2. 三峡工程鱼类资源保护湖北省重点实验室 湖北 宜昌 443100
2. Hubei Key Laboratory of Three Gorges Projects for Conservation of Fishes, Yichang 443100, China
圆口铜鱼(Coreius guichienoti)是长江中上游的珍稀特有鱼类,栖息于激流性生境,为典型的河道洄游性鱼类(Jiang et al, 2010)。多年来,由于水利设施兴建对其栖息地水域生态环境的破坏和人为过度捕捞,导致其种群数量大幅减少(Zhang et al, 2010; 段辛斌等, 2002)。因此,圆口铜鱼成为长江水生生物资源重点保护对象,被列入《国家重点保护经济水生动植物资源名录》和《中国生物多样性红色名录》,社会关注度迅速提升。政府部门和保护机构近年来也制定了许多针对性的保护政策和生态补偿措施,如禁渔和增殖放流等。其中,人工增殖放流是恢复珍稀濒危鱼类自然种群数量的有效手段之一,在国内外被广泛应用(Uki, 2006; 杨君兴等, 2013),而培育出健康且数量充足的苗种则是规模化增殖放流的基础前提。
在放流前的苗种培育环节中,制定投喂策略是生产管理的重要环节。投喂策略包括投喂量、投喂频率、投喂时间和投喂地点等(Schoener, 1971),其中投喂量和投喂频率对鱼类生存、生长和饲料利用的影响最直接(陈刘浦等, 2020; 徐郑鑫等, 2021)。因此,设定科学合理的投喂量和投喂频率,对于提高养殖苗种产量和质量、降低饲料成本、减轻残饵造成的水质污染具有重要的指导意义。史则超等(2008)研究表明,适宜的投喂水平可以提高南方鲇(Silur meridionalis)稚鱼的存活率和特定生长率,并降低残食率。纪文秀等(2011)研究发现,合适的投喂频率可以提高点带石斑鱼(Epinephelus malabaricus)的增重率、摄食率和饲料效率。然而,国内外目前关于圆口铜鱼人工养殖的经验尚浅,对于其苗种投喂策略的相关研究尚处于空白状态,有鉴于此,本研究结合前期对圆口铜鱼的养殖经验,在循环水系统养殖模式下,探究了投喂量和投喂频率对圆口铜鱼幼鱼各项生长性能和生理生化指标的影响,旨在对圆口铜鱼苗种培育提供科学的理论依据,为规模化增殖放流奠定基础。
1 材料与方法 1.1 养殖管理养殖基地位于四川省宜宾市向家坝增殖放流站,实验对象为2021年站内人工繁育的圆口铜鱼幼鱼,整个实验的养殖流程都在放流站繁育车间的圆形玻纤缸培育池内进行(直径为1 m,高为1.2 m,池底部四周延中央略微下陷,池底中心为排水口,布置有防漏网,养殖水深维持在0.7 m),繁育车间配备有循环水养殖系统,养殖用水均经过滤消毒和曝气处理。
选取初始规格为6~7 cm、体表无伤、健康的圆口铜鱼幼鱼1 800尾[初体重为(4.91±0.11) g],并随机分配到30个规格一致的培育池内进行暂养,每个培育池60尾。在培育池暂养14 d后,称取初始体重并开始投喂实验。投喂实验采用5×2双因子设计,共设置5个投喂水平(1%、2%、3%、4%和5%,这5个投喂水平为表观饱食投喂水平,是每日投喂量占实验鱼体重的比例),以及2个投喂频率(2和3次/d),共10个投喂处理组,每组设3个平行对照,每个平行组60尾鱼,养殖周期为8周,其中,投喂频率为2次/d处理组的投喂时间为08:00和20:00;投喂频率为3次/d处理组的投喂时间为08:00、14:00和20:00。养殖实验开始后,每天记录水温、投饵量和鱼苗死亡情况,每2周对实验鱼进行一次称重,并根据重量变化重新调节投喂量。实验期间培育池水温为(20±2) ℃、光照周期为12∶12 h、氨氮≤0.1 mg/L、溶解氧≥7.5 mg/L。
饲料为山东升索饲料科技有限公司生产的S5微粒子配合饲料,营养成分:水分6.92%,粗蛋白52.66%,粗脂肪14.33%,淀粉10.6%,粗灰分12.74%,钙3.27%,总磷2.07%。
1.2 样品采集和测定养殖结束后,所有实验鱼饥饿24 h,经2-苯氧基乙醇(Sigma)麻醉后进行称重及计数。每个培育池随机取6尾(n=180),测量体长、体重和内脏重。待内脏重称量完成后,取肝、前肠组织,以预冷的生理盐水冲洗干净,并用滤纸吸干水分,然后切成小块,分装后放入液氮快速冷冻,–80℃保存待用,用于消化酶活性的测定。
相关生长性能指标计算公式如下:
存活率(survival rate, SR, %)=100×存活尾数/60;
增重率(weight gain rate, WGR, %)=100×(终末均重−初始均重)/初始均重;
特定生长率(specific growth rate, SGR, %/d)=100× [ln终末均重−ln初始均重]/56;
饲料效率(feed efficiency, FE, %)=100×(终末体重−初始体重)/摄食量;
肥满度(condition factor, CF)=100×终末体重/(终末体长)3;
脏体比(Viscerosomatic index, VSI, %)=100×内脏团重/终末体重;
1.2.1 全鱼体成分分析每个培育池另取6尾全鱼保存于–20℃冰箱,用于体成分分析(n=180),体组织的常规营养成分依照以下方法检测:水分采用常压干燥法测定(GT/T6435-2014),粗蛋白采用凯氏定氮法测定(GB/T6433-2006),粗脂肪采用索氏抽提法测定(GB/T6433-2006),灰分采用马弗炉灼烧法测定(GB/T6438-2007)。
