2. 海洋生态与环境科学功能实验室 山东 青岛 266237;
3. 中国水产科学研究院下营增殖实验站 山东 昌邑 261312
2. Marine Ecology and Environmental Science Laboratory, Qingdao 266237, China;
3. Xiaying Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changyi 261312, China
增殖放流是指采用人工方法向天然水域内投放生物苗种的一类资源修复工程,但在实践中,受生态系统的复杂性及多重压力影响的不确定性所致,要实现资源恢复意义的增殖比较困难(唐启升, 2019a)。外来的放流物种通过竞争、捕食影响和改变水域内生物时空分布格局,形成复杂的多层次生态效应(Townsend, 2003; Flood et al, 2020),甚至带来诸多生态风险(Lorenzen et al, 2010; 姜亚洲等, 2014)。因此,实施增殖放流时,有必要充分研究放流物种与水域内其他物种间的关系,确定其对不同生物群落的影响表现形式(张涛等, 2020)。
中国明对虾(Fenneropenaeus chinensis,以下简称对虾)是我国最早开展规模化增殖放流的物种,在我国近海的年放流量超过100亿尾(唐启升, 2019b)。中国明对虾位于海洋食物网的中间营养级,它不仅是许多上层营养级鱼类的捕食对象(唐启升等, 1997),还与主要渔业生物存在较高程度的食物重叠和营养竞争(张波等, 2015; Ji et al, 2019; 王伟继, 2020; 李凡等, 2021)。虽然对虾已不是近海生态系统的关键种,但对虾放流对其他生物类群的影响(王腾等, 2016; 林群等, 2018)尚缺乏调查实例支持。
生态位(niche)理论是解释群落中种间共存与竞争机制的基本理论之一,它主要通过生态位宽度和生态位重叠值等测度来表达特定环境中物种的竞争能力,可用于揭示种(类)群间在时间、空间资源利用上的功能关系等(张金屯, 2011)。该理论在揭示放流过程中外来物种引起的生态效应方面展现了很好的效果(Peterson et al, 2001; Easterwood et al, 2007; Korsu et al, 2012; 陈利娟等, 2021)。
相较于河流、湖泊等相对封闭的淡水生态系统,开放的海洋生态系统内生物组成复杂,存在广泛的物种交流和时空变动,放流或外来物种所带来的影响效应往往具有滞后性(Simberloff, 2011)、瞬态或间歇性(Piovia-Scott et al, 2017)和时空异质性(Simon et al, 2003),特别是当放流物种处于中间营养级时,还呈现多向(上行、下行和横向)和发散性,很难被直接观察到(Brodeur et al, 2017)。因此,通常采用较大尺度原位围隔实验系统开展相关研究(Britton, 2019),通过简化生物功能群组成,以更为有效地捕捉和定量目标生物类群的相对变化(Carey et al, 2010; Helenius et al, 2015)。
莱州湾是对虾重点增殖放流区。本研究基于湾内水域处于高捕捞强度、食物网趋于简单化的渔业生境特征背景,采取原位实验策略,在潍河口放流河道开展围隔生态实验,研究对虾放流量对生境中鱼类的生态位影响。研究结果有助于明确放流对虾对其他生物类群的影响方式,并为确定合理放流量、评估放流生态风险、科学制定放流策略、实现生态型增殖放流提供数据支撑。
1 材料与方法 1.1 实验围隔实验区位于莱州湾潍河入海河道分支处(37°6′54″N,119°30′20″E),该河道分支常用作对虾放流通道。在通道内人工拦截部分自然水面设置实验围隔。拦截水面近似长方形,面积约为7×104 m2。等距间隔设3个平行分实验区(Ⅰ、Ⅱ和Ⅲ),每个分实验区分割成4个面积为1 600 m2的方形围隔(A、B、C和O)。为尽可能复制及模拟自然水体环境要素以及同质化平行实验组生境要素(Britton, 2019),实验前预先翻挖实验区内底泥,混匀晾晒,再回填、埋网和平整基底;平行实验区、围隔外周和底部都用尼龙网(方形网孔,边长为0.28 cm)围成。水体中浮游生物及鱼卵、仔鱼等可自由通过孔径围网,放流虾苗和其他较大型渔业生物不能通过。利用潮汐水位差交换海水,以使实验区内环境要素与自然海水动态变化保持一致。定期清洁围网,保持实验区水深稳定(1.6~1.7 m)、围网通透性和水流动性。投放对虾前,围隔水体内未发现鱼类,以自然海水中的鱼类浮游生物(鱼卵或幼鱼)发育生长而来的鱼类作为研究目标。
1.2 放流和回捕实验时间为2019年4月22日—9月27日。依据莱州湾对虾合理放流量5亿~10亿尾(王伟继, 2020),模拟在莱州湾10~15 m等深线以内海域近似10亿尾、7.5亿尾、5亿尾的放流规模,在处理组围隔A、B、C内分别投放对虾苗2 400、1 800、1 200尾。围隔O为无放流对照组。投放虾苗来源于当年潍河口生产放流所用虾苗。虾苗个体平均体长为(1.63± 0.18) cm、平均体宽为(0.38±0.12) cm。定期监测水质要素。实验结束时,抽干池水,回捕对虾和所有鱼类。参照《海洋调查规范》(GB12763.4-2007、GB12763.6-2007)进行生物样品分类、计数及生物学测定。参考杨纪明(2001)和张波等(2015)确定出现鱼种所属的食性类别。
