渔业科学进展  2023, Vol. 44 Issue (6): 133-141  DOI: 10.19663/j.issn2095-9869.20220607001
0

引用本文 

刘家豪, 刘长琳, 多吉欧珠, 热旦, 拉巴罗布, 刘宝良, 李杰, 马强, 卫育良, 梁萌青, 徐后国. 不同颜色亚东鲑卵的营养成分比较分析[J]. 渔业科学进展, 2023, 44(6): 133-141. DOI: 10.19663/j.issn2095-9869.20220607001.
LIU Jiahao, LIU Changlin, Duojiouzhu, Redan, Labaluobu, LIU Baoliang, LI Jie, MA Qiang, WEI Yuliang, LIANG Mengqing, XU Houguo. Comparative Analysis of Nutrient Composition of Different-Colored Yadong Trout Eggs[J]. Progress in Fishery Sciences, 2023, 44(6): 133-141. DOI: 10.19663/j.issn2095-9869.20220607001.

基金项目

中国水产科学研究院黄海水产研究所基本科研业务费(20603022021003)和中国水产科学研究院基本科研业务费(2020TD48)共同资助

作者简介

刘家豪,E-mail: 1961481863@qq.com

通讯作者

刘长琳,副研究员,E-mail: liucl@ysfri.ac.cn
徐后国,研究员,E-mail: xuhg@ysfri.ac.cn

文章历史

收稿日期:2022-06-07
收修改稿日期:2022-07-06
不同颜色亚东鲑卵的营养成分比较分析
刘家豪 1,2, 刘长琳 2, 多吉欧珠 3, 热旦 3, 拉巴罗布 3, 刘宝良 2, 李杰 2, 马强 2, 卫育良 2, 梁萌青 2, 徐后国 2     
1. 大连海洋大学水产与生命学院 大连 116023;
2. 中国水产科学研究院黄海水产研究所 山东 青岛 266071;
3. 西藏自治区日喀则市亚东县农牧综合服务中心 西藏 日喀则 857600
摘要:亚东鲑(Salmo trutta fario)作为我国西藏亚东地区特色经济鱼类,目前已经实现规模化人工养殖。在亚东鲑人工繁育过程中存在不同颜色的卵(黄色和橘红色),且2种卵的质量在受精率、孵化率及仔鱼质量等方面表现不同。目前,对2种颜色卵营养成分的比较研究尚未见报道。本研究旨在对亚东鲑人工养殖过程中2种不同颜色卵的营养成分进行分析和比较。实验样品来自西藏亚东县产业园亚东鲑繁育养殖基地。每种卵测定3个重复。结果显示,黄色卵粗蛋白和灰分含量显著低于橘红色卵,而粗脂肪和水分含量显著高于橘红色卵。黄色卵的饱和脂肪酸(SFA)和n-3多不饱和脂肪酸(n-3PUFA)以及二十二碳六烯酸(DHA)含量显著低于橘红色卵,而单不饱和脂肪酸(MUFA)尤其是C18:1n-9含量显著高于橘红色卵。黄色卵的必需氨基酸(EAA)总量,非必需氨基酸(NEAA)总量以及总氨基酸(TAA)略低于橘红色卵;而在EAA中,黄色卵的缬氨酸、蛋氨酸、亮氨酸、赖氨酸、组氨酸显著低于橘红色卵。黄色卵中蛋白质羰基和丙二醛含量高于橘红色卵,而α-维生素E和虾青素含量低于橘红色卵。综上所述,橘红色卵中有较高的蛋白质、部分必需氨基酸、DHA、α-维生素E和虾青素含量,而过氧化产物含量较低,这可能是橘红色卵质量优于黄色卵的部分原因。
关键词亚东鲑        营养成分    脂肪酸    氨基酸    
Comparative Analysis of Nutrient Composition of Different-Colored Yadong Trout Eggs
LIU Jiahao 1,2, LIU Changlin 2, Duojiouzhu 3, Redan 3, Labaluobu 3, LIU Baoliang 2, LI Jie 2, MA Qiang 2, WEI Yuliang 2, LIANG Mengqing 2, XU Houguo 2     
1. College of Fisheries and Life Sciences, Dalian Ocean University, Dalian 116023, China;
2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
3. Agro-Pastoral Integrated Service Centre, Rikaze 857600, China
Abstract: Yadong trout (Salmo trutta fario) is an important and characteristic aquaculture fish species in Yadong, Xizang, China. Farmed Yadong trout has been produced on a large scale. Usually, two different-colored eggs (yellow and orange) are produced during Yadong trout farming and show differential reproductive performance. There has been very limited information on the nutrient composition of eggs with different colors, and relevant results have only been reported for rainbow trout. The present study aimed to analyze the nutrient compositions in different-colored Yadong trout eggs to elucidate the factors responsible for the different reproductive performances of the two egg types. The experimental samples were collected from Yadong Industry Park, where the broodstocks were reared with artificial compound feeds. Each egg type was analyzed in 3 replicates. Yellow eggs were produced by 2–3 year-old broodstocks, and orange eggs were produced from 3–5 year-old broodstocks. After spawning, the eggs were cryopreserved and transported to the laboratory by plane. The samples were lyophilized and used for the determination of proximate composition, fatty acids, amino acids, and other reproduction-related nutrients. The crude protein and crude lipid contents were analyzed using the Kjeldahl and Soxhlet extraction methods, respectively. The fatty acid composition (expressed as % total fatty acids) and amino acid composition (expressed as % dry matter) were assayed using gas chromatography and an automatic amino acid analyzer, respectively. The protein carbonyl and malondialdehyde concentration were assayed using commercial kits supplied by Nanjing Jiancheng Bioengineering Institute. The α-vitamin E and astaxanthin were assayed using national standard methods, and the α-vitamin E was measured from wet samples. The statistics of proximate composition, fatty acids, and amino acids data were determined using a t-test for independent samples. The results were expressed as mean ± standard error, and showed that yellow eggs had lower contents of crude protein and ash contents, but higher contents of crude lipid and moisture than orange eggs. There was no significant difference in carbohydrate and energy content between yellow and orange eggs. The saturated fatty acid (SFA), n-3 polyunsaturated fatty acid (n-3 PUFA), and docosahexaenoic acid (DHA) contents of yellow eggs were significantly lower than those of orange eggs, while the n-6 polyunsaturated fatty acids (n-6 PUFA) and EPA contents did not differ significantly between the two egg types. The C16:0 and C20:0 contents of yellow eggs were significantly lower than those of orange eggs, while the contents of monounsaturated fatty acids (MUFA), including C16:1n-7, C18:1n-9, C20:1n-9, and C22:1n-9, of yellow eggs were significantly higher than those of orange eggs. The contents of essential amino acids, non-essential amino acids, and total amino acids were slightly lower in yellow eggs compared to orange eggs. Among the essential amino acids, the contents of valine, methionine, leucine, lysine, and histidine in yellow eggs were significantly lower than those in orange eggs. Among the non-essential amino acids, except for glycine and alanine which were significantly lower in yellow eggs than in orange eggs, the contents of other amino acids did not differ significantly between the two egg types. The contents of protein carbonyl and malondialdehyde in yellow eggs were higher than those in orange eggs, while the contents of α-vitamin E and astaxanthin in yellow eggs were lower than those in orange eggs. In conclusion, orange eggs had higher contents of protein, some essential amino acids, DHA, α-vitamin E, and astaxanthin, but lower contents of MUFA, crude lipid, and peroxidation products (protein carbonyl and malondialdehyde) than yellow eggs. These differences in nutrient composition may contribute to the superior reproductive performance of orange eggs over yellow eggs.
Key words: Salmo trutta fario    Egg    Nutrient composition    Amino acid    Fatty acid    

