卵形鲳鲹(Trachinotus ovatus)俗称金鲳,为广盐暖水肉食性鱼类,具有生长快、食性简单、肉质鲜美、抗逆性强和成活率高等特点。卵形鲳鲹生长全程可接受配合饲料,上市规格适中且价格实惠,广受养殖户和消费者的喜爱。目前,卵形鲳鲹年产量达24万t,已成为我国南方沿海地区重要的海水鱼养殖品种之一(农业农村部渔业渔政管理局等, 2022)。作为海水肉食性鱼类,卵形鲳鲹对饲料蛋白和脂肪水平及来源要求高(Wang et al, 2013; Wang et al, 2020),对资源有限、价格高涨的鱼粉和鱼油的依赖性较强(Ma et al, 2020a; 李远友等, 2019),其饲料成本较高。然而,相比于其他名贵海水鱼,卵形鲳鲹价格较低,养殖利润空间较小,易导致亏损。因此,开发卵形鲳鲹高效低成本配合饲料,降低饲料中鱼粉鱼油添加水平是解决制约卵形鲳鲹养殖业发展“卡脖子”问题的客观需要。
近年来,本课题组基于卵形鲳鲹必需脂肪酸需求特性(n-3 HUFA适宜水平为1.24%~1.73%,DHA/EPA适宜比为1.40)(戚常乐, 2016; 孙卫, 2013),开发出2款复合油产品:液态复合油(复合油)和复合油脂肪粉(脂肪粉)(Xie et al, 2020)。前期研究表明,在实验室小型饲料制备工艺(基于小作坊条件下进行饲料生产,每小时生产的饲料有限,且没有喷油机,通过内加的方式添加脂肪源)条件下,复合油及其脂肪粉饲料的促生长效果较鱼油饲料更优(Xie et al, 2020),说明复合油系列产品可应用于卵形鲳鲹养殖生产中。此外,在满足卵形鲳鲹饲料氨基酸平衡条件下,本课题组以发酵豆粕、肉骨粉等几种陆生动植物蛋白按一定比例组合成复合蛋白所配制的低鱼粉饲料(鱼粉添加量为6%),其促生长和抗氧化性能优于对照组饲料(含30%鱼粉)(Ma et al, 2020b)。基于上述复合油产品和复合蛋白源,成功开发了一种卵形鲳鲹高效低鱼粉配合饲料,在池塘网箱养殖应用中展现优良的促生长效果且具有改善卵形鲳鲹脂质代谢、抗氧化性能、提升肌肉蛋白质和质构特性的作用(郑钧等, 2023)。为进一步验证卵形鲳鲹高效低鱼粉配合饲料在深海网箱中的应用效果,本研究采用饲料公司大规模生产工艺,制备实验饲料。通过与某知名商品料比较,分析该高效低鱼粉配合饲料对深海网箱养殖的卵形鲳鲹的生长性能、抗氧化性能、肌肉品质等方面的影响,以期为卵形鲳鲹高效低鱼粉配合饲料的大规模推广应用提供依据。
1 材料与方法 1.1 实验饲料本研究的实验料基于本课题组前期所研发的卵形鲳鲹高效低鱼粉配合饲料配方(郑钧等, 2022),并委托某水产饲料公司采用大规模生产工艺所生产;商品料(对照组)为广东某知名饲料公司生产的商品料。实验料和商品料饲料形态均为浮性膨化料。2种饲料的配方和营养成分见表 1。饲料的氨基酸及脂肪酸组成见表 2。
实验用大规格卵形鲳鲹(~200 g/尾)由广东阳江海纳水产有限公司提供,并于阳江大镬岛深海网箱养殖基地(水深12~20 m,离岸约15 km)暂养2周,以适应实验养殖环境。暂养期间,采用某知名商品料喂食。选用规格整齐、健康的大规格鱼15万尾(初始体质量~260 g),随机分到6个深海网箱(HDPE C60浮式网箱,周长60 m,2.5万尾鱼/网箱)。每种饲料投喂3个平行网箱,为期33 d养殖(2021年4月29日—5月31日)。养殖期间,每天饱食投喂2次(07:00和17:00)。实验期间,海水温度为20.00~29.00 ℃;溶氧为6.30~7.80 mg/L。
1.3 生长性能评价指标及取样实验开始时,从每个深海网箱中随机捞取30尾鱼,称重后用于计算实验鱼的初始平均体重。养殖实验结束后,停喂24 h。从每个深海网箱中随机捞取30尾鱼,称重后用于计算实验结束时的平均体重,同时估算每个网箱鱼的总重量。从每个网箱中各取2条鱼,置于碎冰上稍麻醉后取血,血液采集后置于预先制好的肝素抗凝管中,经3 000 r/min离心10 min (4 ℃)后,取上层血清。从每个网箱中各取3尾鱼,采集其肌肉和肝脏用于营养成分和抗氧化性能指标的测定。所有样品经液氮速冻后,保存于−80 ℃冰箱。此外,再从每个网箱取2尾鱼,用于肌肉质构特性的测定。
生长性能相关指标计算公式:
$ \text{增重率(weight gain rate, WGR, %)}= (W_{f}−W_{i})/W_{i}× 100\% $ |
$ \text{日增重(average daily gain, ADG, g/d)}=(W_{f}−W_{i})/t $ |
$ \text{特定生长率(specific growth rate, SGR, %/d)}= (\ln W_{f} −\ln W_{i})/t×100\% $ |
$ \text{肥满度(condition factor, CF)}=W_{b}/L_{b}^{3}×100 $ |
$ \text{脏体比(viscerosomatic index, VSI, %)}=W_{v}/W_{b}× 100\% $ |
