渔业科学进展  2023, Vol. 44 Issue (2): 30-39  DOI: 10.19663/j.issn2095-9869.20220111003
0

引用本文 

刘忠航, 常志强, 袁晟译, 李健. 不同规格双齿围沙蚕对沉积物氮磷赋存形态影响分析[J]. 渔业科学进展, 2023, 44(2): 30-39. DOI: 10.19663/j.issn2095-9869.20220111003.
LIU Zhonghang, CHANG Zhiqiang, YUAN Shengyi, LI Jian. Analysis of Influence of Different Sizes of Perinereis aibuhitensis on the Occurrence Form of Nitrogen and Phosphorus in Sediments[J]. Progress in Fishery Sciences, 2023, 44(2): 30-39. DOI: 10.19663/j.issn2095-9869.20220111003.

基金项目

国家重点研发计划“蓝色粮仓科技创新”课题(2019YFD0900403)、国家自然科学基金面上项目(31873039)、国家现代农业产业技术体系建设专项-虾蟹产业技术体系(CARS-48)和中国水产科学研究院基本科研业务费项目(2020TD46; 2021XT06)共同资助

作者简介

刘忠航,E-mail: 820537620@qq.com

通讯作者

李健,研究员,E-mail: lijian@ysfri.ac.cn

文章历史

收稿日期:2022-01-11
收修改稿日期:2022-01-24
不同规格双齿围沙蚕对沉积物氮磷赋存形态影响分析
刘忠航 1,2, 常志强 2, 袁晟译 1,2, 李健 2     
1. 上海海洋大学 水产科学国家级实验教学示范中心 上海 201306;
2. 中国水产科学研究院黄海水产研究所 农业农村部海洋渔业可持续发展重点实验室青岛海洋科学与技术试点国家实验室海洋渔业科学与食物产出过程功能实验室 山东 青岛 266071
摘要:沉积物作为养殖系统中氮磷的蓄积库,对养殖水体氮磷水平调控发挥着重要作用,氮磷赋存形态影响其在沉积物中的吸附和释放。为研究双齿围沙蚕(Perinereis aibuhitensis Grube)对海水养殖池塘沉积物氮磷赋存形态的影响,以400 g/m2生物量设计不同规格双齿围沙蚕养殖实验,分别为小规格[(0.7±0.3) g]、中规格[(2.5±0.3) g]和大规格[(4.3±0.3) g]处理组,不放养沙蚕设为对照组,实验周期为45 d,分别于实验初、末期采集不同深度的沉积物,测定其中氮磷各赋存形态的含量。结果显示,不同规格双齿围沙蚕均显著提高了沉积物上、中层离子交换态氮(IEF-N)、弱酸可浸取态氮(WAEF-N)和强碱可浸取态氮(SAEF-N)含量(P < 0.05),中、小规格处理组显著降低了沉积物中强氧化剂可浸取态氮(SOEF-N)含量(P < 0.05);不同规格双齿围沙蚕均显著提高了沉积物上、中层非磷灰石无机磷(NAIP)含量(P < 0.05),中、小规格处理组显著降低了沉积物中有机磷(OP)含量(P < 0.05)。本研究表明,中、小规格的双齿围沙蚕可以加速沉积物中有机氮磷的矿化,促进沉积物其他形态氮磷向上迁移,使其更容易分解和释放,进而被水体浮游植物所利用。
关键词双齿围沙蚕    生物扰动    氮赋存形态    磷赋存形态    沉积物    
Analysis of Influence of Different Sizes of Perinereis aibuhitensis on the Occurrence Form of Nitrogen and Phosphorus in Sediments
LIU Zhonghang 1,2, CHANG Zhiqiang 2, YUAN Shengyi 1,2, LI Jian 2     
1. Shanghai Ocean University, National Demonstration Center for Experimental Fisheries Science Education, Shanghai 201306, China;
2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266071, China
Abstract: Aquaculture in China is spread over a total area of 7.108 5×106 hm2. Nowadays, aquaculture is done with a focus on high bait utilization efficiency. Moreover, the proportion of high-density farming organisms and high investment in aquaculture is increasing every year. However, the negative environmental problems associated with high efficiency of aquaculture are often ignored, especially the eutrophication caused by nitrogen and phosphorus pollution. An aquaculture system is a reservoir of nitrogen and phosphorus and sediments play an important role in regulating nitrogen and phosphorus levels in the system. The occurrence forms of nitrogen and phosphorus are closely related to the adsorption and release rates of nitrogen and phosphorus. Benthic animals contribute to the organic composition of sediments, and biological interference is an important factor affecting the release of nitrogen and phosphorus. Perinereis aibuhitensis Grube is a typical benthic animal living in sediments, which feeds on humus and benthic algae, and is one of the main types of organisms that is artificially bred in China. P. aibuhitensis can change the physical structure of sediments by burrowing and through bioturbation; it can also transport dissolved oxygen from the upper water level to the depths of sediments and increase the redox potential of sediments. Studies of Meng et al (2020) have shown that different specifications of P. aibuhitensis have significant differences in the distance covered by the sediments. Significant differences are also present in pump water, pump water rate, axial crawling speed, and nutrient salt dissolution efficiency. The optimum stocking density of P. aibuhitensis is 330–500 g/m2. Investigation of the occurrence pattern and vertical distribution of nitrogen and phosphorus in sediments is essential for assessing the endogenous nitrogen and phosphorus load in sediments, controlling eutrophication of water bodies, and assessing the risk of nitrogen and phosphorus nutrient release in sediments. In this study, the effects and role of P. aibuhitensis on the transformation of nitrogen and phosphorus speciation in sediments were measured, and the feasibility of its application as a bioremediation species in pollution control was evaluated. This study can provide theoretical basis and technical support for green aquaculture and environmental governance. In order to study the effect of biological disturbance of P. aibuhitensis on the occurrence pattern of nitrogen and phosphorus in sediments, experiments involving P. aibuhitensis with different characteristics were performed. The experiments were divided into four groups with 400 g/m2 biomass of P. aibuhitensis: A small size group [(0.7±0.3) g]; a medium size group [(2.5±0.3) g]; and a large size group [(4.3±0.3) g] as the treatment group; and a no-sand silkworm as the control group. The experimental period was 45 days. Sediment samples were collected in PVC tubes (inner diameter: 1.5 cm), and the collected samples were divided into the upper layer, middle layer, and lower layer by partitioning. The contents of nitrogen and phosphorus in each group were determined as per the methods described by Ruttenberg (1992) and Ruban et al (2001). The different occurrence forms of nitrogen include an ion-exchanged form (IEF-N), a weak acid extractable form (WAEF-N), a strong alkali extractable form (SAEF-N) and a strong oxidant extractable form (SOEF-N). Different forms of phosphorus include non-apatite inorganic phosphorus (NAIP), apatite inorganic phosphorus (AP), inorganic phosphorus (IP), organic phosphorus (OP), and total phosphorus (TP). IEF-N is the most easily released nitrogen form in sediments, which is mainly released due to the adsorption of nitrate in overlying water and the ammonia nitrogen generated by the decomposition of organic nitrogen in sediments. WAEF-N mainly includes nitrogen bound to CO32–, which is affected by CO32– concentration in sediments. SAEF-N mainly refers to Fe/Mn bound nitrogen in sediments, and its formation is related to the redox potential in sediments. SOEF-N mainly refers to the organic form of nitrogen in sediments, which is generally the main form of nitrogen. NAIP refers to the phosphorus bound to Fe, Mn, and Al oxides and their hydroxides in sediments, and this form of phosphorus is easily released in the sediments. AP is a form of phosphorus bound to calcium in sediments, which is considered to be relatively inert. IP refers to total inorganic phosphorus in sediments, which mainly includes NAIP and AP. OP refers to organic phosphorus in sediments, and TP refers to all forms of phosphorus in sediments. The results showed that P. aibuhitensis significantly increased the quantity of IEF-N, WAEF-N, and SAEF-N in the upper and middle layers of sediments (P < 0.05), and the medium and small size groups significantly decreased the content of SOEF-N in sediments (P < 0.05). P. aibuhitensis significantly increased the content of NAIP in the upper and middle layers of sediments (P < 0.05), and the medium and small size groups significantly decreased the content of OP in sediments (P < 0.05). This study showed that P. aibuhitensis could increase the bottom redox potential and promote the formation of Fe/Al bound nitrogen and phosphorus. It could also accelerate the mineralization of organic nitrogen and phosphorus in sediments, promoting the upward migration of other forms of nitrogen and phosphorus in sediments, making nitrogen and phosphorus in sediments easier to decompose and release, which could be used by phytoplankton in water. In the early stages of pond culture, P. aibuhitensis disturbance can make water nutrient rich in the late stage of culture, P. aibuhitensis can reduce the accumulation of nitrogen and phosphorus in sediments, so that the ponds can maintain good breeding conditions. P. aibuhitensis has the potential to repair environmental pollution in conjunction with other aquatic plants and algae.
Key words: Pernereis aibuhitensis    Biological disturbance    Nitrogen form    Phosphorus form    Sediment    

