树分析 Fig.8 The analysis of phylogenetic tree for ddit4l
2.4 Lv-ddit4l基因在正常凡纳滨对虾组织中的表达

qRT-PCR分析表明,在26℃水温环境中,Lv-ddit4l在凡纳滨对虾5种组织中均有表达,且表达量基本相同,没有显著差异(P > 0.05) (图 9)。

图 9 26℃时凡纳滨对虾Lv-ddit4l在5种组织中的表达 Fig.9 Expression of Lv-ddit4l in five tissues of L. vannamei at 26℃ 标有不同字母的值之间差异显著(P < 0.05)。下同。 Values with different letters are significantly different (P < 0.05). The same as below.
2.5 不同温度胁迫下Lv-ddit4l基因在不同组织中的表达

在温度渐变实验中,Lv-ddit4l基因在凡纳滨对虾5种组织中的相对表达量如图 10所示。眼柄中的Lv-ddit4l表达量在水温升至32℃时(B-32℃)显著上调(P < 0.05),是对照组(A-26℃)表达量的10.37倍。与对照组(A-26℃)相比,鳃、肝胰腺中Lv-ddit4l的表达量回温至32℃时显著上调(P < 0.05),表达量分别是对照组(A-26℃)的3.37倍和2.03倍。回温至26℃时(E-26℃),眼柄、鳃、肝胰腺、神经和肌肉中的Lv-ddit4l表达量与对照组(A-26℃)无显著差异(P > 0.05)。在神经和肌肉中,不同温度胁迫下的Lv-ddit4l表达量没有显著变化(P > 0.05)。

图 10 温度渐变下Lv-ddit4l在5种组织中的表达 Fig.10 Expression of Lv-ddit4l in five tissues under gradual change of temperature

在温度骤变实验中,Lv-ddit4l在凡纳滨对虾5种组织中的相对表达量见图 11。与对照组(A-26℃)相比,鳃、肝胰腺、神经中的Lv-ddit4l表达量在水温骤变至36℃后10 min时(F-36℃)显著上调(P < 0.05);其中,肝胰腺的表达量变化显著,为对照组的24.06倍,鳃、神经中的表达量分别为对照组(A-26℃)表达量的1.22倍和3.67倍。肌肉中的Lv-ddit4l表达量在水温维持在36℃ 24 h (G-36℃)时显著上调(P < 0.05),是对照组(A-26℃)的2.71倍。回温至26℃时(H-26℃),鳃、肝胰腺、神经和肌肉中的Lv-ddit4l表达量与对照组无显著差异(P > 0.05)。

图 11 温度骤变下Lv-ddit4l在5种组织中的表达 Fig.11 Distribution of Lv-ddit4l in five tissues under acute change of temperature
3 讨论

目前,已知ddit4l在维持单核细胞氧化还原状态以及在骨骼肌代谢方面发挥作用(Cuaz-Pérolin et al, 2004; Pisani et al, 2005; Imen et al, 2009; Suzuki et al, 2011)。ddit4l表达具有很强的特异性,通常见于纤维细胞、肌细胞以及巨噬细胞,在医学上的大多数恶性肿瘤组织中低表达甚至不表达(Cuaz-Pérolin et al, 2004; Simonson et al, 2017);ddit4l mRNA在成人的骨骼肌中特异性高表达,遇到压力应激时可以抑制mTOR的活性(Drummond et al, 2008);大鼠(Rattus norregicus) ddit4l mRNA也在骨骼肌、心脏和精巢中特异性表达(Pisani et al, 2005);小鼠(Mus musculus) ddit4l基因在肌肉组织中特异性表达(Miyazaki et al, 2009);在斑马鱼成鱼中,ddit4l基因在脑、眼睛、心脏、肝脏、肾脏、卵巢、鳃、肠道、肌肉、脾脏和精巢中均有表达,但在肝脏、肾脏和卵巢中的表达量较高(冯强, 2012)。对斑马鱼胚胎进行热激处理,ddit4l的表达量显著上调;对斑马鱼稚鱼和成鱼进行饥饿处理,ddit4l的表达量显著上调(冯强, 2012)。Cuaz-Pérolin等(2004)筛选出ddit4l基因,发现ddit4l是一种低氧反应基因,在化学缺氧的条件下,ddit4l基因的表达量呈剂量依赖性上调。Pisani等(2005)研究证明,ddit4l在大鼠肌肉无氧代谢中表达量也显著上调,它还与导致细胞死亡的应激反应有关(Cuaz-Pérolin et al, 2004; Imen et al, 2009)。