式中,Wi和Wf分别为初始和终末的平均鱼体质量(g),Wt和W0分别为初始和终末的鱼体总重(g),t为终末养殖天数(d),Wb为鱼体质量(g),Wv为内脏重量(g),Lb为鱼体长(cm)。
1.4 常规营养成分及脂肪酸组成测定全鱼和肌肉的水分、粗灰分、粗蛋白质和粗脂肪分别采用常压干燥法(GT/T 6435-2014)、马弗炉灼烧法(GB/T 6438-2007)、凯氏定氮法(GB/T 6432-2018)和索氏抽提法(GB/T 6433-2006)测定;脂肪酸组成使用气相色谱仪(Agilent 7890B GC),依照气相色谱法(GB/T173772008)测定。
1.5 生化指标测定测定血清以及肝脏生化指标和抗氧化指标时,冷冻的血清和肝脏样本先在4 ℃解冻。血清中总胆固醇(T-CHO)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、甘油三酯(TG)、谷草转氨酶(GOT)含量、谷丙转氨酶(GPT)活性以及碱性磷酸酶(AKP)和酸性磷酸酶(ACP)活性,肝脏中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、总抗氧化能力(T-AOC)及丙二醛(MDA)含量均采用南京建成生物工程研究所的试剂盒测定,测定步骤参见相关试剂盒说明书。
1.6 肌肉质构特性和品质测定采用上海腾拔仪器科技有限公司的质构仪(Universal TA)进行肌肉剪切力、硬度、弹性、咀嚼性、胶着性、回复性等质构特性指标的测定:将待测鱼背肌取下,在TPA模式下,使用TA 25/1000圆柱形探头:测试前速度2.00 mm/s,测试速度1.00 mm/s,测试后速度2.00 mm/s,压缩比75%,探头2次压缩间隔2 s。
蒸煮损失率(cooking loss rate, CLR):取背肌5 g (W1)置于煮沸的水中,5 min后取出,用滤纸吸干表面水分,冷却后称重(W2),计算公式:
$ \text{CLR}=W_{1}−W_{2}/W_{1}×100% $ |
肌肉持水率(water holding capacity, WHC):取背肌5 g (W1)放在定性滤纸上,再在上面覆盖3层滤纸,用1 kg砝码挤压5 min后称取肌肉的质量(W2),计算公式:
$ \text{WHC}=(W_{2}−W_{1})/W_{1}×100%。$ |
实验结果均用平均数±标准差(Mean±SD)表示,各组间的差异采用独立样本t检验对比分析,显著性水平为P < 0.05。统计分析采用SPSS 13.0软件进行。
2 结果与分析 2.1 生长性能和全鱼常规成分2种饲料投喂组鱼生长性能的比较见表 3。结果显示,实验料组的末重、增重率、特定生长率及日增重均高于商品料组,相比于商品料组,实验料组鱼的增重率和特定生长率分别提高了14.43%和8.19%,终末体重和日均增重分别提高19.62和0.68 g,但2组饲料投喂鱼的生长性能各指标差异不显著(P > 0.05)。
在肌肉营养成分方面(表 4),实验料组鱼肌肉水分显著低于商品料组(P < 0.05)、其肌肉脂肪含量显著高于商品料组(P < 0.05),此外,2个饲料投喂组鱼肌肉粗蛋白及灰分含量无显著差异(P > 0.05)。
肌肉品质结果显示,实验料组鱼肌肉的蒸煮损失率及持水率与商品料组无显著差异(P > 0.05);对于肌肉质构特性,两组间的剪切力、硬度、粘性、弹性、咀嚼性、胶着性及回复性等质构特性指标无统计学差异(P > 0.05)。
2.3 血清和肝脏生理生化指标2种饲料投喂组鱼的血清生理生化指标、肝脏脂质代谢及抗氧化能力的比较见表 5。结果显示,实验料组血清的总蛋白、甘油三酯、总胆固醇、低密度脂蛋白含量及谷草转氨酶活性均显著低于商品料组(P < 0.05),高密度脂蛋白含量于组间无显著性差异(P > 0.05);对于肝脏脂代谢指标,实验料组的总胆固醇含量显著低于商品料组(P < 0.05),甘油三酯含量于组间无显著性差异(P > 0.05);此外,两组间肝脏组织的总抗氧化能力、超氧化物歧化酶、过氧化氢酶活性及丙二醛含量无显著性差异(P > 0.05)。
2种饲料投喂组鱼经济效益的比较见表 6。由表 6可知,每吨实验料的价格比商品料低900元,总投喂量与商品料组差异不大,但其饲料成本比商品料组低27 042元,总增重比商品料组鱼高2 020.89 kg。此外,实验料组毛利润比商品料组高64 668.44元、扣除饲料利润比商品料组高62.12%,同时,实验料组每1 kg鱼饲料成本比商品料组低18.80%。
卵形鲳鲹的营养需求与饲料研究近年来已有较多研究报道。在卵形鲳鲹蛋白质需求方面,其配合饲料中粗蛋白适宜添加水平为42%~49% (刘兴旺等, 2011; 王飞, 2012; 马学坤, 2013);在脂类营养需求方面,其配合饲料中的粗脂肪含量在6.5%~ 12.0%的水平下能够获得较好的生长性能(刘兴旺等, 2011; 马学坤, 2013; 唐媛媛等, 2013)。本研究中,高效低鱼粉配合饲料的粗蛋白含量为47.66%、粗脂肪含量为7.98%,商品料的粗蛋白含量为47.75%、粗脂肪含量为9.63%,理论上这2种饲料都能满足卵形鲳鲹的营养需求。