中国是水产养殖大国,养殖总面积高达7.108 5× 106 hm2 (农业农村部渔业渔政管理局等, 2020),但如今开展水产养殖工作多以追求高效益为主,高密度、高投入的养殖模式占比逐年增高。人们在追求养殖高效益时往往忽略了其带来的负面环境问题,其中氮磷污染导致水体富营养化现象尤为突出。在养殖过程中,养殖环境输入的氮磷主要来自饵料投喂,而大部分氮磷因无法被养殖生物利用而存在于底部沉积物中(李玉全等, 2007; 赵艳飞等, 2021; 刘梅等, 2021)。沉积物作为氮磷蓄积的主要场所,其在养殖环境的氮磷迁移过程中发挥着重要作用。研究发现,当上覆水中氮磷营养盐得到控制时,沉积物会有向水体释放营养盐的风险(杜奕衡等, 2018),沉积物的再悬浮会使内源性营养盐向水体释放(陈聚法等, 2007),导致水体营养盐升高,易引起富营养化现象。沉积物氮赋存形态包括离子交换态氮(IEF-N)、弱酸可浸取态氮(WAEF-N)、强碱可浸取态氮(SAEF-N)和强氧化剂可浸取态氮(SOEF-N) (吕晓霞等, 2004)。沉积物磷赋存形态包括非磷灰石无机磷(NAIP)、磷灰石无机磷(AP)、无机磷(IP)、有机磷(OP)和总磷(TP) (郑余琦等, 2017)。氮磷赋存形态决定沉积物中氮磷的吸附和释放,研究沉积物氮磷赋存形态及其垂直分布,对明确沉积物中氮磷的转化和迁移,控制沉积物中氮磷营养盐释放有重要意义。