亚东鲑(Salmo trutta fario),俗称河鲑、花点鱼、褐鳟,隶属于鲑形目(Salmoniformes)、鲑科(Salmonidae)、鲑属(Salmon);原产于欧洲、西亚和非洲北部地区,现今在我国仅在西藏日喀则市亚东县有自然种群分布。亚东鲑属于冷水性鱼类,长期生活在亚东河的山间河段。亚东鲑已成为亚东县标志性物种,且因其肉质鲜美等特点,深受消费者喜爱(王万良等, 2019),具有较高的商业推广价值。在当地政府的大力扶持下,亚东鲑养殖产业已成为亚东县特色产业之一。

目前,亚东鲑已经实现全人工繁育,并且正逐步实现规模化的人工养殖(李琳等, 2022)。然而,在人工养殖的过程中,亚东鲑产卵期会产出2种不同颜色的卵(图 1)。目前,关于鱼类不同颜色卵的研究报道较少。鱼卵颜色很大程度上和色素含量相关。在大西洋鳕(Gadus morhua)和黄尾(Seriola quinqueradiata)上已经证明虾青素可以从亲体转移到卵中,并且可以改变亲鱼的产卵性能以及卵的质量,因此,卵的色素含量至少是卵质量差异的一个相关因素(Visuthi et al, 1997; Sawanboonchun et al, 2008)。在亚东鲑生产实践中已经表明,橘红色卵在受精率、孵化率、仔鱼7 d成活率和仔鱼畸形率方面全面优于黄色卵。然而,2种颜色卵中营养成分方面的差异还未有报道。本研究测定和比较2种颜色亚东鲑卵的基础营养成分,可为亚东鲑人工养殖过程中高质量卵的鉴别和筛选提供参考,也为亚东鲑亲鱼高质量配合饲料的开发提供参考。