1.2.2 消化酶测定取鱼的肝脏和前肠组织,按9倍重(w/v)的比例加入去离子水,冰浴匀浆后,在4 ℃下,以5 000 r/min离心20 min,取上清液用于检测。淀粉酶(AMS)、脂肪酶(LPS)和胰蛋白酶(TPS)试剂盒购自南京建成生物工程研究所(南京),具体方法参照说明书。
1.2.3 肝脏组织病理学观察每个培育池另取3尾鱼的肝脏组织(n=90),使用4%的多聚甲醛溶液固定48 h,之后进行洗脱、石蜡包埋、切片和伊红-苏木精(HE)染色,最后用中性树胶封片,并置于显微镜下观察拍照。
1.3 数据分析采用R语言对所得数据进行双因素方差分析(two- way ANOVA),如因素对变量的影响显著,则采用Bonferroni法进行组间多重比较。如果2个因素之间的交互作用影响显著,则先固定其中一项因素,再对另一因素进行比较。显著性水平设置为P=0.05,所有数据均以平均值±标准差(Mean±SD)表示。
2 结果 2.1 饲料投喂水平和投喂频率对圆口铜鱼生长的影响经过8周的养殖实验,各个处理组的圆口铜鱼存活状况良好,仅5%投喂水平下的2个投喂频率组各死亡1尾,而其他各组均未出现死亡。如表 1所示,投喂水平、投喂频率以及二者的交互作用对圆口铜鱼的WGR、SGR及FE均有显著影响(P<0.05),仅投喂频率对CF和VSI影响显著(P<0.05)。
随着投喂水平的提高,圆口铜鱼的WGR和SGR均显著增加(P<0.05)。当投喂水平≤3%时,3次/d组的WGR和SGR显著高于2次/d组(P<0.05),而当投喂水平>3%时,投喂频率对WGR和SGR均无显著影响。同一投喂频率下,圆口铜鱼CF在不同投喂水平之间无显著差异,但在3%和4%投喂水平下,2次/d组的CF显著高于3次/d组。在同一投喂频率下,不同投喂水平组之间VSI无显著差异,除了3%投喂水平,在其他各投喂水平下,2次/d组的VSI均显著高于3次/d组(P<0.05)。
2.2 饲料投喂水平和投喂频率对圆口铜鱼全鱼体成分的影响不同投喂处理组的圆口铜鱼幼鱼的全鱼基本营养成分见表 2,其中,水分含量仅受到投喂水平的显著影响(P<0.05),而鱼体粗蛋白则受到投喂水平、投喂频率以及二者之间交互作用的显著影响(P<0.05)。此外,鱼体粗脂肪仅受到投喂水平的显著影响(P<0.05),而投喂水平、投喂频率以及二者的交互作用对粗灰分均无显著影响(P<0.05)。
随着投喂水平的提高,鱼体水分在2个投喂频率组都呈现出整体下降的趋势,在5%投喂水平下,2个投喂频率组的水分均达到最低,且均显著低于各自1%和2%投喂水平组(P<0.05)。2次/d投喂组的鱼体粗蛋白在各投喂水平组之间无显著差异(P>0.05),而在3次/d投喂频率、1%投喂水平下的粗蛋白显著低于其他投喂水平组(P<0.05),此外,在1%投喂水平、3次/d投喂频率下的粗蛋白显著低于2次/d组(P<0.05)。2个投喂频率条件下的粗脂肪都随投喂水平的升高而展现出增加的趋势,在2次/d的投喂频率下,1%投喂水平组的粗脂肪显著低于其他各组,2%投喂水平组的粗脂肪显著低于5%投喂水平组。对3次/d投喂频率来说,1%投喂水平组的粗脂肪显著低于其他各组,2%和3%投喂水平组的粗脂肪均显著低于5%投喂水平组。
2.3 饲料投喂水平和投喂频率对圆口铜鱼消化酶活性的影响各投喂处理组中圆口铜鱼幼鱼肝脏和前肠组织的消化酶活性见表 3,其中,投喂水平对圆口铜鱼肝脏的胰蛋白酶和脂肪酶影响显著(P<0.05),对淀粉酶则无显著影响(P>0.05)。投喂频率和交互作用对肝脏消化酶也无显著影响(P>0.05)。对前肠组织消化酶来说,投喂水平、投喂频率以及二者的交互作用均对其无显著影响(P>0.05)。
圆口铜鱼肝脏胰蛋白酶在高投喂水平下出现了下降的趋势,在2次/d投喂频率下,4%投喂水平组的胰蛋白酶活性显著低于3%投喂水平组(P<0.05),5%投喂水平组的胰蛋白酶活性则显著低于1%、2%和3%投喂水平组(P<0.05)。在3次/d投喂频率下,4%和5%投喂水平组的圆口铜鱼肝脏胰蛋白酶活性均显著低于3%投喂水平组(P<0.05)。对肝脂肪酶活性来说,2次/d投喂频率下,各投喂水平组之间的差异不显著(P>0.05)。而在3次/d投喂频率下,肝脂肪酶活性随投喂水平的增加呈先升高后下降的趋势,3%和4%投喂水平组的脂肪酶活性均显著高于其他投喂水平组(P<0.05)。
2.4 饲料投喂水平和投喂频率对圆口铜鱼肝脏组织结构的影响如图 1所示,当投喂水平低于3%时,可以观察到2个投喂处理组中的圆口铜鱼肝细胞排列均匀、规则,细胞形态较为正常,油滴体积较小。当投喂水平达到3%并进一步升高时,2次/d组的肝细胞体积开始变大,并逐渐变的肿胀,空泡化,表现出脂肪肝的症状。在3%和4%投喂水平下,3次/d组的肝细胞周边充斥着大量圆形和卵圆形的脂滴,而细胞形态则无明显变化,当投喂水平达到5%时,3次/d组也开始出现细胞体积变大,肿胀的现象,但对比2次/d组来说,程度较轻。