底栖动物是沉积物有机组成的一部分,其生物扰动是影响沉积物氮磷释放的重要因素(Sun et al, 2017)。双齿围沙蚕(Perinereis aibuhitensis Grube)作为典型的多毛类底栖动物,是我国人工养殖的沙蚕种类之一,其生活在沉积物中,以腐殖质和底栖藻类为食,可以摄食沉积物中的有机颗粒物(Gómez et al, 2019),在养殖系统内可以利用养殖生物的残饵粪便(Fang et al, 2016),从而降低沉积物氮磷含量。研究发现,双齿围沙蚕可通过摄食有机碎屑改善池塘底质,能够加快沉积物无机氮磷向水体的释放速度(Chen et al, 2016),加速浮游植物的繁殖速率(邓锦松等, 2007)。双齿围沙蚕还可通过筑穴和生物扰动改变沉积物的物理结构,将上覆水中的溶解氧运送至沉积物深处,提高沉积物的氧化还原电位(李磊等, 2020),这可进一步影响沉积物中氮磷各种赋存形态的转化。有研究表明,不同规格双齿围沙蚕在底质中的移动距离差异显著(孟珊等, 2020),而且其泵水量、泵水速率、轴向爬行速度及营养盐溶出效率存在显著差异(房景辉等, 2021)。目前,关于各湖泊沉积物氮磷赋存形态和底栖生物扰动影响沉积物中氮磷营养盐释放的研究(Mermillod-Blondin et al, 2006)较多,但底栖生物对沉积物氮磷赋存形态分布的影响研究较少。双齿围沙蚕最佳放养密度为330~500 g/m2 (Lv et al, 2018)。综合考虑已有资料,以400 g/m2生物量设置大中小3个规格组,研究不同规格双齿围沙蚕对沉积物氮磷赋存形态的影响。

本研究通过测定沉积物垂直方向各氮磷赋存形态含量,探究双齿围沙蚕在沉积物氮磷各赋存形态转化过程中发挥的作用,评估其作为生物修复物种应用于污染治理的可行性,为绿色水产养殖和环境治理提供理论基础和技术支持。

1 材料与方法 1.1 实验设计

实验在山东青岛市即墨金口即发基地开展,养殖周期为45 d。实验用双齿围沙蚕均为山东乳山沙蚕养殖场提供,实验开始前,先将双齿围沙蚕暂养3 d,挑选有活力的健康个体进行称重分组。实验总共分4组,以400 g/m2生物量设置小规格组[(0.7±0.3) g]、中规格组[(2.5±0.3) g]和大规格组[(4.3±0.3) g]为处理组,不放沙蚕为对照组,每组3个平行。在室内用67 cm × 46 cm × 44 cm的塑料箱养殖,铺泥厚度为20 cm,底泥采自即墨金口养虾池,于阳光下晒干,去除大块碎石杂质,充分混匀后使用。水深为15 cm,注水后培养7 d,使沉积物恢复自然状态。全程不投喂,保持充氧并定期补充淡水。实验结束后,将水缓缓排干,用内径为1.5 cm PVC管采集底泥样品,采集样品用隔板分为上层(0~6 cm)、中层(6~13 cm)和下层(13~20 cm)。

1.2 分析方法

采集沉积物样品于60℃烘箱烘干,过100目筛,放入密封袋中于4℃冰箱保存。参考马红波等(2003)Ruttenberg (1992)提出的方法上改良的分级浸提方法测定不同赋存形态氮,参考Ruban等(2001)的方法测定不同赋存形态的磷。

1.2.1 沉积物不同赋存形态氮测定

(1) 在50 mL离心管中称取1 g干沉积物,加入20 mL 1 mol/L KCl,振荡2 h,4000 r/min离心5 min,收集上清液得到IEF-N浸提液。滤饼加入10 mL去离子水洗涤1次,离心后于60℃烘箱烘干备用。

(2) 将步骤(1)烘干的样品中加入20 mL HAc-NaAc (pH=5),振荡6 h,4000 r/min离心5 min,收集上清液得到WAEF-N浸提液。滤饼加入10 mL去离子水洗涤1次,离心后于60℃烘箱烘干备用。

(3) 将步骤(2)烘干的样品中加入20 mL 0.1 mol/L NaOH,振荡17 h,4000 r/min离心5 min,收集上清液得到SAEF-N浸提液。滤饼加入10 mL去离子水洗涤1次,离心后于60℃烘箱烘干备用。如有样品的浸提液呈现黄褐色,需进行消解处理:取浸提液2 mL,加入5 mL H2O2,氧化15 min在电热板上加热煮沸至近干,冷却后用蒸馏水定容至50 mL,得到消解后SAEF-N浸提液。

(4) 将步骤(3)处理后的样品中加入20 mL碱性过硫酸钾氧化剂(0.24 mol/L NaOH,20 g/L K2S2O8),振荡2~3 h,放入高压灭菌锅内氧化1 h (110~115℃),4000 r/min离心5 min,收集上清液得到SOEF-N浸提液。

1.2.2 沉积物不同赋存形态磷测定

(1) 在50 mL离心管中称取400 mg干沉积物,加入20 mL 1 mol/L NaOH,振荡16 h,2000 g离心15 min。

(2) 在50 mL离心管中加入步骤(1)中提取的上清液10 mL,加入4 mL 3.5 mol/L HCl,大力振荡20 s,静置16 h,200 g离心15 min,收集上清液得到NAIP浸提液。

(3) 用12 mL 1 mol/L NaCl洗涤步骤(1)中获得的滤饼,振荡5 min,2000 g离心15 min,弃上清液。重复洗涤1次,加入20 mL 1 mol/L HCl,振荡16 h,2000 g离心15 min,收集上清液得到AP浸提液。

(4) 在50 mL离心管中称取400 mg干沉积物,加入20 mL 1 mol/L HCl,振荡6 h,2000 g离心15 min,收集上清液得到IP浸提液。