图 1 亚东鲑2种颜色的卵 Fig.1 Yadong trout eggs with two different colors 左边为黄色卵,右边为橘红色卵。 The yellow eggs on the left and the orange eggs on the right.
1 材料与方法 1.1 实验材料及样品处理

本实验所采用2种亚东鲑鱼卵(黄色和橘红色)均来自西藏亚东县产业园亚东鲑繁育养殖基地(图 1)。黄色卵由2~3龄亲鱼所产,橘红色卵由3~5龄亲鱼所产,2种颜色鱼卵由同一批次不同亲鱼所产。经低温冷冻保存后空运至中国水产科学研究院黄海水产研究所,随后在所内实验室–20 ℃冰箱冷冻保存。每种卵3个重复样品,每个重复收集于3~5尾不同的亲鱼。2种鱼卵取适量于培养皿中,在真空冷冻干燥机(FDU-1100, EYELA)中冻干48 h。随后研磨成粉保存在4 ℃冰箱中,用于测定粗成分、脂肪酸、氨基酸等指标。

1.2 测定方法 1.2.1 常规营养成分测定方法

常规营养成分包括粗蛋白、粗脂肪、水分和灰分。粗蛋白的测定采用凯氏定氮法。粗脂肪的测定采用索氏抽提法,通过石油醚抽提脂质。水分的测定在冷冻干燥的过程中进行测定。而灰分的测定中先使用电子万用炉将样品烧至无烟状态,然后使用马弗炉550 ℃高温灼烧6~8 h。碳水化合物含量和能量计算公式如下:

碳水化合物(%)=(1–粗蛋白含量–粗脂肪含量–水分含量–灰分含量)×100%

能量(kJ/g)=粗蛋白含量×16.7+粗脂肪含量×37.7+碳水化合物含量×16.7 (Ai et al, 2004)

1.2.2 脂肪酸测定

脂肪酸采用气相色谱法(GC-2010Pro, 岛津, 日本)测定。取冷冻干燥后的样品加入1 mol/L的KOH–甲醇溶液2 mL,75 ℃水浴30 min,冷却后加入2 mol/L的HCl-甲醇溶液2 mL,75 ℃水浴30 min,再次冷却后,加入1 mL纯水和1 mL正己烷萃取1 h后取上清液上机测定。气相色谱仪配有熔融石英毛细管柱(SH-RT-2560, 100.00 m× 0.25 mm× 0.20 μm)和火焰电离探测器。升温程序:以15 ℃/min的速率从150 ℃升高到200 ℃;然后以2 ℃/min速率从200 ℃升高到250 ℃。进样器和探测器的温度为250 ℃。结果以每种脂肪酸相对于总脂肪酸的百分比表示(%总脂肪酸)。

1.2.3 氨基酸测定

取冻干后的样品加入6 mol/L的盐酸110 ℃下高温酸解22~24 h。使用氨基酸分析仪(自动氨基酸分析仪;日立高科技公司)测定卵的氨基酸组成。

1.2.4 丙二醛和蛋白质羰基的测定

根据生产商的说明,使用商业试剂盒(南京建成生物工程研究所)测定卵中丙二醛和蛋白质羰基的含量。

1.2.5 虾青素测定

参考GB/T 31520-2015方法。取冻干后的样品加无水硫酸镁和10 mL丙酮混匀溶解,取2 mL,加入2.9 mL 0.02 mol/L氢氧化钠甲醇溶液,混匀后充氮密封,在4 ℃冰箱中反应12~16 h,再加0.1 mL 0.6 mol/L磷酸甲醇溶液中和,涡旋混合后静置5 min,过膜上机。仪器:岛津LC-20A紫外检测器(SPD-20A)。上述测定过程由青岛菲优特检测有限公司执行。

1.2.6 α-维生素E测定

参考GB 5009.82-2016方法测定。取冻干样品用索氏抽提的方法提出油脂,含有油脂的有机溶剂转移至蒸发瓶内,40 ℃水浴中减压蒸馏,将油脂用流动相转移至容量瓶中,加入二丁基羟基甲苯后涡旋混匀,用流动相定容后过有机系滤头于棕色进样瓶中,上机。仪器:岛津LC-20A紫外检测器(SPD-20A)。上述步骤由青岛菲优特检测有限公司执行。

1.3 统计方法

所有统计数据以平均值±标准误(Mean±SE)表示,在SPSS 16.0中进行独立样本T检验,P<0.05为显著水平。

2 结果 2.1 常规营养成分

表 1可知,亚东鲑黄色卵的粗脂肪和水分显著高于橘红色卵(P<0.05),而粗蛋白和灰分显著低于橘红色卵(P<0.05)。2种卵的碳水化合物以及能量含量无显著差异(P>0.05)。