在鱼粉替代方面,发现豆粕、玉米蛋白粉、大豆浓缩蛋白以及鸡肉粉等可以作为卵形鲳鲹饲料中鱼粉的替代物(刘兴旺等, 2010; 王飞, 2012; 赵丽梅等, 2011),但随着饲料中其他蛋白源替代鱼粉比例的增加,往往会引起饲料利用率降低、生长缓慢、抗病力低等问题(Hardy et al, 2010; Pereira et al, 2003),这可能是由单一蛋白源氨基酸不平衡、适口性差等导致。研究表明,使用动植物复合蛋白替代鱼粉至少可以将鱼粉含量降低至25%,且效果较单一蛋白源更好,这得益于复合蛋白可以补充饲料中必需氨基酸,减少晶体氨基酸的添加,掩盖适口性差的成分(胡鹏莉等, 2019)。值得注意的是,高效低鱼粉配合饲料使用了本课题组基于氨基酸平衡所设计的动植物复合蛋白产品高水平替代传统商品料中大量使用的鱼粉,但其氨基酸组成和商品料无显著性差异,且高效低鱼粉配合饲料展现了较好的促生长效果,同时,此前研究结果表明,使用该动植物复合蛋白替代鱼粉可以有效降低养殖过程中的氮磷排放量,对环境友好(Ma et al, 2020b)。综上所述,在实际生产中,以该复合蛋白产品替代鱼粉后,卵形鲳鲹饲料具有显著的经济、环境效益。
众所周知,由于大多数肉食性海水鱼类不能自主合成n-3 HUFA,或合成量不能满足自身需求(Zhang et al, 2019),因此,富含n-3 HUFA的鱼油是最佳的饲料脂肪源,其不仅能满足鱼类对必需脂肪酸的需求,且具有良好的促生长效果(Katsika et al, 2020),因此,肉食性海水鱼类商品料中通常会添加较多的鱼油。研究表明,卵形鲳鲹对亚麻酸(ALA)、ARA、DHA和EPA的适宜需求量分别为1.04%、0.53%、0.42%和0.85% (戚常乐等, 2016),本实验所使用的商品料及高效低鱼粉配合饲料的相关脂肪酸水平均处于这一范围。在替代鱼油的研究方面,大豆油及猪油等陆生动植物油可以作为鱼油的替代脂肪源(黄劼等, 2013; 孙卫, 2013; 张伟涛, 2009),虽然以动植物油替代一定量鱼油的做法是可行的,但完全替代鱼油可能会导致鱼类生长缓慢、肝脏病变和脂肪过度积累等不良后果(刘康, 2017)。与上述的实验结果不同的是,本实验中使用的复合油产品在完全替代的情况下,无论在海水硬骨鱼类及淡水硬骨鱼类中均展现了良好的促生长效果(Ma et al, 2020a; Xie et al, 2021),这与本实验结果相同,且证明在配合饲料中添加该复合油产品可以有效提高饲料中陆生复合蛋白替代饲料鱼粉的效率,起到节约鱼粉的作用(郑钧等, 2022)。以上结果说明,以该复合油产品为脂肪源有利于降低饲料中鱼油添加水平及饲料成本。
鱼类肌肉品质受多种因素影响,水分、粗蛋白、粗脂肪和粗灰分是肌肉的基本组成成分,其含量直接影响其品质(陈伟兴等, 2012)。一般而言,鱼体肌肉营养成分受饲料成分的影响(李秀玲, 2019)。本研究中,实验料组的肌肉水分显著低于商品料组,而其脂肪含量显著高于商品料组,其表现出更高的营养价值。以上结果表明,本课题组设计的高效低鱼粉配合饲料有利于卵形鲳鲹肌肉脂肪的沉积,这与之前的研究结果一致(叶儒锴等, 2019)。此外,研究发现,增加鱼肉中的脂肪含量可以使其肉质嫩滑、爽脆,这暗示了高效低鱼粉配合饲料可能通过影响卵形鲳鲹肌肉中的脂肪含量对肌肉品质产生潜在影响(叶儒锴等, 2019)。TPA指标可以显示肌肉的品质状况。由结果可知,实验料组肌肉的硬度及脆度比商品料组高20%,弹性比商品料组高7%,咀嚼性比商品料组高28%,胶着性比商品料组高21%,剪切力比商品料组高26%。同时,实验料组鱼肌肉蒸煮损失率比对照组低10.31%,持水率比商品料组低0.6%,这与苗玉涛等(2022)使用脱酚棉籽蛋白替代卵形鲳鲹饲料中的鱼粉可降低其蒸煮损失率及持水率的实验结果一致,说明高效低鱼粉配合饲料有利于改善卵形鲳鲹肌肉的质构特性及提高其肌肉品质。
鱼类主要通过血清将肝脏中的脂类运输至组织中沉积,因此,血脂水平及肝脏中的甘油三酯、总胆固醇水平能反映鱼体脂质代谢及运输情况(Dawood et al, 2015)。鱼类体内的胆固醇主要由肝脏合成,通过低密度脂蛋白运输到血清中(Chapman, 1980),再由细胞内吞作用进行组织中沉积(尹靖东等, 2000),而血清中甘油三酯、胆固醇水平越低,说明机体对脂肪的利用率越高,以上指标能够反映机体对脂肪的吸收代谢能力(Wagner et al, 2011)。本研究中,实验组血清中的甘油三酯、总胆固醇、低密度脂蛋白及肝脏中的总胆固醇含量均显著低于商品料组,这表明饲喂高效低鱼粉配合饲料后,卵形鲳鲹可以将肝脏中的脂质高效地转运至组织中,这解释了实验料组鱼肌肉中粗脂肪含量较高的结果,同时证明高效低鱼粉配合饲料可以改善卵形鲳鲹的脂质代谢并且有利于提升卵形鲳鲹肌肉的营养品质,但相关的分子机制有待进一步研究。