(5) 加入12 mL去离子水洗涤步骤(4)中获得的滤饼,振荡5 min,2000 g离心15 min,弃上清液。重复洗涤1次,让残渣在通风的干燥柜中80℃干燥(管中)。将管放入超声波浴中10 s,然后转移到瓷坩埚中。在450℃下煅烧3 h,将冷却的灰倒入新的50 mL离心管中,加入20 mL 1 mol/L HCl,振荡16 h,2000 g离心15 min,收集上清液得到OP浸提液。

(6) 在陶瓷坩埚中称取400 mg干沉积物,在450℃下煅烧3 h,将冷却的灰倒入50 mL离心管中。加入20 mL 3.5 mol/L HCl,振荡16 h,2000 g离心15 min,收集上清液得到TP浸提液。

用营养盐自动分析仪(Skalar SANplusAnalyzer,荷兰)检测各赋存形态氮浸提液中的TN含量和各赋存形态磷浸提液中PO43–浓度。

1.3 数据处理与分析

数据采用平均值±标准差(Mean±SD)表示,使用统计软件SPSS 17.0进行统计学分析,采用单因素方差分析(one-way AVOVA)和Duncan′s多重比较检验进行显著性评价(P < 0.05),使用OriginPro 2018软件作图。

2 结果

实验结束后,所有处理组双齿围沙蚕生物量均有所降低,但都保持在初始值80%以上。从表 1可以看出,中规格组生物量显著高于大规格组(P < 0.05),小规格组与中、大规格组差异不显著(P > 0.05)。各处理组水体中TN含量均显著高于对照组(P < 0.05);TP含量也均显著高于对照组(P < 0.05),其中,中规格组TP含量显著高于其他2个处理组(P < 0.05)。

表 1 实验初、末双齿围沙蚕生物量和水体TN和TP含量(平均值±标准差) Tab.1 Biomass of P. aibuhitensis and contents of TN and TP in the water at the beginning and the end of the experiment (Mean±SD)
2.1 沉积物中各赋存形态氮含量

实验初始阶段,各处理组和对照组中各形态氮含量相近,无显著差异(P > 0.05)(表 2)。如图 1所示,实验结束后,上层小、中规格组IEF-N含量显著高于对照组(P < 0.05),大规格组高于对照组但无显著差异(P > 0.05);中层各处理组均显著高于对照组(P < 0.05);下层各处理组高于对照组但无显著差异(P > 0.05)。实验结束后,上层小、中规格组WAEF-N含量显著高于对照组(P < 0.05),大规格组高于对照组但无显著差异(P > 0.05);中层各处理组均显著高于对照组(P < 0.05);下层各处理组高于对照组但无显著差异(P > 0.05)。各处理组增大了中、上层WAEF-N占比,降低了下层占比。实验结束后,上、下层各处理组SAEF-N含量显著高于对照组(P < 0.05),中层小、中规格组显著高于对照组(P < 0.05),大规格组高于对照组但无显著差异(P > 0.05)。各处理组增大了上层SAEF-N占比,降低了中层占比,对下层占比影响较小。实验结束后,各层小、中规格组SOEF-N含量显著低于对照组(P < 0.05),大规格组低于对照组但无显著差异(P > 0.05)。

表 2 初始沉积物中各赋存形态氮磷含量(平均值±标准差) (mg/kg) Tab.2 The contents of nitrogen and phosphorus of different forms in initial sediments (Mean±SD) (mg/kg)
图 1 各层沉积物中各赋存形态氮含量 Fig.1 The nitrogen content of different forms in sediments of each layer 不同字母表示不同规格双齿围沙蚕在同层中数据差异显著(P < 0.05)。下同。 Column with different letters were significantly different among different sizes of P. aibuhitensis Grube in the same layer of sediment (P < 0.05). The same as below.
2.2 沉积物中各赋存形态磷含量

实验初始阶段,各处理组和对照组中各形态磷含量相近,无显著差异(P > 0.05) (表 1)。如图 2所示,实验结束后,上层各处理组NAIP含量均显著高于对照组(P < 0.05),其中,中规格组NAIP含量最高,显著高于其他处理组(P < 0.05);中层各处理组NAIP含量均显著高于对照组(P < 0.05);下层各组间无显著差异(P > 0.05)。实验结束后,各层各处理组与对照组之间AP含量未见显著差异(P > 0.05)。实验结束后,上层各处理组IP含量均显著高于对照组,其中,中规格组含量最高;中、下层各处理组与对照组之间IP含量未见显著差异(P > 0.05)。实验结束后,中、小规格组各层OP含量均显著低于对照组(P < 0.05)。大规格组下层显著低于对照组(P < 0.05),但中、上层无显著差异(P > 0.05)。实验结束后,各处理组的上层TP含量均高于对照组,其中,中、大规格组显著高于对照组(P < 0.05);中、下层沉积物中的中、小规格处理组显著低于对照组(P < 0.05)。

图 2 各层沉积物中各赋存形态磷含量 Fig.2 The phosphorus content of different forms in sediments of each layer
3 讨论 3.1 不同规格双齿围沙蚕对沉积物中各赋存形态氮的影响 3.1.1 不同规格双齿围沙蚕对沉积物中各赋存形态氮含量的影响

本研究中,对照组各形态氮略有降低,这可能是因为实验末期温度较实验初期有所升高,促进了沉积物中氮的释放(许佟等, 2020)。放养双齿围沙蚕后,水体中TN含量显著增加,表明在双齿围沙蚕的扰动下,加速了沉积物中氮的释放。

IEF-N是沉积物各形态氮中最易释放的一种氮,它主要来自于上覆水中硝酸盐的吸附和沉积物中有机氮的分解(马红波等, 2003)。双齿围沙蚕的排泄和微生物对有机氮的降解导致沉积物中氨氮升高,从而提高了各处理组IEF-N含量。各处理组上、中层IEF-N含量显著高于对照组可能是因为双齿围沙蚕排泄主要集中在上、中层,使得上、中层IEF-N含量增加量更高。中、小规格组IEF-N增加量高于大规格组。