表 1 亚东鲑黄色卵和橘红色卵常规成分含量(%鲜重) Tab.1 Proximate composition of yellow and orange eggs of Yadong trout (% wet weight)
2.2 脂肪酸组成

表 2图 2可知,亚东鲑黄色卵的SFA总量(包括C16:0、C18:0和C20:0单体)和n-3PUFA总量(包括C20:3n-3、C22:5n-3和C22:6n-3单体)以及PUFA总量显著低于橘红色卵(P<0.05),而黄色卵中的MUFA总量(包括C16:1n-7、C18:1n-9、C20:1n-9和C22:1n-9单体)显著高于橘红色卵(P<0.05)。黄色卵和橘红色卵中n-6PUFA总量无显著差异(P>0.05)。

表 2 亚东鲑黄色卵和橘红色卵的脂肪酸组成(%总脂肪酸) Tab.2 Fatty acid composition in yellow and orange eggs of Yadong trout (% total fatty acids)
图 2 亚东鲑黄色卵和橘红色卵脂肪酸种类比较(%总脂肪酸) Fig.2 Comparison of fatty acid composition in yellow and orange eggs of Yadong trout (% total fatty acids)
2.3 氨基酸组成

本研究共检测出18种氨基酸,其中,EAA有9种,NEAA有9种。在EAA中,亚东鲑黄色卵中缬氨酸、蛋氨酸、亮氨酸、赖氨酸和组氨酸含量均显著低于橘红色卵(P<0.05),而苏氨酸、异丙氨酸、苯丙氨酸和精氨酸较橘红色卵无显著差异(P>0.05)。在NEAA中,黄色卵中甘氨酸和丙氨酸显著低于橘红色卵(P<0.05),其他氨基酸中2种卵无显著差异(P>0.05)。黄色卵中∑EAA、∑NEAA以及∑TAA较橘红色卵无显著差异(P>0.05)。

表 3 亚东鲑黄色卵和橘红色卵的氨基酸组成(%干物质基础) Tab.3 Amino acid composition in yellow and orange eggs of Yadong trout (% dry matter basis)
2.4 丙二醛和蛋白质羰基指标

图 3可知,亚东鲑黄色卵中的蛋白质羰基(0.28 nmol/mg prot)和丙二醛(0.33 nmol/mg prot)含量均高于橘红色卵(蛋白质羰基:0.23 nmol/mg prot,丙二醛:0.29 nmol/mg prot)。由于样本量限制,蛋白质羰基和丙二醛结果取2次检测的平均值,未做统计分析。

图 3 亚东鲑黄色卵和橘红色卵中蛋白质羰基和丙二醛的含量 Fig.3 Protein carbonyl and malondialdehyde in yellow and orange eggs of Yadong trout
2.5 虾青素和α-维生素E含量

图 4可知,亚东鲑黄色卵中的α-维生素E (117 mg/kg)和虾青素(未检出)均低于橘红色卵(α-维生素E:123 mg/kg,虾青素:1.55 mg/kg)。由于样本量限制,α-维生素E和虾青素结果取2次检测的平均值,未做统计分析。

图 4 亚东鲑黄色卵和橘红色卵中α-维生素E和虾青素的含量(%鲜重) Fig.4 Alpha-vitamin E and astaxanthin concentration in yellow and orange eggs of Yadong trout (% wet weight) 黄色卵中虾青素含量低于最小检出值。 The content of astaxanthin in yellow eggs is lower than the minimum detection limit.
3 讨论 3.1 亚东鲑黄色卵和橘红色卵常规营养成分比较分析