值得注意的是,陆忠杰等(2021)研究发现,血清中的低密度脂蛋白经氧化后,会导致内皮细胞损伤,从而使脂质成分、炎症细胞在损伤局部浸润,并促进动脉硬化的形成,而商品料组鱼血清低密度脂蛋白含量显著高于实验料组,这可能暗示着商品料组鱼可能存在动脉硬化、对鱼体组织造成损伤的风险。此外,血清参数及肝脏抗氧化能力通常反映了鱼对营养和环境变化的生理应激反应以及适应水平(Dawood et al, 2015),通常被用来评估鱼的健康及抗氧化应激水平(Abdelkhalek et al, 2017; Dawood et al, 2015)。在实际生产中,由于鱼油富含高不饱和脂肪酸,鱼油极易发生氧化变质,产生大量的自由基、过氧化物(如丙二醛)等油脂氧化产物,摄食后会致使肝脏产生氧化应激反应,从而损害肝脏正常的代谢功能(王煜恒等, 2010; 姚仕彬, 2012; Gao et al, 2012)。当肝功能障碍或肝组织受损时,肝脏中的谷草转氨酶会被释放到血液中,引起血清转氨酶活性升高(王灿等, 2010)。本研究结果显示,实验料组血清中的谷草转氨酶活性显著低于商品料组。这一结果可能暗示鱼油添加水平较高的商品料可能在保存过程中发生氧化,导致肝脏组织受到氧化应激。上述结果说明,相对于商品料,本实验所使用的高效低鱼粉配合饲料料更有利于维护卵形鲳鲹的肝脏健康。
配合饲料的品质和成本是决定养殖鱼类健康生长快慢、产量高低、效益好坏的重要因素。本研究发现,实验料组的经济效益比商品料组高62.12%,说明卵形鲳鲹深海网箱养殖投喂高效低鱼粉配合饲料有助于降低养殖成本,提高养殖效益。高效低鱼粉配合饲料在卵形鲳鲹深海网箱养殖中展现了良好的养殖效益,这得益于本实验使用了本课题组设计的动植物复合蛋白产品及复合油产品替代卵形鲳鲹配合饲料中的鱼粉及鱼油,使得成本得到控制。此外,由于饲喂高效低鱼粉配合饲料后,鱼表现出了更好的生长性能,这进一步提高了实验料组的毛利润,其毛利润比商品料组高13.29%。
4 结论本研究探讨了在深海网箱大规模养殖中,采用氨基酸平衡技术及脂肪酸精准营养技术研发的高效低鱼粉配合饲料的应用效果。通过对生长性能、血清生化指标、肝脏脂质代谢及抗氧化性能等指标的分析,发现实验料的促生长效果可以媲美商品料,并且可以提高卵形鲳鲹肌肉品质及肝脏的健康水平。此外,还降低了养殖成本,提高了经济效益,具有较高的经济价值。以上结果说明本课题组研发的高效低鱼粉配合饲料具有良好的应用效果及优异的市场开发前景,对大规模生产运用高效低鱼粉配合饲料,解决养殖业卡脖子问题及发展卵形鲳鲹深海养殖具有重要实践指导意义。
ABDELKHALEK N, EISSA I, AHMED E, et al. Protective role of dietary Spirulina platensis against diazinon-induced oxidative damage in Nile tilapia; Oreochromis niloticus. Environmental Toxicology and Pharmacology, 2017, 54: 99-104 DOI:10.1016/j.etap.2017.07.002 |
Bureau of Fisheries, Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. China fishery statistical yearbook 2022. Beijing: China Agriculture Press, 2022 [农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2022中国渔业统计年鉴. 北京: 中国农业出版社, 2022]
|
CHAPMAN M J. Animal lipoproteins: Chemistry, structure, and comparative aspects. Journal of Lipid Research, 1980, 21(7): 789-853 DOI:10.1016/S0022-2275(20)34780-5 |
CHEN W X, LIU Q Z, FAN Z T. Research progress of fish meat quality evaluation and influencing factors. Meat Research, 2012, 26(10): 34-40 [陈伟兴, 刘清振, 范兆廷. 鱼类肉质评价及影响因素研究进展. 肉类研究, 2012, 26(10): 34-40] |