诸多研究表明,投喂水平和投喂频率对鱼类苗种培育至关重要,科学适宜的投喂水平和投喂频率可以提高苗种的生长性能并减少饲料浪费(Dwyer et al, 2002)。本研究发现,经过8周的养殖,各投喂处理组的苗种生存状况良好,圆口铜鱼幼鱼的增重率和特定生长率随投喂水平的增加而持续增加,在日投喂水平为体重的1%~5%范围内未出现拐点,但饲料效率在该投喂水平范围内出现拐点,呈现先增长后平稳的趋势。在2次/d投喂频率下,饲料效率在4%投喂水平下达到最高点,而在3次/d的投喂频率下,3%投喂水平组的饲料效率最高,这种先上升后下降的变化趋势与珍珠龙胆石斑鱼(Epinephelus fuscoguttatus♀ × E. lanceolatus ♂) (唐怀庆等, 2018)、泥鳅(Misgurnus anguillicaudatus) (刘姚等, 2011)、红鳍东方鲀(Takifugu rubripes) (卫育良等, 2021)等养殖投喂实验的研究结果相一致,推测可能是因为高水平的投喂量使得饲料停留在消化道内的时间变短,更多的营养物质被排泄出体外,无法被苗种充分消化吸收(Henken et al, 1985; 陈云飞等, 2017; 王瑁等, 2002)。
此外,本研究还发现,当投喂水平≤3%时,3次/d投喂组的圆口铜鱼无论是增重率、特定生长率还是饲料效率都显著高于2次/d投喂组的个体,表明在一定投喂水平范围内,提高投喂频率可以提升生长性能(Sveier et al, 1998; 林艳等, 2015),但这种生长优势在投喂水平≥4%时消失,这可能是由于饲料效率在高投喂水平下的趋同所导致的。
肥满度、脏体比作为常用形体学参数可以衡量鱼体的能量状态,通常投喂水平和投喂频率的提高可以增加机体对营养物质的吸收,而营养物质和能量的摄入增加会导致鱼体肥满度和脏体比的升高(Liu et al, 2018; 褚志鹏等, 2020)。但本研究发现,投喂水平对圆口铜鱼幼鱼的肥满度和脏体比无显著影响,且投喂频率的升高反而导致了肥满度和脏体比一定程度上的降低。推测这种情况可能与圆口铜鱼对脂肪代谢和利用的高效率有关,有研究表明,圆口铜鱼具有发达的肝胰腺,可以高效地利用食物中的蛋白与脂肪,对能量代谢具备很强的调控能力(葛清秀等, 2001),使得鱼体脂肪的储备和消耗处于动态平衡状态,不易在内脏沉积。而投喂频率的增加使肥满度和脏体比降低的现象则需要进一步的探究。
3.2 饲料投喂水平和投喂频率对圆口铜鱼全鱼体成分的影响对圆口铜鱼全鱼体成分组成的分析发现,本实验条件下的圆口铜鱼与野生圆口铜鱼的体成分相似度较高(董纯等, 2015; 吴斌等, 2008)。据报道,捕捞自长江木洞江段的野生圆口铜鱼幼鱼的体成分组成为水分71.74%~76.33%,粗蛋白13.90%~14.69%,粗脂肪7.11%~10.96%,粗灰分2.39%~2.43%(吴斌等, 2008),与本实验条件下的个体相比,其粗蛋白和粗脂肪含量略低,粗灰分含量略高,这可能得益于本实验中投喂饲料的蛋白质和脂肪含量占比较高,营养获取较野外环境更为充足。此外,本研究还发现,随着投喂水平的增加,鱼体水分含量逐渐减少,脂肪含量逐渐增加,二者成反比,可能是在食物较为丰富的环境中,个体用于觅食和食物竞争的能量消耗减少,使得脂肪更易被储存和积累在肌肉和组织器官内,水分则因为机体脂肪含量占比的升高而相对下降(Okorie et al, 2013; 褚志鹏等, 2020)。对投喂频率而言,相同投喂水平下,2个投喂频率组的各项体成分指标基本无显著差异,这与对点带石斑鱼(纪文秀等, 2011)和黄姑鱼(Nibea miichthioides) (Wang et al, 2007)的研究结论一致。
3.3 饲料投喂水平和投喂频率对圆口铜鱼消化酶的影响消化酶的活性变化是衡量鱼类营养生理状态的重要指标,与机体的能量吸收密切相关,对鱼类的生长发育有重要影响,通过测量机体消化酶的活性变化可以充分了解鱼类对各项营养物质的消化能力(Baragi et al, 1986; Martínez et al, 1999)。目前,国内外关于鱼类消化酶活性变化的研究开展的十分广泛,生态因子、饲料营养成分、投喂水平及投喂频率等要素均对消化酶活性具有复杂而多样的影响(郝甜甜等, 2022; 刘康等, 2019; 田宏杰等, 2006)。本研究中,投喂频率对圆口铜鱼肝脏及前肠的消化酶均无显著影响,类似的研究结果在其他物种上也有报道。刘康等(2019)研究发现,投喂频率为2和3次/d,并未使长吻
肝脏是鱼类最主要的消化器官之一,承担着消化吸收和储能的生理功能,在机体蛋白质、脂质和能量的代谢中发挥着不可或缺的作用,而营养物质的过量摄入,如过量投喂、不合理的营养素搭配以及过高的饲料能量密度等因素,可能导致脂肪在肝脏组织中的超量蓄积(Verreth et al, 1994),对肝脏产生胁迫作用,进而诱发脂肪肝(罗毅平, 2007)。目前,养殖鱼类的脂肪肝病在国内外的主要养殖鱼类中广泛存在,对水产养殖业的健康发展产生了极大的负面影响(杜震宇, 2014),而脂肪肝病的典型症状是在肝脏组织结构上通常表现为细胞不规则排列、核偏移、肿胀化和空泡化。例如,徐奇友等(2012)对松浦镜鲤(Cyprinus carpio Songpu)的研究发现,随着饲料脂肪水平的升高,肝细胞相继出现空泡化、肿胀和细胞核偏移等结构性改变。徐祥泰等(2016)对大口黑鲈(Micropterus salmoides)的研究发现,饲料淀粉含量的增加导致了实验鱼肝细胞体积的异常增大和空泡化。