1.3 数据分析鱼类相对重要值(IRI)采用Pinkas指数(Pinkas et al, 1971)确定。计算公式如下:
$ {\text{IR}}{{\text{I}}_i} = (N\% + W\%) \times F\% $ | (1) |
式中,N%为第i种鱼的数量占所有鱼类总数量的百分比;W%为第i种鱼的重量占所有鱼类总重量的百分比;F%为第i种鱼在分实验区出现频次的百分比;IRI > 1 000时为重要种。
生态位宽度(Bi)是衡量生物对环境资源利用状况的指标,本研究采用Levins指数(Levins, 1968),以物种重要值为资源利用参数,分实验区作为资源状态,计算公式如下:
$ {B_i} = \frac{1}{{n\sum\limits_{k = 1}^n {(P_{ik}^2)} }} $ | (2) |
生态位重叠(Oij)是衡量生物物种间竞争情况的指标,本研究采用Pianka指数(Pianka, 1973),计算公式如下:
$ {O_{ij}} = {{\mathop \sum \limits_{k = 1}^n {P_{ik}}{P_{jk}}} \mathord{\left/ {\vphantom {{\mathop \sum \limits_{k = 1}^n {P_{ik}}{P_{jk}}} {\sqrt {\mathop \sum \limits_{k = 1}^n P_{ik}^2 \times \mathop \sum \limits_{k = 1}^n P_{jk}^2} }}} \right. } {\sqrt {\mathop \sum \limits_{k = 1}^n P_{ik}^2 \times \mathop \sum \limits_{k = 1}^n P_{jk}^2} }} $ | (3) |
生态位相似性指数(PS)可度量物种利用资源的相似性,是对生态位重叠指数的进一步反映(Schoener, 1970),计算公式如下:
$ {\text{PS}} = 1 - \frac{1}{2}\mathop \sum \limits_{k = 1}^n |{P_{ik}} - {P_{jk}}| $ | (4) |
上述公式(2)~(4)中,Pik和Pjk分别为物种i和物种j的重要值占资源k的比例,n为资源状态总数。Oij为第i个物种对物种j的生态位重叠,值域为0~1,其值越大代表重叠越高,当Qij > 0.75时,视为显著重叠(Krebs, 1999)。
采用软件PRIMER 7 (quest research limited)基于生态位重叠值进行聚类分析不同围隔的鱼类间竞争情况,基于生态位相似性指数进行多维尺度分析(MDS)排序,比较围隔间鱼类生态位相似性。
2 结果与分析 2.1 围隔生境要素图 1显示,围隔水温介于20~29 ℃,盐度介于32~35。浮游植物平均丰度为14 865 ind./m2,浮游动物和鱼类浮游生物平均丰度分别为1 548和285 ind./m2。多元(采样日期×分区×围隔)方差分析显示,不同采样时间获得的浮游植物、浮游动物和鱼类浮游生物的数量均差异显著(df=15, F=12.34, P < 0.000 1),在分实验区和围隔间差异不显著。
共投放对虾苗16 200尾,回捕1 523尾,总回捕率为9.4%。在放流围隔A~C中,围隔的回捕率均值为(9.8±2.6)%,A围隔的对虾回捕数量最多,C围隔的对虾回捕率和个体生物量最高(表 1)。方差和多重比较(Duncan test)分析显示,回捕对虾的数量、生物量以及个体生物量在分实验区和围隔间之间差异均不显著(P > 0.05),回捕率在A~C围隔间的差异显著(df=2, F=14.84, P=0.014 < 0.05),C围隔回捕率显著高于A和B围隔(Duncan test, P < 0.05)。
围隔中共出现6种鱼,归为杂食性、浮游动物食性和鱼/虾食性三类(表 2)。鱼个体小,都为1+龄以内。4个围隔中,A~C围隔的鱼体长分布范围为0~28 cm,O围隔的鱼体长分布范围窄,介于0~12 cm (图 2)。
4个围隔中,鱼的总数量和生物量均值相近。3种食性鱼中,浮游动物食性鱼的数量和生物量以O围隔较高,A~C围隔较低,杂食性鱼则以O围隔的值较低、A~C围隔的值较高,鱼/虾食性鱼以C和O围隔的值略高(图 3)。方差和多重比较分析显示,3种食性鱼的数量和鱼/虾食性鱼的生物量在围隔间的差异不显著(P > 0.05);O围隔中的杂食性鱼类生物量显著低于A~C围隔,浮游动物食性鱼类的生物量显著高于B和C围隔(P < 0.05)(图 3)。
表 2中,除切氏黑鲷(Sparus microcephalus czerskii)外的其他5种都为重要种(相对重要值IRI > 1 000)。所有围隔都以鱼/虾食性的刺虾虎鱼(Acanthogobius sp.)和杂食性的斑
