渔业科学进展  2024, Vol. 45 Issue (1): 23-32  DOI: 10.19663/j.issn2095-9869.20220820001
0

引用本文 

董寅, 李冰, 贾睿, 侯诒然, 刁维旭, 朱健. 长江流域2种水产养殖模式的生命周期环境影响评价[J]. 渔业科学进展, 2024, 45(1): 23-32. DOI: 10.19663/j.issn2095-9869.20220820001.
DONG Yin, LI Bing, JIA Rui, HOU Yiran, DIAO Weixu, ZHU Jian. Life Cycle Environmental Impact Assessment on Two Aquaculture Models in the Yangtze River Basin[J]. Progress in Fishery Sciences, 2024, 45(1): 23-32. DOI: 10.19663/j.issn2095-9869.20220820001.

基金项目

财政部和农业农村部:国家现代农业产业技术体系(CARS-45-25)、国家重点研发计划(2019YFD0900305)和中国水产科学研究院基本科研业务费(2020TD60)共同资助

作者简介

董寅,E-mail: 2836456303@qq.com

通讯作者

李冰,E-mail: libing@ffrc.cn
朱健,E-mail: zhuj@ffrc.cn

文章历史

收稿日期:2022-08-20
收修改稿日期:2022-10-24
长江流域2种水产养殖模式的生命周期环境影响评价
董寅 1, 李冰 1,2, 贾睿 2, 侯诒然 2, 刁维旭 1, 朱健 1,2     
1. 南京农业大学无锡渔业学院 江苏 无锡 214081;
2. 中国水产科学研究院淡水渔业研究中心农业农村部稻渔综合种养生态重点实验室 江苏 无锡 214081
摘要:本研究以长江流域内的池塘养殖和稻渔综合种养2种水产养殖模式为对象,应用生命周期评价方法,分析2种养殖模式对能源消耗(EU)、全球变暖潜势(GWP)、酸化潜势(AP)、富营养化潜势(EP)以及水资源消耗(WU) 5种环境指标的影响,并探究2种主要输入因子(饲料和电力供应)和养殖过程对各环境指标的影响,从而评价2种养殖模式对环境影响的差异。生命周期评价结果标准化处理和加权评估显示,稻渔综合种养模式的WU、EP、GWP、AP和EU值分别为11.650、0.770、0.141、0.096和0.003,总环境影响指数(TEII)为12.660;池塘养殖模式的WU、EP、GWP、AP和EU值分别为31.453、1.187、0.210、0.174和0.007,TEII为33.031。与稻渔综合种养模式相比,池塘养殖模式的各项环境指标均较高。对环境影响的贡献率分析表明,饲料供应对EU、GWP和AP的贡献率最高,EP主要受饲料供应和养殖过程的共同影响,而WU主要集中在养殖过程中,电力供应主要影响EU、GWP和AP。生命周期评价的结果表明,与池塘养殖模式相比,稻渔综合种养模式显示出更友好的环境效益,在我国长江流域具有较大的发展空间。2种养殖模式的贡献率分析表明,改进饲料生产工艺、建立精准投喂技术、应用先进的尾水处理技术和适当提高养殖密度是我国长江流域水产养殖环境友好生产的关键。
关键词稻渔综合种养    池塘养殖    生命周期评价    环境影响    
Life Cycle Environmental Impact Assessment on Two Aquaculture Models in the Yangtze River Basin
DONG Yin 1, LI Bing 1,2, JIA Rui 2, HOU Yiran 2, DIAO Weixu 1, ZHU Jian 1,2     
1. Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
2. Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
Abstract: With the rapid development of aquaculture in China in recent decades, the country now faces environmental problems, such as high energy consumption and severe environmental pollution. The Yangtze River Basin is the most important area for freshwater aquaculture production in China, accounting for more than half of the total production. The environmental issues induced by aquaculture have received widespread consideration in this area. However, the freshwater farming-induced environmental issues in the Yangtze River Basin were rarely evaluated in prior research. Life cycle assessment (LCA) is a valid tool for assessing environmental impacts and resources and is widely deployed in the industrial sector. It can quantify the impact of a product or service on different environmental indicators at various stages of the production process, thereby aiding in the identification of the best measures to reduce environmental impacts. The LCA is more effective than traditional environmental impact assessment methods; thus, it has been gradually applied in other fields, such as agriculture and aquaculture, in recent years. In aquaculture, LCA has been used to evaluate the environmental impact of various farming models or species in a laboratory setting. However, little attention has been paid to large-scale systems, such as the Yangtze River Basin. The two most important farming models in China are the pond farming model and the integrated rice-fish farming model. Among them, the integrated rice-fish farming model is regarded as environmentally friendly and an important step towards realizing the sustainable development of aquaculture in terms of the efficient utilization of water and land resources. Therefore, in this study, the environmental effects of pond farming and integrated rice-fish farming models were investigated in the Yangtze River Basin using the LCA method. A total of 20 monitoring points were established in the Yangtze River Basin, including 5 for integrated rice-fish farming and 15 for pond culture. In the integrated rice-fish