卵中储存的蛋白和脂肪在胚胎发育过程中能发挥重要的作用。尤其是脂肪,不仅是胚胎发育时期能量代谢的基础物质,也是构成生物膜的重要物质(Cruzado et al, 2011)。亚东鲑2种颜色卵的粗蛋白比虹鳟(Oncorhynchus mykiss) (25.4%, 桂萌等, 2017) (23.83%, Kowalska-Góralska et al, 2019)、俄罗斯鲟(Acipenser gueldenstaedti) (20.77%)以及西伯利亚鲟(Acipenser baerii)(20.38%, 高露姣等, 2012)卵中的蛋白都要高。这可能与养殖过程中普遍使用高蛋白配合饲料(50%左右)有关。亚东鲑2种颜色卵的粗脂肪含量比俄罗斯鲟(10.42%)、西伯利亚鲟(13.58%, 高露姣等, 2012)、金枪鱼(Katsuwonus pelamis) (7.10%, 王斌等, 2020)和大黄鱼(Larimichthys crocea) (10.45%, 郑婷婷等, 2020)卵中粗脂肪要低,而相较虹鳟(3.60%, 桂萌等, 2017) (4.58%, Kowalska-Góralska et al, 2019)要高。不同物种中卵的脂肪和蛋白差异会有很大变化。在一篇关于野生亚东鲑卵(Kowalska-Góralska et al, 2019)的报道中,发现其卵中的粗蛋白和粗脂肪比本文中的含量要低很多,其主要原因可能与亚东鲑所摄食配合饲料有关。野生亚东鲑摄食环境复杂,活动量大。而养殖亚东鲑在集约化养殖条件下,饲料营养水平高;因此,在卵中可能会沉积更多的蛋白和脂肪用于胚胎发育。从亚东鲑2种颜色卵的常规营养成分比较来看,黄色卵相较于橘红色卵,粗蛋白的含量较低,但粗脂肪含量更高。因为产黄色卵的亲鱼年龄普遍低于产橘红色卵的亲鱼,因此,本研究表明,蛋白含量需要更长的时间来实现累积,也表明蛋白含量在决定卵子质量方面的重要作用。但值得一提的是,亲鱼的产卵年龄对所产卵质量的影响在不同鱼种间有所不同。点斑蓝子鱼(Siganid broostock)(Gorospe et al, 2011)的年龄会显著影响产卵频率和幼体存活率,但在亲鱼繁殖力、受精率以及每次产卵产生的幼体数量方面没有显著差异。美洲平鲉(Sebastes melanops) (Berkeley et al, 2004)幼体内的三酰甘油(TAG)随着亲鱼年龄的增加而增加,高龄的雌鱼所产的后代质量高于低龄雌鱼所产后代。然而在珊瑚礁鱼(Plectropomus leopardus)(Carter et al, 2015)中,影响卵子质量是母体大小,而不是年龄。因此,在不同种类的鱼中,鱼的年龄对于产卵质量的影响也不同。

3.2 亚东鲑黄色卵和橘红色卵脂肪酸比较分析

从亚东鲑2种颜色卵的脂肪酸组成整体来看,SFA中以C16:0 (棕榈酸)为主,MUFA中以C18:1n-9为主(油酸),n-6高不饱和脂肪酸以C18:2n-6 (亚油酸) 为主,n-3高不饱和脂肪酸以C22:6n-3 (DHA)为主。这与其他鱼类卵中的脂肪酸组成基本一致。2种卵脂肪脂肪酸组成在存在较大差异,体现在黄色卵的SFA和PUFA含量相较于橘红色卵更少,而MUFA则更多。在PUFA中,特别是n-3PUFA中,橘红色卵中DHA含量比黄色卵中高很多,这也是2种卵中PUFA差异的主要因素。类似情况在虹鳟2种颜色的卵中也有发现(姜作发等, 2004)。虹鳟在人工养殖情况下所产橘红色卵DHA含量高于淡黄色卵。与本研究不同的是,虹鳟橘红色卵中EPA含量也高于淡黄色卵,而亚东鲑2种卵的EPA含量比较关系却刚好相反。DHA在鱼类众多生理过程如生长、视觉、神经、繁育、体色以及脂质代谢等方面中都发挥重要作用(Sargent et al, 1999; 徐后国, 2013)。在对繁育性能的影响方面,DHA可以提高受精卵的孵化率以及仔鱼的成活率(李远友等, 2004; Ling et al, 2006)。因此,DHA含量更高是橘红色卵质量优于黄色卵的重要原因之一。黄色卵中MUFA尤其是C18:1n-9含量高于橘红色卵,加之黄色卵脂肪含量高于橘红色卵,因此,黄色卵中高C18:1n-9含量可能造成了DHA的稀释。

3.3 亚东鲑黄色卵和橘红色卵氨基酸比较分析

亚东鲑2种颜色卵的氨基酸组分情况也存在较大差异。除了精氨酸、半胱氨酸和脯氨酸外,橘红色卵的其他氨基酸包括必需氨基酸和非必需氨基酸以及总氨基酸都比黄色卵在数值上高,尤其是蛋氨酸和赖氨酸等必需氨基酸含量均显著高于黄色卵。在养殖和野生的黄颡鱼(Pelteobagrus fulvidraco)卵中也观察到类似情况(梁琍等, 2016)。蛋氨酸和赖氨酸均是鱼体的限制性氨基酸(罗兴等, 2022),其在鱼体繁育过程中也发挥重要作用。在拉利毛足鲈(Colisa lalia)亲鱼饲料中不添加蛋氨酸和赖氨酸,其产卵率和受精孵化率降低,并且在蛋氨酸缺乏时,亲鱼出现无法产卵的情况(Shim et al, 1990)。在金头鲷(Sparus aurata)中,降低饲料中的赖氨酸含量后,卵黄中的蛋白质含量显著下降,仔鱼成活率降低,然而,在基础饲料中添加必需氨基酸后,仔鱼的成活率和生长速度都得到了提高(Harel et al, 1995)。因此,赖氨酸和蛋氨酸对受精卵的孵化率以及仔鱼的存活和生长会都具有明显的提高作用。其他必需氨基酸如缬氨酸、亮氨酸和组氨酸也在黄色卵中低于橘红色卵。基于此结果分析,蛋氨酸和赖氨酸等必需氨基酸含量较高同样是橘红色卵质量优于黄色卵的重要因素之一。