DAWOOD M A, KOSHIO S, ISHIKAWA M, et al. Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and beta-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish and Shellfish Immunology, 2015, 45(1): 33-42 DOI:10.1016/j.fsi.2015.01.033 |
GAO J, KOSHIO S, ISHIKAWA M, et al. Effects of dietary oxidized fish oil with vitamin E supplementation on growth performance and reduction of lipid peroxidation in tissues and blood of red sea bream Pagrus major. Aquaculture, 2012, 356/357: 73-79 DOI:10.1016/j.aquaculture.2012.05.034 |
HUANG J, CHENG Z P, JIN M C, et al. Effects of different dietary fat sources replacing fish oil on the growth of gold Pomfret. Journal of Yangtze University (Natural Science), 2013, 10(17): 48-50 [黄劼, 程志萍, 金明昌, 等. 饲料中不同脂肪源替代鱼油对金鲳鱼生长的影响. 长江大学学报(自然科学版), 2013, 10(17): 48-50] |
HARDY R W. Utilization of plant proteins in fish diets: Effects of global demand and supplies of fish meal. Aquaculture Research, 2010, 41(5): 770-776 DOI:10.1111/j.1365-2109.2009.02349.x |
HU P L, WU R, LU K L, et al. Effects of replacing fish meal with composite protein on growth, diet digestibility, and gut health in Japanese seabass (Lateolabrax maculatus). Progress in Fishery Sciences, 2019, 40(6): 56-65 [胡鹏莉, 吴瑞, 鲁康乐, 等. 复合蛋白替代鱼粉对花鲈生长、消化能力和肠道健康的影响. 渔业科学进展, 2019, 40(6): 56-65] |
KATSIKA L, TASBOZAN O, MASTORAKI M, et al. Effects of fish oil substitution by hazelnut oil on growth performance, whole-body fatty acid composition and enzymes of intermediary metabolism of juvenile meagre (Argyrosomus regius Asso, 1801). Aquaculture Research, 2021, 52(11): 5760-5776 DOI:10.1111/are.15452 |
LI X L. Effects of dietary fat and protein sources on growth, physiology and biochemistry of pompano ovopompano. Master´s Thesis of Shanghai Ocean University, 2019 [李秀玲. 饲料中脂肪源和蛋白源对卵形鲳鲹生长和生理生化的影响. 上海海洋大学硕士研究生学位论文, 2019]
|
LI Y Y, LI M M, WANG M, et al. Research advances in nutritional requirement and feed of Trachinotus ovatus. Progress in Fishery Sciences, 2019, 40(1): 167-177 [李远友, 李孟孟, 汪萌, 等. 卵形鲳鲹营养需求与饲料研究进展. 渔业科学进展, 2019, 40(1): 167-177 DOI:10.19663/j.issn2095-9869.20180314001] |