farming model, the life cycle consists of two stages: Feed supply and breeding. In pond culture, the life cycle consists of three stages: Feed supply, power supply, and breeding. We analyzed the values of energy use (EU), global warming potential (GWP), acidification potential (AP), eutrophication potential (EP), and water use (WU) in the pond farming and integrated rice-fish farming models using the LCA method, assessed the contribution rate of each phase for environmental indices, and compared the environmental impact of the two farming models. In order to establish the inputs and outputs of an aquaculture system, experimental measurements and surveys were conducted to collect data. The collected data mainly included feed consumption, electricity consumption, water consumption, total phosphorus and total nitrogen emissions, and greenhouse gas (CH4 and N2O) emissions. The data were analyzed by the LCA software eBalance. In this study, the weight gain of 1 ton of aquaculture products served as the functional unit, and the results were standardized and evaluated in order to compare the environmental impacts of various impact indicators. The results showed that the standardized and weighted evaluation values of WU, EP, GWP, AP, and EU in the integrated rice-fish farming model were 11.650, 0.770, 0.141, 0.096, and 0.003, respectively, and the total environmental impact indicator was 12.660. In the pond farming model, the values of WU, EP, GWP, AP, and EU were 31.453, 1.187, 0.210, 0.174, and 0.007, respectively, and the total environmental impact indicator was 33.031. The environmental impacts of integrated rice-fish farming were lower than those of pond farming. The contribution rate analysis of the three stages of the life cycle to environmental impact showed that the contribution rates of EU, GWP, and AP in the feed supply stage were higher than those in the power supply and breeding stages. EP was primarily associated with the feed supply stage and pollutant discharge stages of the breeding process, and WU was principally concentrated on the breeding stage. Overall, the LCA results showed that the integrated rice-fish farming model had a more environmentally friendly effect than the pond farming model, which indicates that the Yangtze River Basin has considerable development potential. WU was the most influential environmental impact indicator and the main restriction factor in aquaculture; it was mainly associated with the breeding stage. Therefore, moderately increasing stocking density was an effective strategy for reducing water resource consumption and improving water resource utilization rates. In addition to WU, the main environmental impact index of the pond culture model and integrated rice-fish farming models comprised EP, followed by GWP, AP, and EU. The contribution rate analyses of the two models showed that the aquaculture-induced environmental impacts could be mitigated by improving feed production technology, establishing accurate feeding technologies, applying advanced effluent water treatment technologies, and appropriately increasing stocking density in the Yangtze River Basin. In summary, in this study, we compared the environmental impacts between the pond culture and integrated rice-fish farming models in the Yangtze River Basin using the LCA method. In addition, we analyzed the differences between environmental impacts at different production stages. These data served as a reference for the sustainable development and optimization of aquaculture in the Yangtze River Basin.
Key words: Integrated rice-fish farming    Pond culture    Life cycle assessment    Environmental impact    

长江流域是我国重要的水产养殖区域,2020年淡水养殖产量达1 800多万t,约占全国淡水养殖总产量的58% (农业农村部渔业渔政管理局等, 2021)。过去30年,该流域内水产养殖产生的总磷和总氮排放持续增长(高立方等, 2021),为长江水体中氮磷的重要来源,引起了水体富营养化及氮磷比例失衡(孙策策等, 2022)。因此,该流域内水产养殖引起的环境问题受到广泛关注。