本研究通过对圆口铜鱼肝组织HE染色切片的观察,发现其肝细胞也出现了类似症状,随着饲料投喂水平的升高,鱼体摄入的能量也不断增加,脂肪在肝脏中不断累积,2个投喂频率组的肝细胞也随之出现不同程度的肿胀和空泡化的现象,但3次/d投喂频率下各投喂水平组肝细胞肿胀和空泡化的程度要明显低于2次/d投喂频率组,直到投喂水平达到5%时,才出现较为明显的细胞肿胀。此外,在3次/d投喂频率下,在3%和4%投喂水平组的肝细胞中可观察到大量细小透亮的脂滴充斥在肝脏细胞周围,这种状态与野生状态下的圆口铜鱼肝脏极为类似(葛清秀等, 2001),而这种易于在组织间穿梭的脂滴可能是圆口铜鱼能够耐受脂肪和高效利用脂肪的生理基础(楼允东, 1980),其机理有待进一步探究。整体来看,在3次/d投喂频率下,圆口铜鱼肝脏组织中的脂肪更多的以游离脂滴的形式存在,而非贮存在细胞内,推测提高投喂频率对圆口铜鱼肝脏的脂质积累可能具有一定的缓解作用,这同时也解释了为什么本研究中高频率投喂下的圆口铜鱼具有相对较低的脏体比。
4 结论在本研究条件下,以生长性能、饲料利用效率和肝脏健康等方面进行综合评估,圆口铜鱼幼鱼以体重3%的日投喂量每天投喂3次为宜。
BARAGI V, LOVELL R T. Digestive enzyme activities in striped bass from first feeding through larva development. Transactions of the American Fisheries Society, 1986, 115(3): 478-484 DOI:10.1577/1548-8659(1986)115<478:DEAISB>2.0.CO;2 |
CHEN L P, PENG J, MA W J, et al. Effects of feeding frequency and feeding level on growth performance and physiological indices of juvenile largemouth bass Micropterus salmoides in cyclic water system. Open Journal of Fisheries Research, 2020, 7(1): 15-23 [陈刘浦, 彭建, 马文君, 等. 投喂频率和投喂量对循环水养殖大口黑鲈幼鱼生长和生理指标的影响. 水产研究, 2020, 7(1): 15-23] |
CHEN Y F, PENG H Z, LIU Z P, et al. Effects of feeding level on growth, intestinal digestive enzymes activity and physiological and biochemical characteristics of serum in the asian swamp eel (Monopterus albus). Progress in Fishery Sciences, 2017, 38(2): 114-120 [陈云飞, 彭慧珍, 刘庄鹏, 等. 投喂水平对黄鳝(Monopterus albus)生长, 肠道消化酶活性及部分血清生理生化指标的影响. 渔业科学进展, 2017, 38(2): 114-120] |
CHU Z P, JIN J L, CHEN X H, et al. Effects of different feeding rates and frequencies on the growth performance, body composition, and biochemical parameters of juvenile hybrid sturgeon. Journal of Fishery Sciences of China, 2020, 27(2): 177-185 [褚志鹏, 金佳利, 陈细华, 等. 不同投喂率和投喂频率对大杂交鲟幼鱼生长、体成分和生化指标的影响. 中国水产科学, 2020, 27(2): 177-185] |
CONOVER R J. Feeding interactions in the pelagic zone. Rapports et Proces Verbaux des Reunions, 1978, 173: 66-76 |
DONG C, TANG H Y, PAN L, et al. Chemical composition and energy density of the juvenile Coreius guichenoti of different size. Hebei Fisheries, 2015(10): 13–17, 71 [董纯, 唐会元, 潘磊, 等. 不同规格圆口铜鱼幼鱼的化学组成和能量密度. 河北渔业, 2015(10): 13–17, 71] |
DU Z Y. Causes of fatty liver in farmed fish: A review and new perspectives. Journal of Fisheries of China, 2014, 38(9): 1628-1638 [杜震宇. 养殖鱼类脂肪肝成因及相关思考. 水产学报, 2014, 38(9): 1628-1638] |