LIU K. Comparative study on glycolipid metabolism of juvenile pompano (Trachinotus ovatus) and juvenile Micropterus salmoides. Doctoral Dissertation of Guangdong Ocean University, 2017 [刘康. 卵形鲳鲹(Trachinotus ovatus)幼鱼和大口黑鲈(Micropterus salmoides)幼鱼糖脂代谢比较研究. 广东海洋大学博士研究生学位论文, 2017]
|
LIU X W, WANG H L, ZHANG H T, et al. Effects of replacing fish meal with soybean meal and fermented soybean meal on feeding growth of pompano ovale. China Feed, 2010(18): 27–29, 36 [刘兴旺, 王华朗, 张海涛, 等. 豆粕和发酵豆粕替代鱼粉对卵形鲳鲹摄食生长的影响. 中国饲料, 2010(18): 27–29, 36 DOI:10.3969/j.issn.1004-3314.2010.18.010] |
LIU X W, XU D, ZHANG H T, et al. Study on protein requirements of juvenile pompano ovale. Southern Fisheries Science, 2011, 7(1): 45-49 [刘兴旺, 许丹, 张海涛, 等. 卵形鲳鲹幼鱼蛋白质需要量的研究. 南方水产科学, 2011, 7(1): 45-49] |
LU Z J, LI P. Analysis on characteristics and risk factors of statin adverse reactions in elderly patients with coronary heart disease. Medical Recapitulate, 2021, 27(18): 3722-3727 [陆忠杰, 李盼. 老年冠心病患者他汀类药物不良反应特点及其诱发危险因素. 医学综述, 2021, 27(18): 3722-3727 DOI:10.3969/j.issn.1006-2084.2021.18.033] |
MA X K. Dietary protein-energy ratio and several essential amino acids requirements of juvenile pompano ovoid. Doctoral Dissertation of Ocean University of China, 2013 [马学坤. 卵形鲳鲹幼鱼对饲料中蛋白能量比和几种必需氨基酸需求的研究. 中国海洋大学博士研究生学位论文, 2013]
|
MA Y C, LI M M, XIE D Z, et al. Fishmeal can be replaced with a high proportion of terrestrial protein in the diet of the carnivorous marine teleost (Trachinotus ovatus). Aquaculture, 2020, a, 519: 734910 |
MA Y C, XU C, LI M M, et al. Diet with a high proportion replacement of fishmeal by terrestrial compound protein displayed better farming income and environmental benefits in the carnivorous marine teleost (Trachinotus ovatus). Aquaculture Reports, 2020, b, 18: 100449 |
MIAO Y T, ZHONG W Q, LU B X, et al. The effect of fish meal replacement with low-gossypol cottonseed meal on the flesh quality of golden pompano (Trachinotus ovatus). Journal of South China Normal University (Natural Science), 2022, 54(4): 65-73 [苗玉涛, 钟宛清, 卢宝鑫, 等. 脱酚棉籽粕替代鱼粉对卵形鲳鲹肌肉品质的影响. 华南师范大学学报(自然科学版), 2022, 54(4): 65-73] |
PEREIRA T G, OLIVA-TELES A. Evaluation of corn gluten meal as a protein source in diets for gilthead sea bream (Sparus aurata L.) juveniles. Aquaculture Research, 2003, 34(13): 828-835 |