表 2显示,5种重要鱼类的生态位宽度和重叠指数多大于0.6,以刺虾虎鱼的均值最高,斑
5种重要鱼类的种间生态位重叠指数Oij介于0.03~0.99。图 4显示,Oij > 0.75的配对数以O围隔最多(8对),其次为B围隔(7对)和C围隔(5对),A围隔最少(4对)。刺虾虎鱼关联的Oij均值达0.84,特别是在B、O围隔中,与其他4鱼种的Oij都 > 0.8,而在A、C围隔仅与
多维尺度分析排序(MDS)显示(图 5),O、A围隔分布无重叠、组间距最大,B和C围隔的重叠区面积最大、组间距最小,表明鱼类生态位相似程度在O和A围隔间较低,B和C围隔间较高。
本研究所采用的实验系统为在河口自然环境中围网阻隔构建而成。实验组和对照组的区别在于对虾投放量不同,饵料生物条件无显著差异(见2.1)。为避免对虾苗在围隔间混合,实验使用的尼龙网孔小于虾苗的平均体宽。实验还观察到,对虾在游动触碰到网时立即避退,并不钻出。此外,前期准备实验中投放三疣梭子蟹(Portunus trituberculatus)苗,观察到它们也不能钻出围网。实验结束回捕对虾时,对照组未采集到对虾(表 2)。综上认为,使用的围网对较大型生物有较好的阻隔效果。
本研究的目标对象选择来源于自然水体中的鱼类浮游生物,这是因为,随海水交换纳入的鱼类浮游生物是自然生境生物组成部分,且鱼类浮游生物生长发育过程中的饵料需求与对虾相似,彼此间的相互作用可能更为明显。此外,鱼类浮游生物发育生长至大于网孔径时,即不能游出围隔,可被完全捕获以便于获取其特征参数。本研究采用底质翻晒和围网阻隔等措施来排除水体原有的鱼类,实验初期未观察到鱼类,实验期间除虾苗外未投放其他生物,从结果来看,渔获物都为莱州湾河口常见的种类(表 2),为当年生的小个体,其鱼卵多属于浮性卵(卞晓东等, 2010),可以认为这些鱼类应是自然海水中的鱼类浮游生物(鱼卵或幼鱼)发育而来的。
3.2 对虾放流与回捕莱州湾对虾的合理放流量一直是个争议较大的问题。王伟继(2020)研究认为,莱州湾当前的合理对虾放流量应该为5亿~10亿尾左右。而林群等(2013)根据生态容量评估结果认为莱州湾对虾仍有较大的增殖潜力。在渤海放流生产中,放流的对虾数量越大,其资源密度越高(李忠义等, 2012)。本研究结果也显示,3种模拟放流规模中,A围隔(10亿尾)放流数量最高,回捕数量最多,但该围隔回捕的对虾总重量并不高于B围隔(7.5亿尾)和C围隔(5亿尾),回捕率和回捕虾的个体生物量也明显小于C围隔(图 2),这与莱州湾自然海域放流对虾的回捕产量、回捕率等并未随放流数量的增加而呈正比上升的调查结果(张波等, 2015)相似,可能与水体的生态容量及水体中的食物网结构和饵料基础等多个因素限制有关。若综合考虑投放成本和产出量,实验水体中模拟放流5亿尾对虾的效果应更优于7.5亿尾和10亿尾。由于围隔实验在控制和复制生境要素时有一定局限性(Carey et al, 2010),实际生产时还需要考虑海区的生境特征来确定放流量。
回捕率是增殖放流效果评价的重要指标。本研究得到的各个围隔的回捕率均大于6%,远高于自然放流海域的对虾回捕率评估值(李忠义等, 2012; 袁伟等, 2015; 秦玉雪等, 2020),其原因可能是围隔区设置的网阻止大型捕食者从自然海水进入,避免幼苗因存在捕食者或竞争者而意外死亡,放流幼苗的存活率随之升高。
3.3 对虾放流对鱼类产出和生态位的影响增殖放流活动对水域内生物类群的影响往往与其放流规模和生态容量有关(Rose et al, 2001)。在初级生产旺盛的水域,放流较低营养层次的生物可丰富增殖水域的物质循环途径,促进水体的生物产出(Arthur et al, 2010)。而莱州湾水域所属的渤海生态系统有较高的剩余生产量(林群等, 2018),对虾放流规模远未达到生态容量阈值(林群等, 2013)。海上调查也证实,在莱州湾放流对虾,可有效填补水域内原有食物网中相对缺失的营养级短板,提升渔业产出(张波等, 2015)。本研究结果亦显示,放流对虾并不会降低总鱼类生物产出和多样性等,特别是放流围隔内鱼的体长分布明显大于无放流围隔(图 2和图 3),这表明在现有实验水体中适当规模的对虾放流有助于鱼类的产出和个体生长。
生态位宽度和重叠指数反映物种对资源开发利用和相互竞争的程度(张金屯, 2011)。有研究认为,放流对虾对与其存在食物竞争关系的生物类群有负面影响,对其捕食者则存在正面效应(王腾等, 2016; 林群等, 2018; Ji et al, 2019)。本研究中出现的浮游动物食性鱼类与对虾的饵料需求相近,二者之间存在食物竞争关系(张波等, 2015),其产出量和相对重要值表现为随对虾放流量增加而减少(图 3),在无放流围隔中生态位宽度增加(见2.4)。而作为对虾的捕食者——鱼/虾食性鱼类的总产出量在放流和对照围隔之间差异小,并未表现出明显的正向效应。究其原因,鱼/虾食性鱼的生态位宽度值高(表 2),它在无放流和回捕量较少的围隔,通过增加对其他鱼类的捕食利用和高生态位重叠配对(图 4)来维持其总产出量。但它的生态位宽度在食物来源相对缺乏的无放流围隔较低。杂食性鱼类主要摄食水体中的颗粒物以及生物碎屑等(杨纪明, 2001),与对虾食物竞争关系并不明显,且放流对虾的粪便等可丰富水体中的生物碎屑来源,因而放流量增加可促进杂食性鱼类的产出(图 3)和增加其生态位宽度。总体而言,在无放流围隔中,可利用资源量不足,多数鱼类的生态位宽度降低,鱼种之间生态位重叠程度高,物种间表现出的竞争干扰更明显(Wilson et al, 1995)。有放流围隔,饵料来源增加,分散和降低了鱼类间的捕食压力和生态位重叠,且随着对虾数量的增加,鱼类群落生态位特征差异表现得更为明显(图 5)。