DUAN X B, CHEN D Q, LIU S P, et al. Studies on status of fishery resources in Three Gorges Reservoir reaches of the Yangtze River. Acta Hydrobiologica Sinica, 2002, 26(6): 605-611 [段辛斌, 陈大庆, 刘绍平, 等. 长江三峡库区鱼类资源现状的研究. 水生生物学报, 2002, 26(6): 605-611 DOI:10.3321/j.issn:1000-3207.2002.06.005] |
DWYER K S, BROWN J A, PARRISH C, et al. Feeding frequency affects food consumption, feeding pattern and growth of juvenile yellowtail flounder (Limanda ferruginea). Aquaculture, 2002, 213(1/2/3/4): 279-292 |
FENG P F, MA H W, HE J Z, et al. Effects of feeding frequency on growth performance, chemical composition, digestive enzyme activities and amino acid composition of juvenile Pelteobagrus fulvidraco. Chinese Journal of Animal Nutrition, 2021, 33(10): 5794-5801 [冯鹏霏, 马华威, 何金钊, 等. 投喂频率对黄颡鱼幼鱼生长性能, 化学成分, 消化酶活性和氨基酸组成的影响. 动物营养学报, 2021, 33(10): 5794-5801 DOI:10.3969/j.issn.1006-267x.2021.10.038] |
FONTAINE P, GARDEUR J N, KESTEMONT P, et al. Influence of feeding level on growth, intraspecific weight variability and sexual growth dimorphism of Eurasian perch Perca fluviatilis L. reared in a recirculation system. Aquaculture, 1997, 157(1/2): 1-9 |
GE Q X, WANG Z J, ZHANG H X. Study on the hepatopancreases of Coreius heterodon (Bleeker) and Coreius guichenoti (Sauvage et Dabry) in Yangtze River. Journal of Quanzhou Normal College(Natural Science), 2001, 19(6): 69-74 [葛清秀, 王志坚, 张昊星. 长江铜鱼和圆口铜鱼肝胰腺的比较研究. 泉州师范学院学报(自然科学版), 2001, 19(6): 69-74] |
HAO T T, WANG J Y, PAN J M, et al. Effects of partial replacement of fish meal with ribose protein on growth performance, intestinal digestive enzyme activities, specific immune indices and physiological and biological indices of juvenile turbot (Scophthalmus maximus L.). Progress in Fishery Sciences, 2022, 43(1): 86-96 [郝甜甜, 王际英, 潘金敏, 等. 核糖蛋白替代鱼粉对大菱鲆幼鱼生长性能、肠道消化酶活性、免疫能力及血清生化指标影响. 渔业科学进展, 2022, 43(1): 86-96] |
HENKEN A M, KLEINGELD D W, TIJSSEN P. The effect of feeding level on apparent digestibility of dietary dry matter, crude protein and gross energy in the African catfish Clarias gariepinus (Burchell, 1822). Aquaculture, 1985, 51(1): 1-11 DOI:10.1016/0044-8486(85)90235-2 |