QI C L. Effects of LNA, ARA, DHA and EPA on the growth and immunity of juvenile pompano ovoid. Master´s Thesis of Shanghai Ocean University, 2016 [戚常乐. LNA、ARA、DHA和EPA对卵形鲳鲹幼鱼生长及免疫影响的研究. 上海海洋大学硕士研究生学位论文, 2016]
|
SUN W. Effects of different fat sources on physiological and biochemical indices and fatty acid composition of pompano ovale under low temperature stress. Master´s Thesis of Guangdong Ocean University, 2013 [孙卫. 不同脂肪源在低温胁迫下对卵形鲳鲹生理生化指标和脂肪酸组成的影响. 广东海洋大学硕士研究生学位论文, 2013]
|
TANG Y Y, ZHANG J N, AI C X, et al. Study on nutritional requirements of pompano ovatus and development of its compound feed. Feed Industry, 2013, 34(8): 46-50 [唐媛媛, 张蕉南, 艾春香, 等. 卵形鲳鲹的营养需求研究及其配合饲料研发. 饲料工业, 2013, 34(8): 46-50] |
WAGNER T, CONGLETON J L. Congleton, blood chemistry correlates of nutritional condition, tissue damage, and stress in migrating juvenile chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences, 2011, 61(7): 1066-1074 |
WANG C, MIAO Z M, LI C G, et al. Effect of human blood uric acid level on serum alanine aminotransferase and aspartate aminotransferase levels. Shandong Medicine, 2010, 50(29): 1-3 [王灿, 苗志敏, 李长贵, 等. 人体血尿酸水平对血清谷丙转氨酶和谷草转氨酶水平的影响. 山东医药, 2010, 50(29): 1-3] |
WANG F, HAN H, WANG Y, et al. Growth, feed utilization and body composition of juvenile golden pompano Trachinotus ovatus fed at different dietary protein and lipid levels. Aquaculture Nutrition, 2013, 19: 360-367 |
WANG F. Study on optimal protein and fat requirements and different animal and plant materials in diets of pompano ovopompano. Master´s Thesis of Shanghai Ocean University, 2012 [王飞. 卵形鲳鲹饲料最适蛋白和脂肪需求及添加不同动植物原料的研究. 上海海洋大学硕士研究生学位论文, 2012]
|
WANG S Q, WANG M, ZHANG H, et al. Long-chain polyunsaturated fatty acid metabolism in carnivorous marine teleosts: Insight into the profile of endogenous biosynthesis in golden pompano. Aquaculture Research, 2020, 51(2): 623-635 |
WANG Y H, WANG A M, LIU W, et al. Effects of dietary oil sources on growth performance, apparent digestibility and body composition of Carassius auratus gibelio. Journal of Fish, 34(9): 1439–1446 [王煜恒, 王爱民, 刘文斌, 等. 不同脂肪源对异育银鲫鱼种生长、消化率及体成分的影响. 水产学报, 2010, 34(9): 1439–1446]