4 结语基于原位围隔模拟实验的结果发现,在一定放流规模范围内,对虾回捕数量随放流数量的增加而增加,但其生物量和个体重量及回捕率未显著增加。研究表明,放流对虾可能会改变不同食性鱼类的生态位宽度和相互间的生态重叠程度,放流量越高,引起的影响效应可能会更明显。本研究结果进一步支持了“莱州湾中国明对虾的合理放流量为5亿~10亿尾”的观点。但由于莱州湾食物网及其中的非生物条件,不可能在现有实验水体的规模下得以完全复制,因此,本研究结果还有待在自然海域内进一步调查验证并结合多种研究方法如营养生态位同位素分析来验证和完善。
ARTHUR R I, LORENZEN K, HOMEKINGKEO P, et al. Assessing impacts of introduced aquaculture species on native fish communities: Nile tilapia and major carps in SE Asian freshwaters. Aquaculture, 2010, 299(1/2/3/4): 81-88 |
BRODEUR R D, SMITH B E, MCBRIDE R S, et al. New perspectives on the feeding ecology and trophic dynamics of fishes. Environmental Biology of Fishes, 2017, 100(4): 293-297 DOI:10.1007/s10641-017-0594-1 |
BRITTON J R. Empirical predictions of the trophic consequences of non-native freshwater fishes: A synthesis of approaches and invasion impacts. Turkish Journal of Fisheries and Aquatic Sciences, 2019, 19(6): 529-539 |
BIAN X D, ZHANG X M, GAO T X, et al. Category composition and distributional patterns of ichthyoplankton in the Yellow River estuary during spring and summer 2007. Journal of Fishery Sciences of China, 2010, 17(4): 815-827 [卞晓东, 张秀梅, 高天翔, 等. 2007年春、夏季黄河口海域鱼卵、仔稚鱼种类组成与数量分布. 中国水产科学, 2010, 17(4): 815-827] |
CAREY M P, WAHL D H. Native fish diversity alters the effects of an invasive species on food webs. Ecology, 2010, 91(10): 2965-2974 DOI:10.1890/09-1213.1 |
CHEN L J, XIAO Q Z, QIU Y P, et al. Coexistence strategies of invaded gobies in the Dianchi Lake, Yunnan, China. Chinese Journal of Applied Ecology, 2021, 32(9): 3357-3369 [陈利娟, 肖乔芝, 仇玉萍, 等. 云南滇池入侵虾虎鱼类的共存策略. 应用生态学报, 2021, 32(9): 3357-3369] |
EASTWOOD M M, DONAHUE M J, FOWLER A E. Reconstructing past biological invasions: Niche shifts in response to invasive predators and competitors. Biological Invasions, 2007, 9(4): 397-407 DOI:10.1007/s10530-006-9041-5 |