JI W X, WANG Y, LI P Y. Effect of feeding frequency on growth, feed utilization and nitrogen and phosphorus waste output of malabar grouper, Epinephelus malabaricus, reared in net pens. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(4): 432-438 [纪文秀, 王岩, 厉珀余. 不同投喂频率对网箱养殖点带石斑鱼生长、食物利用及氮磷排放的影响. 浙江大学学报(农业与生命科学版), 2011, 37(4): 432-438] |
JIANG W, LIU H Z, DUAN Z H, et al. Seasonal variation in drifting eggs and larvae in the upper Yangtze, China. Zoological Science, 2010, 27(5): 402-409 DOI:10.2108/zsj.27.402 |
LIN Y, MIOU L H, GE X P, et al. Effects of feeding frequency on growth performance, muscle quality and plasma biochemical indices of Megalobrama amblycephala juvenile. Chinese Journal of Animal Nutrition, 2015, 27(9): 2749-2756 [林艳, 缪凌鸿, 戈贤平, 等. 投喂频率对团头鲂幼鱼生长性能、肌肉品质和血浆生化指标的影响. 动物营养学报, 2015, 27(9): 2749-2756] |
LIU K, HE J Z, FENG P F, et al. Effects of feeding frequency and level on the digestive enzymes and fat metabolism enzyme in the hepatopancreas of juvenile Leiocassis longirostris. Journal of Yunnan Agricultural University (Natural Science), 2019, 34(5): 779-784 [刘康, 何金钊, 冯鹏霏, 等. 投喂频率和水平对长吻鮠幼鱼消化酶和肝胰脏脂肪代谢酶活性的影响. 云南农业大学学报(自然科学), 2019, 34(5): 779-784] |
LIU W, WEN H, LUO Z. Effect of dietary protein levels and feeding rates on the growth and health status of juvenile genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture International, 2018, 26(1): 153-167 DOI:10.1007/s10499-017-0202-6 |
LIU Y, WANG Y J, TIAN X E, et al. Effect of ration levels on growth, feed utilization efficiency and body biochemical composition of Misgurnus anguillicaudatus. Feed Industry, 2011, 32(12): 26-28 [刘姚, 王永军, 田秀娥, 等. 摄食水平对泥鳅生长、饲料利用率和体成分的影响. 饲料工业, 2011, 32(12): 26-28] |
LOU Y D. Histology and embryology (Second Edition). Beijing: China Agriculture Press, 1980 [楼允东. 组织胚胎学(第二版). 北京: 中国农业出版社, 1980]
|
LUO Y P. Ecophysiological responses in a carnivorous fish, the southern catfish (Silurus meridionalis Chen) to nutritional stress of dietary carbohydrate. Doctoral Dissertation of Northwest University, 2007 [罗毅平. 肉食性鱼类南方鲇对饲料碳水化合物营养胁迫的生理生态学反应. 西南大学博士研究生学位论文, 2007]
|
MARTÍNEZ I, MOYANO F J, FERNÁNDEZ-DÍAZ C, et al. Digestive enzyme activity during larval development of the Senegal sole (Solea senegalensis). Fish Physiology and Biochemistry, 1999, 21(4): 317-323 DOI:10.1023/A:1007802708459 |