本研究采用qRT-PCR技术检测了Lv-ddit4l在温度渐变和温度骤变胁迫时5种组织表达水平变化。结果表明,该基因在所有检测的组织中都有表达,且5种组织总体的表达水平比较一致。与ddit4l在斑马鱼和三疣梭子蟹(Portunus trituberculatus)不同组织中普遍表达的特点(冯强, 2012; 阎德平等, 2021)相一致。与26℃水温相比,在水温缓慢升至32℃的凡纳滨对虾眼柄中Lv-ddit4l的表达量显著上调(P < 0.05),是对照组表达量的10.37倍,推测凡纳滨对虾眼柄中该基因对温度变化较先做出响应。在水温升至38℃时,眼柄、鳃、肝胰腺、神经和肌肉中Lv-ddit4l的表达量均无显著变化,推测该基因可能在热应激的前期发挥作用。在水温从38℃缓慢回至32℃时,凡纳滨对虾鳃、肝胰腺中的Lv-ddit4l表达量显著上调(P < 0.05),分别是对照组的3.37倍和2.03倍。在32~38℃范围内的整个温度渐变的过程中,Lv-ddit4l在眼柄、鳃和肝胰腺中表达量均显著上调,说明该基因可能在凡纳滨对虾的温度渐变胁迫中发挥作用。在环境水温从26℃骤变至36℃后10 min时,凡纳滨对虾鳃、肝胰腺和神经中的Lv-ddit4l表达量显著上调(P < 0.05),其中,肝胰腺中的表达量为对照组的24.06倍,鳃和神经中的表达量分别为对照组的1.22倍和3.67倍。肝胰腺是凡纳滨对虾重要的免疫器官(张月等, 2017),推测在应对温度骤变中,肝胰腺中的ddit4l基因可能发挥重要的功能。在环境水温从26℃骤变至36℃后24 h时,凡纳滨对虾肌肉中Lv-ddit4l表达量显著上调(P < 0.05),是对照组的2.71倍。在36℃范围内的整个温度骤变过程中,Lv-ddit4l在鳃、肝胰腺、神经和肌肉中表达量均显著上调,说明该基因可能在凡纳滨对虾的高温骤变胁迫中发挥作用。当环境温度分别从38℃、36℃恢复至26℃,凡纳滨对虾体内上调表达的Lv-ddit4l表达量呈下调趋势。Lv-ddit4l在凡纳滨对虾遭遇热胁迫时表达量上调,与ddit4l基因在斑马鱼胚胎遭受热激时表达量上调的结果一致(冯强, 2012)。同时,凡纳滨对虾的神经和肌肉在温度渐变过程中以及眼柄在温度骤变过程表达量变化差异不显著也说明ddit4l基因的表达具有很强的特异性,与前人的研究结果(Pisani et al, 2005; Miyazaki et al, 2009; 冯强, 2012; Simonson et al, 2017)一致。相对于温度渐变,温度骤变下凡纳滨对虾的Lv-ddit4l表达量上调表达更为明显,说明温度骤变对该基因的影响更大,Lv-ddit4l应对高温胁迫中的具体功能值得深入研究。

研究表明,温度与凡纳滨对虾的氧代谢密切相关(Zhou et al, 2010),温度升高会导致溶解氧浓度下降,缺氧严重影响对虾的代谢过程(朱孟凯等, 2015)。动物体有一定的氧和热耐受极限,一旦温度超过这个极限,动物体就可能从有氧代谢转变为无氧代谢(Anestis et al, 2008),影响机体的多种生理活动(Yao et al, 2014)。研究表明,ddit4l基因在体内缺氧时表达量上调,促进细胞自噬(Simonson et al, 2017),能够参与大鼠肌肉的无氧代谢(Pisani et al, 2005)。本研究发现,Lv-ddit4l在高温渐变及高温骤变中均出现差异表达,即该基因能够参与高温胁迫的应激应答。在遭受高温胁迫时,Lv-ddit4l能快速响应以适应外界环境。推测其可能促进细胞自噬来应对外界刺激。但目前Lv-ddit4l发挥作用的具体机制尚不明确,有待进一步深入研究。