FLOOD P J, DURAN A, BARTON M, et al. Invasion impacts on functions and services of aquatic ecosystems. Hydrobiologia, 2020, 847(7): 1571-1586 DOI:10.1007/s10750-020-04211-3 |
HELENIUS L K, PADROS A A, LESKINEN E, et al. Strategies of zooplanktivory shape the dynamics and diversity of littoral plankton communities: A mesocosm approach. Ecology and Evolution, 2015, 5(10): 2021-2035 DOI:10.1002/ece3.1488 |
JI W, YOKOYAMA H, REID W D K, et al. Trophic ecology of Penaeus chinensis (Decapoda: Dendrobranchiata: Penaeidae) and potential competitive interactions with other species in the Haizhou Bay determined by carbon and nitrogen stable isotope analysis. Regional Studies in Marine Science, 2019, 32: 100842 DOI:10.1016/j.rsma.2019.100842 |
JIANG Y Z, LIN N, YANG L L, et al. The ecological risk of stock enhancement and the measures for prevention and control. Journal of Fishery Sciences of China, 2014, 21(2): 413-422 [姜亚洲, 林楠, 杨林林, 等. 渔业资源增殖放流的生态风险及其防控措施. 中国水产科学, 2014, 21(2): 413-422] |
KORSU K, HEINO J, HUUSKO A, et al. Specific niche characteristics facilitate the invasion of an alien fish invader in boreal streams. International Journal of Ecology, 2012(2012): 813016 |
KREBS C J. Ecological methodology (2nd ed). Menlo Park: Addison-Welsey, 1999
|
LEVINS R. Evolution in changing environments: Some theoretical explorations. Princeton: Princeton University Press, 1968
|
LI F, CONG X R, ZHANG X M. Niches of four large crustacean species in Laizhou Bay. Journal of Fisheries of China, 2021, 45(8): 1384-1394 [李凡, 丛旭日, 张孝民. 莱州湾4种大型甲壳类的空间与营养生态位. 水产学报, 2021, 45(8): 1384-1394] |
LI Z Y, WANG J, ZHAO Z L, et al. Resources enhancement of Fenneropenaeus orientalis in the Bohai Sea. Progress in Fishery Sciences, 2012, 33(3): 1-7 [李忠义, 王俊, 赵振良, 等. 渤海中国对虾资源增殖调查. 渔业科学进展, 2012, 33(3): 1-7] |
LIN Q, LI X S, LI Z Y, et al. Ecological carrying capacity of Chinese shrimp stock enhancement in Laizhou Bay of East China based on Ecopath model. Chinese Journal of Applied Ecology, 2013, 24(4): 1131-1140 [林群, 李显森, 李忠义, 等. 基于Ecopath模型的莱州湾中国对虾增殖生态容量. 应用生态学报, 2013, 24(4): 1131-1140] |
LIN Q, SHAN X J, WANG J, et al. Changes in Chinese shrimp (Fenneropenaeus chinensis) carrying capacity of the Bohai Sea. Progress in Fishery Sciences, 2018, 39(4): 19-29 [林群, 单秀娟, 王俊, 等. 渤海中国对虾生态容量变化研究. 渔业科学进展, 2018, 39(4): 19-29] |