3.4 亚东鲑黄色卵和橘红色卵生化指标比较分析

蛋白质羰基和丙二醛含量分别反映蛋白质和脂肪的过氧化程度(Uchida et al, 2003; Poli et al, 2010; 崔锡帅等, 2022)。黄色卵的蛋白质羰基和丙二醛的含量均高于橘红色卵。这表明,黄色卵的抗氧化能力显著低于橘红色卵。α-维生素E和虾青素的测定结果显示,橘红色卵中的α-维生素E和虾青素含量均高于黄色卵。α-维生素E作为4种生育酚中活性最强的一种,是一种强还原剂和抗氧化剂(肖登元等, 2015),而虾青素是类胡萝卜素中的主要色素。在水产动物中,添加适量虾青素可以提高其生长成活率、繁育性能、抗应激能力、抗氧化性以及免疫力,并且在改善体色方面也有积极作用(Christiansen et al, 1996; Řehulka et al, 2000; Yi et al, 2014; Liu et al, 2016; Paibulkichakul et al, 2008; Page et al, 2006; 廖章斌, 2019)。虾青素含量可能是决定2种卵颜色差异的关键因素。在野生鳕鱼和养殖鳕鱼卵中发现,野生鳕鱼的卵中的总色素和虾青素含量要显著高于养殖鳕鱼的卵,且色素含量跟卵的受精率和孵化率呈正相关关系(Salze et al, 2010)。在甲壳动物中同样如此,在中华绒螯蟹(Eriocheir sinensis)(Li et al, 2020)的两种卵中,紫色卵的虾青素比绿色卵更高。综上,从抗氧化物质含量来看,橘红色卵相较黄色卵具有更强的抗氧化能力,这同样是橘红色卵具有更好质量的决定因素之一。

4 结论

综合来看,相较于黄色卵,橘红色卵具有更高的蛋白含量。在n-3PUFA方面,橘红色卵DHA含量明显高于黄色卵。在氨基酸组成方面,橘红色卵有着更高的赖氨酸、蛋氨酸和组氨酸等必需氨基酸含量。橘红色卵中蛋白质羰基和丙二醛含量低于黄色卵,且α-维生素E和虾青素的含量高于黄色卵,表明橘红色卵的抗氧化能力高于黄色卵。本实验结果表明,蛋白、必需氨基酸、DHA、抗氧化物质等的含量可能是决定橘红色卵质量优于黄色卵的重要因素,这为亲鱼培育过程中促繁育人工配合饲料的科学配制提供了参考。