参考文献
ANESTIS A, PORTNER H O, LAZOU A, et al. Metabolic and molecular stress responses of sublittoral bearded horse mussel Modiolus barbatus to warming sea water: Implications for vertical zonation. Journal of Experimental Biology, 2008, 211(17): 2889-2898 DOI:10.1242/jeb.016782
CHEN C S, HUANG B, YE Z H, et al. Effect of temperature on growth, food intake and survival rate in Penaeus vannamei under different temperature conditions. Journal of Jimei University (Natural Science), 2001, 6(4): 296-300 [陈昌生, 黄标, 叶兆弘, 等. 南美白对虾摄食、生长及存活与温度的关系. 集美大学学报(自然科学版), 2001, 6(4): 296-300 DOI:10.3969/j.issn.1007-7405.2001.04.002]
CHENG W, CHEN J C. Effects of pH, temperature and salinity on immune parameters of the freshwater prawn Macrobrachium rosenbergii. Fish and Shellfish Immunology, 2000, 10(4): 387-391 DOI:10.1006/fsim.2000.0264
CORRADETTI M N, INOKI K, GUAN K L. The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway. Journal of Biological Chemistry, 2005, 280(11): 9769-9772 DOI:10.1074/jbc.C400557200
CUAZ-PÉROLIN C, FURMAN C, LARIGAUDERIE G, et al. REDD2 gene is upregulated by modified LDL or hypoxia and mediates human macrophage cell death. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24(10): 1830-1835 DOI:10.1161/01.ATV.0000142366.69080.c3
DING Z Q, FENG Y P. Discussion on occurrence and prevention and cure countermeasures of Penaeus monodon. Shandong Fisheries, 2005, 22(6): 9 [丁志起, 冯艳萍. 对虾发病规律与防治对策的探讨. 科学养鱼, 2005, 22(6): 9]
DRUMMOND M J, FUJITA S, TAKASHI A, et al. Human muscle gene expression following resistance exercise and blood flow restriction. Medicine and Science in Sports and Exercise, 2008, 40(4): 691-698 DOI:10.1249/MSS.0b013e318160ff84
FENG Q. Preliminary study of zebrafish redd1 and redd2 genes in vivo. Doctoral Dissertation of Ocean University of China, 2012 [冯强. 对斑马鱼redd1redd2基因在体功能及其作用机理的初步研究. 中国海洋大学博士研究生学位论文, 2012]
HU L J, LI X P, MENG X H, et al. Expression characteristics of trehalose-6-phosphate synthase in Litopenaeus vannamei under high-temperature stress. Progress in Fishery Sciences, 2020, 41(2): 159-167 [胡利杰, 李旭鹏, 孟宪红, 等. 凡纳滨对虾6-磷酸海藻糖合成酶在抗高温胁迫中的表达特征. 渔业科学进展, 2020, 41(2): 159-167]
IMEN J S, BILLIET L, CUAZ-PéROLIN C, et al. The regulated in development and DNA damage response 2 (REDD2) gene mediates human monocyte cell death through a reduction in thioredoxin-1 expression. Free Radical Biology and Medicine, 2009, 46(10): 1404-1410 DOI:10.1016/j.freeradbiomed.2009.02.020
JIAO H W, WANG H J, ZHAO Y, et al. Research progress of the autophagy and disease. Anhui Agriculture. Science, 2019, 47(2): 10-14 [焦寒伟, 王红均, 赵宇, 等. 细胞自噬与疾病的研究进展. 安徽农业科学, 2019, 47(2): 10-14 DOI:10.3969/j.issn.0517-6611.2019.02.004]
JING F T, PAN L Q, HU F W. The immune response of white shrimp Litopenaeus vannamei to the change of temperature. Periodical of Ocean University of China (Natural Science), 2006, 36(S1): 40-44 [景福涛, 潘鲁青, 胡发文. 凡纳滨对虾对温度变化的免疫响应. 中国海洋大学学报(自然科学版), 2006, 36(S1): 40-44]
LEVINE B, KROEMER G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1): 27-42 DOI:10.1016/j.cell.2007.12.018
LI G D, WU D Q, LI B Y. Research progresses on the role of cell autophagy in cancer. Chinese Journal of Cancer, 2009, 28(4): 445-448 [李国东, 吴德全, 李本义. 细胞自噬在肿瘤中作用的研究进展. 癌症, 2009, 28(4): 445-448 DOI:10.3321/j.issn:1000-467X.2009.04.021]
LI Q, LI H, JIANG C J, et al. Comparison of immune parameters in the haemolymph of white-leg shrimp Litopenaeus vannamei at different temperatures. Journal of Dalian Fisheries University, 2008, 23(2): 132-135 [李强, 李华, 姜传俊, 等. 温度对凡纳滨对虾血淋巴免疫指标的影响. 大连水产学院学报, 2008, 23(2): 132-135 DOI:10.3969/j.issn.1000-9957.2008.02.010]