LORENZEN K, LEBER K M, BLANKENSHIP H L. Responsible approach to marine stock enhancement: An update. Reviews in Fisheries Science, 2010, 18(2): 189-210 DOI:10.1080/10641262.2010.491564 |
PETERSON A T, VIEGLAIS D A. Predicting species invasions using ecological niche modeling: New approaches from bioinformatics attack a pressing problem. BioScience, 2001, 51(5): 363-371 DOI:10.1641/0006-3568(2001)051[0363:PSIUEN]2.0.CO;2 |
PIANKA E R. The structure of lizard communities. Annual Review of Ecology and Systematics, 1973, 4(1): 53-74 |
PINKAS L, OLIPHANT M S, IVERSON I L. Food habits of albacore, bluefin tuna, and bonito in California waters. UC San Diego: Library - Scripps Digital Collection. Fish Bulletin, 1971, 152: 1-105 |
PIOVIA-SCOTT J, YANG L H, WRIGHT A N. Temporal variation in trophic cascades. Annual Review of Ecology Evolution and Systematics, 2017, 48(1): 281-300 |
QIN Y X, WANG S, GUO L Y, et al. Evaluation and benefits of enhancement releasing effects of Chinese shrimp Fenneropenaeus chinensis in Northern Yellow Sea. Journal of Dalian Ocean University, 2020, 35(6): 908-913 [秦玉雪, 王珊, 郭良勇, 等. 黄海北部中国明对虾增殖放流效果评估与效益分析. 大连海洋大学学报, 2020, 35(6): 908-913] |
ROSE K A, COWAN J H, WINEMILLER K O, et al. Compensatory density-dependence in fish population: Importance, controversy, understanding and prognosis. Fish and Fisheries, 2001, 2(4): 293-327 |
SCHOENER T W. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology, 1970, 51(3): 408-418 |
SIMBERLOFF D. How common are invasion-induced ecosystem impacts?. Biological Invasions, 2011, 13(5): 1255-1268 |
SIMON K S, TOWNSEND C R. Impacts of freshwater invaders at different levels of ecological organisation, with emphasis on salmonids and ecosystem consequences. Freshwater Biology, 2003, 48(6): 982-994 |
TANG Q S. Fishery stock enhancement, sea ranching, breeding fishery and their definition development. China Fisheries, 2019a(5): 28-29 [唐启升. 渔业资源增殖、海洋牧场、增殖渔业及其发展定位. 中国水产, 2019a(5): 28-29] |
TANG Q S. Strategic research on the fishery stock enhancement in China's exclusive economic zone. Beijing: Ocean Press, 2019b: 20-42 [唐启升. 我国专属经济区渔业资源增殖战略研究. 北京: 海洋出版社, 2019b: 42-42]