参考文献
AI Q H, MAI K S, LI H T, et al. Effects of dietary protein to energy ratios on growth and body composition of juvenile Japanese seabass, Lateolabrax japonicus. Aquaculture, 2004, 230(1/2/3/4): 507-516
BERKELEY S A, CHAPMAN C, SOGARD S M. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology, 2004, 85(5): 1258-1264 DOI:10.1890/03-0706
CARTER A B, CARTON A G, MCCORMICK M I, et al. Maternal size, not age, influences egg quality of a wild, protogynous coral reef fish Plectropomus leopardus. Marine Ecology Progress Series, 2015, 529: 249-263 DOI:10.3354/meps11277
CHRISTIANSEN R, LIE O, TORRISSEN O J. Growth and survival of Atlantic salmon, Salmo salar L. fed different dietary levels of astaxanthin. Aquaculture Nutrition, 1996, 2(1): 55-62 DOI:10.1111/j.1365-2095.1996.tb00008.x
CRUZADO I H, HERRERA M, QUINTANA D, et al. Total lipid and fatty acid composition of brill eggs Scophthalmus rhombus L. relationship between lipid composition and egg quality. Aquaculture Research, 2011, 42(7): 1011-1025 DOI:10.1111/j.1365-2109.2010.02684.x
CUI X S, MENG X X, WEI Y L, et al. Fish meal replacement with black soldier fly larvae meal in the diet of juvenile obscure puffer Takifugu obscurus. Journal of Shanghai Ocean University, 2022, 31(6): 1-17 [崔锡帅, 孟晓雪, 卫育良, 等. 黑水虻幼虫粉替代鱼粉在暗纹东方鲀饲料中的应用. 上海海洋大学学报, 2022, 31(6): 1-17]
GAO L J, HUANG Y Q, ZHUANG P, et al. Comparison of nutritive components of eggs between Acipenser gueldenstaedti and Acipenser baerii. Marine Fisheries, 2012, 34(1): 57-63 [高露姣, 黄艳青, 庄平, 等. 俄罗斯鲟鱼卵与西伯利亚鲟鱼卵的营养成分比较. 海洋渔业, 2012, 34(1): 57-63 DOI:10.13233/j.cnki.mar.fish.2012.01.010]
GOROSPE J, TUBIO E, QUIONES M, et al. Age and reproductive potential of domesticated golden spinefoot, Siganus guttatus (Bloch) breeders. Journal of Environment and Aquatic Resources, 2011, 2: 1-10
GUI M, GAO L, LI P L, et al. Nutrient components analysis for eggs of cultured Oncorhynchus mykiss. Guangxi Agricultural Sciences, 2017, 48(4): 692-697 [桂萌, 高亮, 李平兰, 等. 人工养殖硬头鳟鱼卵的营养成分分析. 南方农业学报, 2017, 48(4): 692-697]
HAREL M, TANDLER A, KISSIL G W, et al. The role of broodstock dietary protein in vitellogenin synthesis and oocyte development, and its effects on reproductive performance and egg quality in gilthead seabream Sparus aurata. Proceedings of the Fifth International Symposium on the Reproductive Physiology of Fish, 1995, 105-107
JIANG Z F, LIU Y, LU T Y, et al. Amino acid and fatty acid levels in rainbow trout eggs with different colors. Journal of Dalian Fisheries University, 2004, 19(4): 306-308 [姜作发, 刘永, 卢彤岩, 等. 两种颜色虹鳟卵氨基酸、脂肪酸含量的比较. 大连水产学院学报, 2004, 19(4): 306-308]
KOWALSKA-GÓRALSKA M, FORMICKI K, DOBRZAŃSKI Z, et al. Nutritional composition of Salmonidae and Acipenseridae fish eggs. Annals of Animal Science, 2019, 20(2): 629-645
LI L, ZHANG F R, LIU C L, et al. Comparative composition analysis of farmed and wild Yadong trout (Salmo trutta fario). Progress in Fishery Sciences, 2023, 44(2): 77-86 [李琳, 张斐然, 刘长琳, 等. 养殖和野生亚东鲑机体成分比较分析. 渔业科学进展, 2023, 44(2): 77-86]
LI Q Q, SUN Q F, ZU L, et al. Comparison of reproductive performance and offspring quality of purple and greenblack Chinese mitten crab, Eriocheir sinensis. Aquaculture Research, 2020, 52(3): 1291-1298
LI Y Y, CHEN W Z, SUN Z W, et al. Effects of n-3HUFA content in broodstock diets on reproductive performance and seasonal changes of plasma sex steroids levels in Plectorhynchus cinctus. Zoological Research, 2004, 25(3): 249-255 [李远友, 陈伟洲, 孙泽伟, 等. 饲料中n-3 HUFA含量对花尾胡椒鲷亲鱼的生殖性能及血浆性类固醇激素水平季节变化的影响. 动物学研究, 2004, 25(3): 249-255]
LIANG L, GUI Q P, RAN H, et al. Comparison of nutritional composition in eggs between wild and cultured yellow catfish Pelteobagrus fulvidraco. Fisheries Science, 2016, 35(5): 522-527 [梁琍, 桂庆平, 冉辉, 等. 野生与养殖黄颡鱼鱼卵的营养成分比较. 水产科学, 2016, 35(5): 522-527]
LIAO Z B. Effects of lipid content, n-6 fatty acids and astaxanthin in the diet on growth performance and lipid metabolism of juvenile tiger puffer (Takifugu rubripes). Master′s Thesis of Shanghai Ocean University, 2019 [廖章斌. 饲料中脂肪含量, n-6脂肪酸和虾青素对红鳍东方鲀幼鱼生长性能和脂肪代谢的影响. 上海海洋大学硕士研究生学位论文, 2019]