池塘养殖模式和稻渔综合种养模式是我国最主要的2种水产养殖模式,广泛分布于长江流域各地区。2020年池塘养殖模式产量近2 280万t,约占全国淡水养殖总产量的73.8%。此外,随着技术创新和模式推广,稻渔综合种养面积和产量逐年升高(徐跑, 2021),已成为我国第二大水产养殖模式。2020年养殖面积为2.562 6×106 hm2,产量达325.39万t。与池塘养殖模式相比,稻渔综合种养可提高土地和水资源利用率,具有明显的生态效益。同时,通过水稻和水生动物的互利共生实现氮磷元素的高效循环利用(管卫兵等, 2020)。

生命周期评价(life cycle assessment,LCA)是一种用于评价产品、服务或系统在其整个生命周期的潜在环境影响的方法,最早广泛应用于工业领域,通过将产品或服务对各环境指标的影响进行量化,可直观了解生产过程中每一个环节对环境的影响,从而找到低环境影响的最佳措施。由于生命周期评价方法比传统的环境影响评价方法更直观、更有效,近10年来已逐渐应用于水产养殖领域,被认为是评估水产品生产过程环境影响最有效的方法之一(Biermann et al, 2019)。早期的研究主要聚焦于水产养殖系统中特定品种的生命周期环境影响,如巴沙鱼(Pangasianodon hypophthalmus)集约化养殖(Bosma et al, 2011)以及大马哈鱼(Oncorhynchus tshawytscha)商业化养殖的环境影响(McGrath et al, 2015)。由于水产养殖复杂性的增加,系统边界逐渐扩展,评估内容已涉及到水产品加工、饲料生产以及不同模式、区域或养殖策略的比较(Hou et al, 2022)。研究者基于LCA分析评价了秘鲁鳀鱼(Coilia mystus)和罗非鱼(Oreochromis niloticus)的生产过程以及南美鱼粉和鱼油的加工过程(Avadi et al, 2020)。虹鳟(Oncorhynchus mykiss)不同养殖模式的LCA分析显示,工厂化循环水养殖模式对环境的影响小于工厂化流水和网箱养殖模式(陈中祥, 2011)。蒋榕等(2022)应用LCA法比较稻虾共作和水稻单作2种模式的碳足迹,结果表明,稻虾共作模式的环境效益要优于水稻单作。根据现有的水产养殖生命周期清单(LCI)数据库,已建立了多个物种养殖过程中温室气体、氮和磷排放以及淡水和土地利用的标准化评价方法(Gephart et al, 2021)。此外,在水产养殖生命周期中,饲料供应、电力供应以及养殖过程的水消耗和污染物排放等是影响环境的关键因素(Song et al, 2019; Parker, 2018; Dullah et al, 2020)。

值得注意的是,目前的研究主要聚焦于单一养殖品种在不同养殖模式下的环境影响,而针对整个流域内水产养殖业对环境影响的评价少有报道。因此,本研究以长江流域内的池塘养殖和稻渔综合种养模式为对象,探究这2种模式以及饲料生产、电力生产和养殖过程对环境的影响,同时,分析各种环境影响的主要因素,以期为长江流域水产养殖提高资源利用效率、降低环境影响和优化养殖模式提供建议,为实现水产养殖业可持续发展提供科学基础。

1 材料与方法 1.1 调查方案

本研究在长江流域设置20个水产养殖监测点,包括5个稻渔综合种养模式监测点和15个池塘养殖模式监测点,监测时间为2017—2019年。本研究中,稻渔综合种养模式监测点位于长江流域推广面积最多的地区。各监测点基本情况见表 1。监测点均安排专人进行养殖结构和生产要素数据监测,主要包括养殖模式、养殖品种、养殖密度、投放鱼苗量、产量、饲料投喂量、用电量和用水量等数据。在养殖期间只进水、不排水,养殖结束后统计废水排出量。每年在放苗前及养殖结束后测定水体营养盐含量,包括氨氮、总磷和总氮,采样点数量和位置需根据实际情况进行调整。

表 1 监测点基本信息 Tab.1 Basic information of monitoring points
1.2 研究方法 1.2.1 生命周期评价目标和范围的确定

分析长江流域水产养殖活动对不同环境指标的影响,并比较2种养殖模式对环境影响的大小。本研究设置的水产养殖生命周期评价系统边界见图 1。饲料生产过程消耗电力、排放废气及废渣;饲料原料种植过程中消耗淡水资源;水产养殖过程需要电能进行投饵和增氧等活动,据中国生命周期基础数据库(Chinese Life Cycle Database,CLCD)显示,电力生产消耗化石能源并向外界排放各种污染物;养殖过程中也向水体排放氮、磷等各种污染物。由于本研究关注的是成鱼(或成虾)养殖过程对环境的影响,因此,养殖厂的基础设施建设、消费者行为、产品运输以及苗种培育等过程并未纳入本研究的生命周期评价范围。