MA L, GE Q Q, XU Y, et al. Cloning of the translationally controlled tumor protein gene (TCTP) and expression analysis of autophagy regulatory related genes during the development of ovary in Exopalaemon carinicauda. Progress in Fishery Sciences, 2018, 39(4): 101-109 [马骊, 葛倩倩, 许杨, 等. 脊尾白虾翻译控制肿瘤蛋白基因TCTP克隆及自噬调控相关基因在卵巢发育期的表达. 渔业科学进展, 2018, 39(4): 101-109]
MIYAZAKI M, ESSER K A. REDD2 is enriched in skeletal muscle and inhibits mTOR signaling in response to leucine and stretch. American Journal of Physiology: Cell Physiology, 2009, 296(3): C583-C592 DOI:10.1152/ajpcell.00464.2008
OU H S. Effects of light, temperature and density on the growth, resistance and antioxidant enzyme activity of Litopenaeus vannamei larvae. Masterxs Thesis of Guangdong Marine University, 2015 [欧黄思. 光照、温度及密度对凡纳滨对虾幼体生长、抗逆性和抗氧化酶活性的影响. 广东海洋大学硕士研究生学位论文, 2015]
PISANI D F, LECLERC L, JARRETOU G, et al. SMHS1 is involved in oxidative/glycolytic-energy metabolism balance of muscle fibers. Biochemical and Biophysical Research Communications, 2005, 326(4): 788-793 DOI:10.1016/j.bbrc.2004.11.111
POLMAN J, HUNTER R G, NIELS S, et al. Glucocorticoids modulate the mTOR pathway in the hippocampus: Differential effects depending on stress history. Endocrinology, 2012, 153(9): 4317-4327
SHOSHANI T, FAERMAN A, METT I, et al. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Molecular Cell Biology, 2002, 22(7): 2283-2293
SIMONSON B, SUBRAMANYA V, CHAN M C, et al. DDiT4L promotes autophagy and inhibits pathological cardiac hypertrophy in response to stress. Science Signaling, 2017, 10(468): eaaf5967
SUZUKI N, ANDO S, SUMIDA K, et al. Analysis of altered gene expression specific to embryotoxic chemical treatment during embryonic stem cell differentiation into myocardiac and neural cells. Journal of Toxicological Sciences, 2011, 36(5): 569-585
YAN D P, LÜ J J, LU X, et al. Cloning and expression analysis of Pt-ditt4l in swimming crab (Portunus trituberculatus). Acta Hydrobiologica Sinica, 2021, 45(2): 334-340 [阎德平, 吕建建, 陆璇, 等. 三疣梭子蟹Pt-ddit4l基因的克隆及表达分析. 水生生物学报, 2021, 45(2): 334-340]
YANG F, CAI Q, YE F X, et al. A demonstration of closed-type ecological farming of Penaeus vannamei. Journal of Fisheries of China, 2001(11): 56-59 [杨锋, 蔡强, 叶妃轩, 等. 关于南美白对虾的养殖技术之一南美白对虾封闭式生态养殖试验示范. 中国水产, 2001(11): 56-59]
YAO C L, SOMERO G N. The impact of ocean warming on marine organisms. Chinese Science Bulletin, 2014, 59(5/6): 468-479
ZHANG S X, WU Y. Clinical significance of DNA damage- inducible transcript 4-like in glioblastoma multiforme analyzed using internet datasets. Clinical Journal of Medical Officer, 2017, 45(10): 1018-1021 [张少校, 吴瑛. 高通量数据分析DNA损伤诱导转录样蛋白4在脑多形性胶质母细胞瘤中表达及临床意义. 临床军医杂志, 2017, 45(10): 1018-1021]
ZHANG Y, DUAN Y F, DONG H B, et al. Effects of poly-β-hydroxybutyrate (PHB) on immune and digestive indicators in hepatopancreas of Litopenaeus vannamei. South China Fisheries Science, 2017, 13(5): 78-84 [张月, 段亚飞, 董宏标, 等. 聚β-羟基丁酸酯对凡纳滨对虾肝胰腺免疫和消化指标的影响. 南方水产科学, 2017, 13(5): 78-84]
ZHOU J, WANG L, XIN Y, et al. Effect of temperature on antioxidant enzyme gene expression and stress protein response in white shrimp, Litopenaeus vannamei. Journal of Thermal Biology, 2010, 35(6): 284-289
ZHU M K, YAO C L. The impact of temperature stress on the oxygen metabolism and energy metabolism in the hepatopancreas of shrimp Litopenaeus vannamei. Journal of Fisheries of China, 2015, 39(5): 669-678 [朱孟凯, 姚翠鸾. 温度胁迫对凡纳滨对虾肝胰腺氧代谢及能量代谢的影响. 水产学报, 2015, 39(5): 669-678]