OKORIE O E, BAE J Y, KIM K W, et al. Optimum feeding rates in juvenile olive flounder, Paralichthys olivaceus, at the optimum rearing temperature. Aquaculture Nutrition, 2013, 19(3): 267-277 DOI:10.1111/j.1365-2095.2012.00956.x |
SCHOENER T W. Theory of feeding strategies. Annual Review of Ecology and Systematics, 1971, 2(1): 369-404 DOI:10.1146/annurev.es.02.110171.002101 |
SHI Z C, CHEN X X, WANG W M, et al. Impacts of different feeding rates on the growth and survival rate of Silur meridionalis juvenile. Journal of Hydroecology, 2008, 1(1): 93-96 [史则超, 陈孝煊, 王卫民, 等. 不同投喂率对南方鲇稚鱼生长和存活率的影响. 水生态学杂志, 2008, 1(1): 93-96] |
SONG G, PENG S M, SUN P, et al. Effects of starvation, refeeding, and feeding frequency on growth and digestive enzyme activity of Oplegnathus fasciatus. Journal of Fishery Sciences of China, 2011, 18(6): 1269-1277 [宋国, 彭士明, 孙鹏, 等. 饥饿与再投喂及投喂频率对条石鲷幼鱼生长和消化酶活力的影响. 中国水产科学, 2011, 18(6): 1269-1277] |
SVEIER H, LIED E. The effect of feeding regime on growth, feed utilisation and weight dispersion in large Atlantic salmon (Salmo salar) reared in seawater. Aquaculture, 1998, 165(3/4): 333-345 |
TANG H Q, ZHANG J D, CHEN G, et al. Combined effects of breeding density, feeding frequency and feeding level on specific growth rate, feed conversion rate and pepsin activity of juvenile hybrid groupers (Epinephelus fuscoguttatus♀× E. lanceolatus♂). Journal of Guangdong Ocean University, 2018, 38(1): 22-31 [唐怀庆, 张健东, 陈刚, 等. 养殖密度、投喂频率和投喂水平对珍珠龙胆石斑鱼特定生长率、饲料转化率和胃蛋白酶活力的协同影响. 广东海洋大学学报, 2018, 38(1): 22-31] |
TIAN H J, ZHUANG P, GAO L J. Advances on the studies of the effect of ecological factors on activities of digestive enzymes of fish. Marine Fisheries, 2006, 28(2): 158-162 [田宏杰, 庄平, 高露姣. 生态因子对鱼类消化酶活力影响的研究进展. 海洋渔业, 2006, 28(2): 158-162] |
UKI N. Stock enhancement of the Japanese scallop Patinopecten yessoensis in Hokkaido. Fisheries Research, 2006, 80(1): 62-66 |
VERRETH J, COPPOOLSE J, SEGNER H. The effect of low hufa and high hufa enriched Artemia, fed at different feeding levels, on growth, survival, tissue fatty acids and liver histology of Clarias gariepinus larvae. Aquaculture, 1994, 126(1/2): 137-150 |
WANG M, QIU S Y. Effect of temperature, body weight and ration level on calorific values of feces and absorption efficiency of juvenile Plectorhynchus cinctus. Acta Oceanologica Sinica, 2002, 24(3): 142-147 [王瑁, 丘书院. 温度、体重和摄食水平对花尾胡椒鲷幼鱼粪便比能值及吸收率的影响. 海洋学报, 2002, 24(3): 142-147] |