图 1 水产养殖生命周期评价系统边界 Fig.1 LCA system boundary of aquaculture
1.2.2 生命周期清单数据来源

本研究数据主要通过现场监测和问卷调查获取。池塘养殖模式的生产特点为养殖过程中只进水、不排水,养殖结束后排放尾水;使用投饵机投喂人工配合饲料,电力消耗主要来源于投饵机和增氧机的使用。稻渔综合种养为人工投喂,且饲料投喂量较低,不使用增氧机,无电力消耗。

根据养殖水体营养盐浓度及尾水排放量估算养殖期间污染物的排放量。稻渔综合种养是一种以稻为主、兼顾养鱼的养殖模式,实现了“一水两用”。养殖环沟约占整个稻田面积的10%,养殖消耗水资源以实际养殖水体计算。

养殖过程中,CH4排放量根据Xu等(2022)报道的方法计算,公式如下:

$ {\rm{C}}{{\rm{H}}_{\rm{4}}}~~{\rm{ Emission = emission~~ factor }} {\rm{ \times area~~ \times ~~day}}$

式中,emission factor为单位面积每天的CH4排放量,area为养殖区域的面积,day为养殖天数,稻渔综合种养模式和池塘养殖模式的CH4排放因子分别为1.62和2.90 kg CH4/(hm2·d)。

N2O的排放量参考Ma等(2018)报道的数据,即饲料中0.54%的总氮(TN)转换为N2O排向大气中,计算公式为:

$ {{\rm{N}}_{\rm{2}}}{\rm{O~~ Emission = Feed }} \times {\rm{concen}}{{\rm{t}}_{\rm{N}}}{\rm{ }} \times {\rm{emission ~~factor}} $

式中,Feed为投喂的饲料量,concentN为饲料中总氮的含量,emission factor为N2O排放因子。

本研究以获得1 t水产养殖产品增重为功能单位,2种养殖模式系统边界内的生命周期清单见表 2。如表 2所示,输入主要包括苗种、用水量、用电量和饲料使用量,输出主要包括水产品增重、向淡水排放的总氮、总磷以及氨氮量,向大气排放的CH4和N2O量。

表 2 2种模式2017—2019年间生命周期单位产量(每获得1 t养殖成品增重)的平均投入和输出(平均值±标准差) Tab.2 Average input and output per unit of production (weight gain of 1 ton of farmed product) over the life cycle from 2017 to 2019 of two models (Mean±SD)
1.2.3 生命周期影响评价

水产养殖过程需消耗淡水和电力资源。同时,电力生产需消耗煤炭等化石能源。因此,本研究将水资源消耗(water use, WU)和能源消耗(energy use, EU)作为评价指标。此外,养殖尾水排放易造成水体富营养化,加剧附近水域的环境问题(楼倩等, 2020)。养殖过程中直接排放CH4和N2O,同时,电力生产过程中也会向环境排放温室气体,并伴随着较多SO2、NOx和NH3等气体的排放,进而造成酸雨。因此,本研究亦将富营养化潜势(eutrophication potential, EP)、全球变暖潜势(global warming potential, GWP)和酸化潜势(acidification potential, AP)作为环境影响评价指标。

饲料供应产生的环境影响参考陈丽娇等(2019)Pelletier等(2007)的研究。电力供应的相关数据使用eBalance软件内置的CLCD数据库。利用eBalance软件进行建模,获得每个监测点的环境影响评价结果。将特征化的结果进行基准化及加权处理,进而比较不同的影响类型指标。基准化处理时,基准值采用全球人均环境影响潜值(Sleeswijk et al, 2008),权重系数参考陈丽娇等(2019)的数据。

1.2.4 数据统计与分析

所有数据表示为平均值±标准差(Mean±SD),并使用SPSS25.0统计软件对2个模式的环境影响结果进行Wilcoxon秩和检验,P < 0.05时差异显著。

2 结果与分析 2.1 生命周期评价结果

利用eBalance软件建模,并对2种模式在2017—2019年间的养殖活动进行生命周期影响评价,结果见表 3。2种养殖模式的生命周期评价结果显示,稻渔综合种养模式对环境的各项影响(EU、GWP、AP、EP和WU)均低于池塘养殖模式。