WAEF-N主要包括与CO32–结合的氮,受沉积物中CO32–浓度的影响(张硕等, 2020)。本研究中,处理组WAEF-N含量升高可能由于双齿围沙蚕排泄产生的NH4+一部分与沉积物中CO32–结合,使得WAEF-N含量较对照组显著升高,这与IEF-N含量的变化趋势相吻合。各层WAEF-N含量增加量低于IEF-N含量增加量可能是受到沉积物中CO32–浓度的限制。中规格组WAEF-N增加量最多。

SAEF-N主要是指沉积物中铁锰结合态的氮,它的形成和沉积物中氧化还原电位有关(周天宇等, 2018)。双齿围沙蚕通过凿穴泵水改变了沉积物内部的氧化还原电位(侯颖等, 2020),将更多Fe2+氧化成Fe3+,促进了SAEF-N的生成。本研究中,中、上层中的中、小规格SAEF-N含量高于大规格组,下层低于大规格组,可能是因为中、小规格沙蚕凿穴能力较弱,洞穴多分布于中、上层,大规格沙蚕洞穴更深,底部氧化还原电位提高的更多。上、中层中的中规格组SAEF-N含量最高,可能是中规格双齿围沙蚕生命活动使上层溶解氧高的水更多地流入沉积物中,促进了更多SAEF-N的生成。

SOEF-N主要指沉积物中以有机形态存在的氮,这种形态氮一般是各赋存形态氮的主要形式(杨玉玮等, 2012)。双齿围沙蚕通过大量摄食可显著降低沉积物中有机态的氮,使有机态的氮分解为NH4+,大部分以IEF-N存在于沉积物中。本实验中,中、小规格组对SOEF-N含量降低明显,这可能是因为中、小规格沙蚕发育快,摄食需求大,对有机氮的摄取相应增加。大规格组降低不显著,但也有一定程度的降低。

3.1.2 不同规格双齿围沙蚕对沉积物中各赋存形态氮转化的影响

双齿围沙蚕降低了SOEF-N的含量,促进了其向其他以SAEF-N为主的赋存形态转变。这使沉积物中氮更容易被释放,进一步为养殖系统所利用,也说明双齿围沙蚕主要通过摄食和改变沉积物溶解氧环境来影响不同赋存形态氮的含量变化。中、小规格处理组对氮转化均有明显效果。

3.2 不同规格双齿围沙蚕对沉积物中各赋存形态磷的影响 3.2.1 不同规格双齿围沙蚕对沉积物中各赋存形态磷含量的影响

放养双齿围沙蚕后,水体中TP含量显著增加,证明在双齿围沙蚕的扰动下,同样加速了沉积物中磷的释放。中规格组较其他2个处理组有更显著的加速效果。

NAIP是指在沉积物中与Fe、Mn、Al氧化物及其氢氧化物结合的磷,这种形态的磷是沉积物中易于释放的磷。研究表明,双齿围沙蚕在底部水体溶解氧低于1.47 mg/L时,启动径向起伏,开始泵水,提高沉积物的溶解氧水平(房景辉等, 2021)。溶解氧升高使沉积物中更多的Fe2+向Fe3+转化,Fe3+与上覆水中活性磷酸盐结合,进一步生成NAIP (张小勇等, 2013)。中、上层各处理组中的NAIP含量显著高于对照组可能是双齿围沙蚕凿穴泵水主要集中在中、上层,使得中、上层可以结合更多的磷酸盐。在上层中规格组NAIP含量显著高于其他2个处理组,可能由于中规格双齿围沙蚕泵水效率更高,对氧化还原电位的提升更多。

AP是指在沉积物中与钙结合的磷,它被认为是比较惰性的一种形态,一般在沉积物中稳定存在,在自然状态下不易分解。它的含量高低主要与沉积物的来源有关。本研究中各处理组与对照组间未见显著差异,这可能与养殖时间短和其不易分解的特性有关。

IP是指在沉积物中所有的无机磷,主要包括NAIP和AP。各处理组中、上层IP含量略高于对照组,因为各组AP含量无显著差异,所以IP含量变化趋势和NAIP含量的变化趋势相似。

OP是指在沉积物中有机磷,有机磷的矿化是沉积物向水体释放磷的另一重要途径(郑余琦等, 2017)。OP和NAIP是沉积物中比较活跃的磷形态,它们的含量和占比与沉积物中磷的释放密切相关(刘永九等, 2021)。双齿围沙蚕可以摄食底部沉积物有机质,通过消化吸收将其“搬运”到表层(Tian et al, 2019)。正常情况下,双齿围沙蚕处理沉积物的速率可达1.92 g/(g·d) (张青田等, 2008)。此外,双齿围沙蚕的洞穴为微生物提供附着位点,其分泌的黏液也可促进微生物的繁殖(Dale et al, 2019),这可以加快底部OP的分解。由图 2可以看出,中、小规格对沉积物中OP含量降低显著,大规格组略有降低但不显著,可能是与中、小规格新陈代谢快、摄食旺盛有关。此外,实验结束时,大规格组双齿围沙蚕生物量较其他2个处理组有所降低,这也可导致沉积物中有机磷的升高。

TP是指沉积物中的总磷,反映出沉积物中磷的总体变化。本研究中,双齿围沙蚕的生物扰动使得沉积物上层总磷含量增加,主要受NAIP含量增加的影响;中、下层总磷含量降低,主要受OP含量降低的影响。