|
TANG Q S, WEI S, JIANG W M. Predator species of fishery resources enhancement and their predation on enhancement species in Laizhou Bay of Bohai Sea. Chinese Journal of Applied Ecology, 1997, 8(2): 199-206 [唐启升, 韦晟, 姜卫民. 渤海莱州湾渔业资源增殖的敌害生物及其对增殖种类的危害. 应用生态学报, 1997, 8(2): 199-206] |
TOWNSEND C R. Individual, population, community, and ecosystem consequences of a fish invader in New Zealand streams. Conservation Biology, 2003, 17(1): 38-47 |
WANG T, ZHANG H, ZHANG H, et al. Ecological carrying capacity of Chinese shrimp stock enhancement in Haizhou Bay of East China based on Ecopath model. Journal of Fishery Sciences of China, 2016, 23(4): 965-975 [王腾, 张贺, 张虎, 等. 基于营养通道模型的海州湾中国明对虾生态容纳量. 中国水产科学, 2016, 23(4): 965-975] |
WANG W J. Effect evaluation and ecological security of Fenneropenaeus chinensis stock enhancement and release. Beijing: China Agriculture Press, 2020: 81-108 [王伟继. 中国对虾增殖放流效果评估与生态安全. 北京: 中国农业出版社, 2020: 81-108]
|
WILSON J B, GITAY H. Limitations to species coexistence: Evidence for competition from field observations, using a patch model. Journal of Vegetation Science, 1995, 6(3): 369-376 |
YANG J M. A study on food and trophic levels of Bohai Sea fish. Modern Fisheries Information, 2001, 16(10): 10-19 [杨纪明. 渤海鱼类的食性和营养级研究. 现代渔业信息, 2001, 16(10): 10-19] |
YUAN W, LIN Q, WANG J, et al. Assessment of enhancement effectiveness of Chinese shrimp Fenneropenaeus chinensis stock in the Laoshan Bay. Progress in Fishery Sciences, 2015, 36(4): 27-34 [袁伟, 林群, 王俊, 等. 崂山湾中国对虾(Fenneropenaeus chinensis)增殖放流的效果评价. 渔业科学进展, 2015, 36(4): 27-34] |
ZHANG B, JIN X S, WU Q, et al. Enhancement and release of Chinese shrimp in Laizhou Bay. Journal of Fishery Sciences of China, 2015, 22(3): 361-370 [张波, 金显仕, 吴强, 等. 莱州湾中国明对虾增殖放流策略研究. 中国水产科学, 2015, 22(3): 361-370] |
ZHANG J T. Quantitative ecology (2nd edition). Beijing: Science Press, 2011: 1-372 [张金屯. 数量生态学(第2版). 北京: 科学出版社, 2011: 1-372]
|
ZHANG T, FENG J, SONG H. Principles and technology of biological resources maintenance in marine ranching. Science and Technology for Development, 2020, 16(2): 206-212 [张涛, 奉杰, 宋浩. 海洋牧场生物资源养护原理与技术. 科技促进发展, 2020, 16(2): 206-212] |