WANG Y, KONG L J, LI K, et al. Effects of feeding frequency and ration level on growth, feed utilization and nitrogen waste output of cuneate drum (Nibea miichthioides) reared in net pens. Aquaculture, 2007, 271(1): 350-356 |
WEI Y L, WANG J X, XU H G, et al. Study on optimum feeding frequency and feeding level of juvenile Takifugu rubripes. Chinese Journal of Animal Nutrition, 2021, 33(3): 1755-1765 [卫育良, 王建学, 徐后国, 等. 红鳍东方鲀幼鱼适宜投喂频率和投喂水平的研究. 动物营养学报, 2021, 33(3): 1755-1765] |
WU B, LUO Y P, XIE X J. Chemical composition and energy density in juvenile Coreius guichenoti. Journal of Southwest University(Natural Science Edition), 2008, 30(10): 62-67 [吴斌, 罗毅平, 谢小军. 圆口铜鱼幼鱼鱼体的化学组成及能量密度. 西南大学学报(自然科学版), 2008, 30(10): 62-67] |
XU Q Y, XU Z C, WANG C A, et al. Effect of dietary lipid levels on liver free fatty acids, serum biochemical parameters and liver histological structure in mirror common carp at different temperatures. Journal of Northeast Agricultural University, 2012, 43(9): 118-126 [徐奇友, 许治冲, 王常安, 等. 不同温度下饲料脂肪水平对松浦镜鲤幼鱼肝脏游离脂肪酸、血清生化及肝脏组织结构的影响. 东北农业大学学报, 2012, 43(9): 118-126] |
XU X T, CHEN N S, LIU Z K, et al. Effects of dietary starch sources and levels on liver histology in largemouth bass, Micropterus salmoides. Journal of Shanghai Ocean University, 2016, 25(1): 61-70 [徐祥泰, 陈乃松, 刘子科, 等. 饲料中不同淀粉源及水平对大口黑鲈肝脏组织学的影响. 上海海洋大学学报, 2016, 25(1): 61-70] |
XU Z X, ZHANG P F, CHEN S Q, et al. Effects of feeding frequency on the growth, physiology, and expression abundance of hsp70 mRNA in juvenile Thamnaconus septentrionalis. Progress in Fishery Sciences, 2021, 42(2): 55-62 [徐郑鑫, 张鹏飞, 陈四清, 等. 投喂频率对绿鳍马面鲀幼鱼生长、生理指标及肝脏hsp70基因表达丰度的影响. 渔业科学进展, 2021, 42(2): 55-62] |
YANG J X, PAN X F, CHEN X Y, et al. Overview of the artificial enhancement and release of endemic freshwater fish in China. Zoological Research, 2013, 34(4): 267-280 [杨君兴, 潘晓赋, 陈小勇, 等. 中国淡水鱼类人工增殖放流现状. 动物学研究, 2013, 34(4): 267-280] |
ZHANG F T, TAN D Q. Genetic diversity in population of largemouth bronze gudgeon (Coreius guichenoti Sauvage et Dabry) from Yangtze River determined by microsatellite DNA analysis. Genes and Genetic Systems, 2010, 85(5): 351-357 |