3.2.2 不同规格双齿围沙蚕对沉积物中各赋存形态磷转化的影响

本研究中,双齿围沙蚕加快了有机磷的矿化,生成的磷大部分以NAIP存在于沉积物中。这种变化趋势和氮的变化趋势相吻合,都促进了有机态的分解和Fe、Mn、Al氧化物及其氢氧化物结合态的生成。本研究中,中、小规格处理组对磷转化均有明显的效果,这也和氮转化的变化相吻合。

3.3 展望

双齿围沙蚕促进了沉积物中有机氮磷的矿化,使得沉积物中一部分氮磷向上迁移,提高了沉积物上层可利用氮磷的占比。沉积物中氮磷进一步被一些藻类和水生植物利用,从而降低沉积物中氮磷含量,以达到降低沉积物内源磷负荷的目的。双齿围沙蚕具有与其他水生植物和藻类联合修复环境污染的潜力。研究表明,狐尾藻(Myriophyllum spicatum L.)和金鱼藻(Ceratophyllum demersum L.)均能显著降低沉积物中NAIP的含量(周楠楠等, 2021),去除率分别为15.7%和8.7%。菹草(Potamogeton crispus L.)、粉绿狐尾藻(M. aquaticum)均能有效吸收沉积物中的磷(桑雨璇等, 2020)。投放双齿围沙蚕和马尾藻(Sargassum hemiphyllum)可以形成立体修复模式,降低沉积物中氮磷含量(江小桃等, 2012)。孙怡陶等(2021)研究发现,沉积物越疏松,内源磷越容易释放于水中,双齿围沙蚕的扰动一定程度上起到了松土的作用,这也可以促进内源磷的释放。此外,在养殖系统中,双齿围沙蚕可以丰富养殖系统的营养层级,使系统中食物链食物网更加复杂,提高系统的稳定性和能量利用效率。养殖系统营养层级越高,对能量利用效率越高(李卓佳等, 2012, 孙云飞等, 2015)。双齿围沙蚕在利用一部分的残饵粪便外,可以将沉积物中氮磷营养盐释放于水体中,促进藻类繁殖,为养殖生物提供更多的饵料。在池塘养殖的早期,双齿围沙蚕的扰动可以使水更快肥起来;在养殖后期,双齿围沙蚕可以减少沉积物中氮磷的累积量,使池塘保持良好的养殖条件。

4 结论

双齿围沙蚕的生物扰动改变了沉积物内部的物理化学条件,进一步影响了不同氮磷赋存形态的垂直分布。双齿围沙蚕通过摄食降低了沉积物中有机氮磷的含量,通过凿穴泵水等活动,提高了沉积物氧化还原电位,使沉积物生成了更多的SAEF-N和NAIP。双齿围沙蚕的生物扰动增加了沉积物中易被利用的氮磷赋存形态占比,使沉积物中氮磷更容易释放和利用,降低了沉积物中的氮磷负荷,中、小规格均有良好的影响效果。双齿围沙蚕可以作为良好的生物修复物种应用于环境治理中。