表 3 2种模式2017—2019年间的生命周期评价结果(每获得1 t养殖成品增重)(平均值±标准差) Tab.3 LCA results of the two models for the period 2017—2019 (weight gain of 1 ton of farmed product) (Mean±SD)
2.2 标准化和加权评估结果

将2种养殖模式的生命周期评价结果进行基准化和加权评估,计算结果为无量纲,结果见表 4。稻渔综合种养模式生命周期内的EU、GWP、AP、EP和WU以及总环境影响指数均显著小于池塘养殖(P < 0.05)。由于水产养殖的特点,2种养殖模式的WU对环境的影响均远高于其他环境影响指标。除WU以外,在2种养殖模式的养殖生产中,EP是最大的环境影响类型,EU是最小的环境影响类型。

表 4 2种模式2017—2019年间环境影响潜值基准化和加权评估后的结果(平均值±标准差) Tab.4 Results of the benchmarking and weighted assessment of the environmental impact potential between the two models from 2017 to 2019 (Mean±SD)
2.3 环境影响指标的贡献率分析

2种养殖模式生产过程中各输入因子(饲料供应、电力供应)和养殖过程对环境影响指标的贡献率分析如表 5所示。稻渔综合种养模式没有电力消耗,生命周期中的电力供应可以忽略不计,仅包括饲料供应和养殖过程。

表 5 2种养殖模式各阶段对环境影响的贡献率 Tab.5 Contribution rate (CR) of each stage of two breeding models to environmental impact

表 5可知,稻渔综合种养模式中,饲料供应对EU、GWP、AP和EP的贡献高于养殖过程,但WU主要集中于养殖阶段。同样,池塘养殖模式中,EU、GWP、AP和EP也主要来源于饲料供应。2种养殖模式中,养殖过程对EP的贡献率高于40%。

3 讨论

本研究以长江流域内20个监测点的水产养殖系统为例,建立各稻渔综合种养和池塘养殖模式的投入与产出清单,并计算能源足迹与水足迹,分析2种养殖模式对环境的影响。基于生命周期评价显示,2种养殖模式对环境指标的影响集中于WU、EP和GWP。由于水产养殖的特性,WU为环境影响最主要的指标。其次,由于水产养殖中水生动物粪便和残饵的排放,易引起水环境富营养化(楼倩等, 2020),因此,EP被认为是评价环境影响的主要指标之一。此外,水产养殖直接排放CH4和N2O等温室气体(Fang et al, 2022),水产养殖的电力供应间接排放温室气体,因此,GWP为评价环境影响广泛应用的指标。比较凡纳滨对虾(Penaeus vannamei)的2种养殖模式发现,其环境影响指标大小依次为WU、EP、GWP、AP和EU (陈丽娇等, 2019),其中,池塘养殖模式WU、EP和GWP约占总环境影响的90%。同样,在大菱鲆的2种养殖模式比较研究中发现,环境影响从高到低依次为EP、GWP、AP和EU (王杰等, 2014)。类似地,本研究的LCA结果显示,池塘养殖和稻渔综合种养中各环境影响指标由大到小依次为WU、EP、GWP、AP和EU,其中,WU、EP和GWP占99%以上,表明长江流域内,水产养殖除消耗大量的水资源外,还显著影响水环境富营养化和全球变暖趋势。