|
XIE D Z, CHEN C Y, DONG Y W, et al. Regulation of long-chain polyunsaturated fatty acid biosynthesis in teleost fish. Progress in Lipid Research, 2021, 82: 101095 |
XIE D Z, WANG M, WANG S, et al. Fat powder can be a feasible lipid source in aquafeed for the carnivorous marine teleost golden pompano, Trachinotus ovatus. Aquaculture International, 2020, 28(5): 1153-1168 |
YAO S B. Study on damage and protection of intestinal mucosal primary cells of grass carp on Ctenopharyngodon idellus by oxidized soybean Oil. Master´s Thesis of Soochow University, 2012 [姚仕彬. 氧化豆油对草鱼(Ctenopharyngodon idellus)肠道粘膜原代细胞的损伤作用及其保护的研究. 苏州大学硕士研究生学位论文, 2012]
|
YE R K, ZHENG J, LI M M, et al. Effects of liquid and powdered fats on growth, health and muscle quality of juvenile Tilapia japonica. Acta Fisheries Sinica, 2019, 43(10): 2197-2208 [叶儒锴, 郑钧, 李孟孟, 等. 液态和粉末脂肪对吉富罗非鱼幼鱼生长、健康及肌肉品质的影响. 水产学报, 2019, 43(10): 2197-2208] |
YIN J D, QI G H, HUO Q G. Advances in modulation of lipid metabolism in poultry. Animal Nutrition, 2000(2): 1-7 [尹靖东, 齐广海, 霍启光. 家禽脂类代谢调控机理的研究进展. 动物营养学报, 2000(2): 1-7] |
ZHANG M, CHEN C Y, YOU C H, et al. Effects of different dietary ratios of docosahexaenoic to eicosapentaenoic acid (DHA/EPA) on the growth, non-specific immune indices, tissue fatty acid compositions and expression of genes related to LC-PUFA biosynthesis in juvenile golden pompano T. ovatus. Aquaculture, 2019, 505: 488-495 |
ZHANG W T. Study on dietary fat utilization of Trachinotus ovatus. Master´s Thesis of Soochow University, 2009 [张伟涛. 卵形鲳鲹(Trachinotus ovatus)对饲料脂肪利用的研究. 苏州大学硕士研究生学位论文, 2009]
|
ZHAO L M, WANG X B, ZHANG H T, et al. Study on replacing fish meal with fermented soybean meal in diets of pomfret. China Feed, 2011(11): 20-22 [赵丽梅, 王喜波, 张海涛, 等. 金鲳鱼饲料中发酵豆粕替代鱼粉的研究. 中国饲料, 2011(11): 20-22] |
ZHENG J, XIE D Z, YE R K, et al. Evaluation of the effects of compound oil and low fish meal diets on pompano ovale culture. Marine Fisheries, 2023, 45(2): 140-154 [郑钧, 谢帝芝, 叶儒锴, 等. 复合油和低鱼粉饲料在卵形鲳鲹养殖应用中的效果评估. 海洋渔业, 2023, 45(2): 140-154] |