参考文献
Bureau of Fisheries, Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. China fishery statistical yearbook 2020. Beijing: China Agriculture Press, 2020 [农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2020中国渔业统计年鉴. 北京: 中国农业出版社, 2020]
CHEN J F, ZHAO J, SUN Y, et al. Dynamic mechanism of sediment resuspension with its effects on content of nutrients in water in the shellfish culture area of Sanggou Bay. Marine Fisheries Research, 2007, 28(3): 105-111 [陈聚法, 赵俊, 孙耀, 等. 桑沟湾贝类养殖水域沉积物再悬浮的动力机制及其对水体中营养盐的影响. 海洋水产研究, 2007, 28(3): 105-111]
CHEN M, DING S, LIU L, et al. Fine-scale bioturbation effects of tubificid worm (Limnodrilus hoffmeisteri) on the lability of phosphorus in sediments. Environmental Pollution, 2016, 219: 604-611 DOI:10.1016/j.envpol.2016.06.023
DALE H, TAYLOR J D, SOLAN M, et al. Polychaete mucopolysaccharide alters sediment microbial diversity and stimulates ammonia-oxidising functional groups. FEMS Microbiology Ecology, 2019, 95(2) DOI:10.1093/femsec/fiy234
DENG J S, MA S, NUI H X, et al. An experiment of shrimp (Fenneropenaeus chinensis) culture by inputting polychaetes (Perinereis aibuhitensis). Transactions of Oceanology and Limnology, 2007, 29(2): 135-141 [邓锦松, 马甡, 牛化欣, 等. 投放双齿围沙蚕养殖中国明对虾实验研究. 海洋湖沼通报, 2007, 29(2): 135-141 DOI:10.3969/j.issn.1003-6482.2007.02.020]
DU Y H, LIU C, CHEN K N, et al. Occurrence and internal loadings of nitrogen and phosphorus in the sediment of Lake Baiyangdian. Journal of Lake Sciences, 2018, 30(6): 1537-1551 [杜奕衡, 刘成, 陈开宁, 等. 白洋淀沉积物氮磷赋存特征及其内源负荷. 湖泊科学, 2018, 30(6): 1537-1551]
FANG J H, MENG S, YUAN W, et al. Effects of temperature on the motion behavior of Perinereis aibuhitensis of different sizes. Journal of Fishery Sciences of China, 2021, 28(10): 1251-1262 [房景辉, 孟珊, 袁伟, 等. 温度对不同规格双齿围沙蚕运动行为特征的影响. 中国水产科学, 2021, 28(10): 1251-1262]
FANG J H, ZHANG J H, JIANG Z J, et al. Environmental remediation potential of Perinereis aibuhitensis (Polychaeta) based on the effects of temperature and feed types on its carbon and nitrogen budgets. Marine Biology Research, 2016, 12(6): 1-12
GÓMEZ S, HURTADO C F, ORELLANA J. Bioremediation of organic sludge from a marine recirculating aquaculture system using the polychaete Abarenicola pusilla (Quatrefages, 1866). Aquaculture, 2019, 507: 377-384 DOI:10.1016/j.aquaculture.2019.04.033
HOU Y, HAN X M, FU F W, et al. The influence of bioturbation by Polychaete Perinereis aibuhitensis on the distribution of AVS in sediment. China Fishery Quality and Standards, 2020, 10(3): 31-36 [侯颖, 韩雪萌, 付发武, 等. 双齿围沙蚕(Perinereis aibuhitensis)的生物扰动作用对沉积物中AVS分布的影响. 中国渔业质量与标准, 2020, 10(3): 31-36 DOI:10.3969/j.issn.2095-1833.2020.03.004]
JIANG X T, TAN Y H, KE Z X, et al. Effects of introduction of Perinereis aibuhitensis and Sargassum hemiphyllum on nitrogen and phosphorus in overlying water. Journal of Tropical Oceanography, 2012, 31(4): 129-134 [江小桃, 谭烨辉, 柯志新, 等. 投放双齿围沙蚕和马尾藻对养殖底泥上覆水氮、磷含量的影响. 热带海洋学报, 2012, 31(4): 129-134]
LI L, DAI M, WANG S J, et al. Study on bioremediation of Perinereis aibuhitensison aged shellfish culture sediments. Ecology and Environmental Sciences, 2020, 29(4): 794-801 [李磊, 戴明, 王帅杰, 等. 沙蚕(Perinereis aibuhitensis)对老化贝类养殖沉积物的生物修复研究. 生态环境学报, 2020, 29(4): 794-801]
LI Y Q, LI J, WANG Q Y, et al. Effect of stocking density on input and output of nitrogen and phosphorus in super-intensive shrimp farming pond. Journal of Fishery Sciences of China, 2007, 14(6): 926-931 [李玉全, 李健, 王清印, 等. 养殖密度对工厂化对虾养殖池氮磷收支的影响. 中国水产科学, 2007, 14(6): 926-931 DOI:10.3321/j.issn:1005-8737.2007.06.007]
LI Z J, YU W, ZHU C B, et al. Study on nitrogen and phosphorus budgets of experimental enclosures with shrimp monoculture and shrimp-tilapia polyculture. Journal of Safety and Environment, 2012, 12(4): 50-55 [李卓佳, 虞为, 朱长波, 等. 对虾单养和对虾–罗非鱼混养试验围隔氮磷收支的研究. 安全与环境学报, 2012, 12(4): 50-55 DOI:10.3969/j.issn.1009-6094.2012.04.012]
LIU M, YUAN J L, NI M, et al. A comparative study on nitrogen and phosphorus budget and aquaculture effect of Micropterus salmoides in two modes. Oceanologia et Limnologia Sinica, 2021, 52(3): 718-728 [刘梅, 原居林, 倪蒙, 等. 大口黑鲈(Micropterus salmoides)不同养殖模式氮磷收支及养殖效果研究. 海洋与湖沼, 2021, 52(3): 718-728]
LIU Y J, HUANG S Z, ZHANG L, et al. Spatial distribution characteristics of phosphorus fractions and release risk in sediments of Honghu International Importance Wetland. Environmental Science, 2021, 42(7): 3198-3205 [刘永九, 黄素珍, 张璐, 等. 洪湖国际重要湿地沉积物磷空间分布特征及释放风险. 环境科学, 2021, 42(7): 3198-3205 DOI:10.13227/j.hjkx.202009090]
LV F, NIE Q, YU Y B, et al. Effects of density on growth, body composition and antioxidant indicators of Perinereis aibuhitensis and total nitrogen in sediments. Aquaculture Research, 2018, 49(6): 2288-2295 DOI:10.1111/are.13690
LV X X, SONG J M, YUAN H M, et al. The potential ecological roles of nitrogen in the surface sediments of the South Yellow Sea. Acta Ecologica Sinica, 2004, 24(8): 1635-1643 [吕晓霞, 宋金明, 袁华茂, 等. 南黄海表层沉积物中氮的潜在生态学功能. 生态学报, 2004, 24(8): 1635-1643 DOI:10.3321/j.issn:1000-0933.2004.08.009]