LING S, KUAH M K, MUHAMMAD T S T, et al. Effect of dietary HUFA on reproductive performance, tissue fatty acid profile and desaturase and elongase mRNAs in female swordtail Xiphophorus helleri. Aquaculture, 2006, 261(1): 204-214 DOI:10.1016/j.aquaculture.2006.06.045
LIU F, SHI H Z, GUO Q S, et al. Effects of astaxanthin and emodin on the growth, stress resistance and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish and Shellfish Immunology, 2016, 51: 125-135
LUO X, BI Q Z, MENG X X, et al. Effects of supplementation of sulfur-containing amino acids in high-lipid diets on lipid metabolism of turbot (Scophthalmus maximus). Journal of Shanghai Ocean University, 2022, 31(4): 893-905 [罗兴, 毕清竹, 孟晓雪, 等. 高脂饲料中添加含硫氨基酸对大菱鲆脂肪代谢的影响. 上海海洋大学学报, 2022, 31(4): 893-905]
PAGE G I, DAVIES S J. Tissue astaxanthin and canthaxanthin distribution in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Comparative Biochemistry and Physiology, Part A: Molecular and Integrative Physiology, 2006, 143(1): 125-132
PAIBULKICHAKUL C, PIYATIRATITIVORAKUL S, SORGELOOS P, et al. Improved maturation of pond-reared, black tiger shrimp (Penaeus monodon) using fish oil and astaxanthin feed supplements. Aquaculture, 2008, 282(1/2/3/4): 83-89
POLI G, SCHAUR R J, SIEMS W G, et al. 4-hydroxynonenal: A membrane lipid oxidation product of medicinal interest. Medicinal Research Reviews, 2010, 28(4): 569-631
ŘEHULKA J. Influence of astaxanthin on growth rate, condition, and some blood indices of rainbow trout, Oncorhynchus mykiss. Aquaculture, 2000, 190(1/2): 27-47
SALZE G, TOCHER D R, ROY W J, et al. Egg quality determinants in cod (Gadus morhua L): Egg performance and lipids in eggs from farmed and wild broodstock. Aquaculture Research, 2010, 36(15): 1488-1499
SARGENT J, BELL G, MCEVOY L, et al. Recent developments in the essential fatty acid nutrition of fish. Aquaculture, 1999, 177: 191-199
SAWANBOONCHUN J, ROY W J, ROBERTSON D A, et al. The impact of dietary supplementation with astaxanthin on egg quality in Atlantic cod broodstock (Gadus morhua, L). Aquaculture, 2008, 283(1): 97-101
SHIM K F, LAM T J, LANDESMAN L. Effect of deletion of amino acid from supplement on the growth and reproductive performance of the dwarf gourami, Colisa lalia (Hamilton). Journal of Aquaculture in the Tropics, 1990, 5(2): 149-154
UCHIDA K. 4-Hydroxy-2-nonenal: A product and mediator of oxidative stress. Progress in Lipid Research, 2003, 42(4): 318-343
VISUTHI V, KEIICHI M, KAZUTOSHI K, et al. Supplemental effect of astaxanthin in broodstock diets on the quality of yellowtail eggs. Fisheries, 1997, 63(5): 816-823
WANG B, WU H W, LI L Y. Analysis and evaluation of the nutritional compositions of Skipjack Tuna (Katsuwonus pelamis) roes. Journal of Zhanjiang Ocean University, 2020, 40(2): 111-116 [王斌, 邬华威, 李龙岩. 金枪鱼鱼卵营养成分分析及营养评价. 广东海洋大学学报, 2020, 40(2): 111-116]
WANG W L, MOU Z B, ZENG B H, et al. Research status and prospects of Salmo trutta. Tibet Journal of Agricultural Sciences, 2019, 41(S1): 197-200 [王万良, 牟振波, 曾本和, 等. 亚东鲑的研究现状及展望. 西藏农业科技, 2019, 41(S1): 197-200]
XIAO D Y, LIANG M Q, WANG X X, et al. Effects of different levels of dietary vitamin E on the reproductive performance and offspring quality of tongue sole Cynoglossus semilaevis. Progress in Fishery Sciences, 2015, 36(2): 125-132 [肖登元, 梁萌青, 王新星, 等. 饲料中添加不同水平的维生素E对半滑舌鳎(Cynoglossus semilaevis)亲鱼繁殖性能及后代质量的影响. 渔业科学进展, 2015, 36(2): 125-132]
XU H G. Effects of dietary fatty acids on growth performance, health and accumulation of lipids and fatty acids in juvenile Japanese seabass (Lateolabrax japonicus). Doctoral Dissertation of Ocean University of China, 2013 [徐后国. 饲料脂肪酸对鲈鱼幼鱼生长、健康及脂肪和脂肪酸累积的影响. 中国海洋大学博士研究生学位论文, 2013]
YI X, XU W, ZHOU H, et al. Effects of dietary astaxanthin and xanthophylls on the growth and skin pigmentation of large yellow croaker Larimichthys croceus. Aquaculture, 2014, 433: 377-383
ZHENG T T, ZHOU J, WENG X, et al. Analysis and evaluation of nutritional components of four types of marine aquatic roe. Food and Fermentation Industries, 2020, 46(13): 244-249 [郑婷婷, 周静, 翁欣, 等. 四种海产鱼卵的营养成分差异性分析及评价. 食品与发酵工业, 2020, 46(13): 244-249]