MA H B, SONG J M, LV X X, et al. Nitrogen forms and their functions in recycling of the Bohai Sea sediments. Geochimica, 2003, 32(1): 48-54 [马红波, 宋金明, 吕晓霞, 等. 渤海沉积物中氮的形态及其在循环中的作用. 地球化学, 2003, 32(1): 48-54 DOI:10.3321/j.issn:0379-1726.2003.01.007]
MENG S, FANG J H, JIANG Z J, et al. Experimental study of the choice behavior of Perinereis aibuhitensis Grube among different sediment types. Progress in Fishery Sciences, 2020, 41(4): 110-116 [孟珊, 房景辉, 蒋增杰, 等. 双齿围沙蚕对潮间带不同类型底质选择行为的研究. 渔业科学进展, 2020, 41(4): 110-116]
MERMILLOD-BLONDIN F, ROSENBERG R. Ecosystem engineering: The impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquatic Sciences, 2006, 68(4): 434-442 DOI:10.1007/s00027-006-0858-x
RUBAN V, LÓPEZ-SÁNCHEZ J F, PARDO P, et al. Development of a harmonised phosphorus extraction procedure and certification of a sediment reference material. Journal of Environmental Monitoring, 2001, 3(1): 121-125 DOI:10.1039/b005672n
RUTTENBERG K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography, 1992, 37(7): 1460-1482 DOI:10.4319/lo.1992.37.7.1460
SANG Y X, YANG J L, XIONG Y, et al. Comparative phosphorus accumulation and Ca-P content of two submerged plants in response to light intensity and phosphorus levels. Environmental Science, 2020, 41(6): 2698-2705 [桑雨璇, 杨珈乐, 熊怡, 等. 不同光照和磷水平下两种沉水植物磷富集和钙磷含量的比较. 环境科学, 2020, 41(6): 2698-2705]
SUN N, CHEN Y L, MA L X, et al. Release of anthracene from estuarine sediments by crab bioturbation effects. Environmental Science and Pollution Research, 2017, 24(2): 1890-1897 DOI:10.1007/s11356-016-7957-6
SUN Y F, WANG F, LIU F, et al. Nitrogen and phosphorus budgets in grass carp, silver carp, and common carp culture systems. Journal of Fishery Sciences of China, 2015, 22(3): 450-459 [孙云飞, 王芳, 刘峰, 等. 草鱼与鲢、鲤不同混养模式系统的氮磷收支. 中国水产科学, 2015, 22(3): 450-459]
SUN Y T, GUO X N, WANG Q Q, et al. The chemical speciation and distribution of phosphorus in sediments of Qilihai lagoon and reclamation area of different years in Changli. Marine Environmental Science, 2021, 40(5): 659-665 [孙怡陶, 郭晓楠, 王茜茜, 等. 昌黎七里海潟湖及不同年限围垦区表层沉积物磷赋存形态及分布特征. 海洋环境科学, 2021, 40(5): 659-665]
TIAN S Y, TONG Y F, HOU Y. The effect of bioturbation by polychaete Perinereis aibuhitensis on release and distribution of buried hydrocarbon pollutants in coastal muddy sediment. Marine Pollution Bulletin, 2019, 149(12): 110487
XU T, GAO F, GUO J X, et al. Simulation of environmental factors on the release potential of endogenous nitrogen and phosphorus. Journal of Beijing University of Agriculture, 2020, 35(4): 115-120 [许佟, 高凡, 郭家选, 等. 环境因子对沉积物氮磷释放潜力的模拟研究. 北京农学院学报, 2020, 35(4): 115-120]
YANG Y W, GAO X L, LI P M. Geochemical characteristics of nitrogen in core sediments from Sishili Bay, China. Environmental Science, 2012, 33(10): 3449-3456 [杨玉玮, 高学鲁, 李培苗. 烟台四十里湾柱状沉积物氮形态地球化学特征. 环境科学, 2012, 33(10): 3449-3456]
ZHANG Q T, HU G K. Study on feeding natural sediment of Perinereis aibuhitensis. Journal of Tianjing University of Science and Technology, 2008, 23(3): 26-29 [张青田, 胡桂坤. 双齿围沙蚕摄食自然沉积物的研究. 天津科技大学学报, 2008, 23(3): 26-29]
ZHANG S, TANG M R, LU J K, et al. A laboratory experimental research into the bioturbation effects of Sinonovacula constricta on the content of nitrogen forms in columnar sediments. Marine Environmental Science, 2020, 39(5): 670-675 [张硕, 唐明蕊, 路吉坤, 等. 缢蛏扰动对柱状沉积物中氮形态及其含量影响的实验室模拟研究. 海洋环境科学, 2020, 39(5): 670-675]
ZHANG X Y, YANG Q, SUN Y, et al. Forms and bioavailability of phosphorus in sediment cores of culture zones in Sanggou Bay. Progress in Fishery Sciences, 2013, 34(2): 36-44 [张小勇, 杨茜, 孙耀, 等. 桑沟湾养殖海域柱状沉积物中磷的赋存形态和生物有效性. 渔业科学进展, 2013, 34(2): 36-44]
ZHAO Y F, ZHONG S P, WANG X F, et al. Nitrogen and phosphorus budgets of polyculture system of mud crab Scylla paramamosain, tiger shrimp Penaeus monodon and razor clam Sinonovacula constricta. Fisheries Science, 2021, 40(4): 483-491 [赵艳飞, 钟声平, 王贤丰, 等. 拟穴青蟹、斑节对虾和缢蛏不同混养系统氮、磷收支的研究. 水产科学, 2021, 40(4): 483-491]
ZHENG Y Q, ZHENG Z M, QIN W J. Effects of bioturation by razor clam Sinonovacula constricta on vertical distribution of phosphorus form in sediment in an aquaculture wastewater treatment ecosystem. Oceanologia et Limnologia Sinica, 2017, 48(1): 161-170 [郑余琦, 郑忠明, 秦文娟. 缢蛏(Sinonovacula constricta)生物扰动对养殖废水处理系统中沉积物磷赋存形态垂直分布的影响. 海洋与湖沼, 2017, 48(1): 161-170]
ZHOU N N, WANG Y, GAO S F, et al. Effects of two submerged macrophytes with different root systems on different fractions of phosphorus in sediment profiles. Acta Scientiae Circumstantiae, 2021, 41(6): 2222-2228 [周楠楠, 王赢, 高顺峰, 等. 两种不同根系特征沉水植物对沉积物剖面不同形态磷的影响. 环境科学学报, 2021, 41(6): 2222-2228]
ZHOU T Y, LI H S, JIAN H M, et al. Nitrogen forms in surface sediment in the Yangtze River estuary and adjacent area. Marine Environmental Science, 2018, 37(2): 281-286 [周天宇, 李浩帅, 简慧敏, 等. 长江口及邻近海域表层沉积物中氮形态的研究. 海洋环境科学, 2018, 37(2): 281-286]