我国淡水养殖模式较多,如池塘养殖、湖泊养殖、稻渔综合养殖和工厂化养殖等。基于生命周期评价的不同养殖模式(主要为单一品种)对环境的影响已陆续开展(李静, 2016)。Biermann等(2019)研究显示,鲤(Cyprinus carpio)有机生产模式对WU、GWP、臭氧消耗以及电离辐射的影响低于传统养殖模式。比较大西洋鲑(Salmo salar)不同养殖模式发现,网箱养殖模式的环境性能优于陆基流水养殖模式(Ayer et al, 2009)。本研究中,生命周期评价结果表明,稻渔综合种养模式的各环境影响指标及总环境影响指数均低于池塘养殖模式,表明稻渔综合种养具有更友好的环境效益。在稻渔综合种养中,化肥和农药的使用量低于水稻单作(管卫兵等, 2020),降低了它们对环境的负面影响。Xu等(2022)研究显示,化学肥料的减少将每公顷稻田的GWP从1 525 kg CO2-eq降到901 kg CO2-eq。稻田中浮游动植物、害虫和杂草等天然饵料可以代替部分人工饲料的投入(杨帅帅等, 2023),从而降低饲料生产和各种污染物排放引起的GWP、AP和EP。基于稻虾共作模式的研究表明,该模式下的EU、GWP和EP低于虾单作模式(Xu et al, 2022)。同样地,本研究也表明,这些指标在稻渔综合种养模式中低于池塘养殖模式。研究结果还显示,稻渔综合种养模式中总氮的排放量是池塘养殖模式的32.81%,可能是由于稻渔综合种养模式中,鱼类排出的粪便可以作为肥料被水稻吸收利用,相较于池塘养殖可以减少污染物的排放,缓解水体的富营养化。

水产养殖生命周期中,饲料供应、电力供应和养殖过程对环境的影响存在明显的差异。对虾养殖过程中,饲料和电力消耗是影响大多数环境指标的关键环节(Cortes et al, 2021)。Naylor等(2021)认为,饲料对环境造成的污染占水产养殖过程总污染的90%以上。大西洋鲑养殖过程中,GWP、AP和EU的贡献主要来源于饲料供应(90%以上),EP主要来源于养殖阶段和饲料供应(Pelletier et al, 2009)。Sherry等(2020)研究也证实,饲料供应是GWP和AP的主要来源。与此类似,本研究结果表明,饲料供应在2种养殖模式生命周期中对EU、GWP、AP和EP的贡献率最大。对墨西哥38家半集约化养虾场的生命周期评价研究表明,WU和EP的主要来源是养殖过程(Cortes et al, 2021)。鲤养殖的生命周期评价研究发现,EP的主要来源是养殖过程(Biermann et al, 2019)。本研究表明,2种养殖模式的养殖过程主要影响WU和EP。此外,增氧机和投饵机等设备的使用需消耗电力,因此,电力供应也是水产养殖生命周期评价关注的重要因素。河鲈(Perca fluviatilis)循环水养殖模式的生命周期中,电力供应主要影响EU、GWP和AP (Cooney et al, 2021)。大西洋鲑循环水养殖的生命周期评价研究显示,AP、GWP、EP和EU主要来源于电力供应(Song et al, 2019)。本研究表明,电力供应主要影响EU、GWP和AP。不同养殖模式各阶段对环境的影响不同,如虹鳟网箱养殖过程中,环境影响指标贡献率主要为养殖污染排放(87.45%)和饵料生产(10.16%);而在工厂化循环水养殖模式中,环境影响指标贡献率主要为电力生产(75.25%)和饵料生产(23.76%)(陈中祥等, 2011),其主要原因在于不同养殖模式造成养殖过程中的生产投入与污染物排放之间的差异。此外,研究表明,克氏原螯虾(Procambarus clarkia)单作和稻虾共作2种模式的不同阶段对各环境指标的影响存在差异(Xu et al, 2022)。本研究结果显示,2种养殖模式的总环境影响指数均主要来源于养殖阶段,其中,水资源消耗对总环境影响指数的贡献率最大(90%以上),其次为饲料供应。

由于缺乏相关数据,本研究未将所有涉及到的生命周期评价影响指标考虑在内,例如,养殖过程的土地资源利用状况、农业生产中大量使用的农药及杀虫剂造成的淡水生态毒性。此外,农业的生命周期评价易受产地的影响(徐湘博等, 2021)。因此,未来的研究将聚焦于更多的环境评价指标以及长江流域不同地区水产养殖的环境影响差异。由于我国目前还缺乏完善的标准化和加权体系,因此,难以避免标准化和加权处理过程中的主观性和不确定性(Miao et al, 2021)。

4 结论

稻渔综合种养模式各项环境影响指标均低于池塘养殖模式,以较低的环境影响成本提供更多的营养需求,是一种环境友好型农业生产方式,在长江流域内有较大的发展空间。

WU是水产养殖业的主要制约因素,且是最大的环境影响指标。除WU外,池塘养殖模式和稻渔综合种养模式主要的环境影响指标为EP,其次是GWP、AP和EU。

水产养殖生命周期内的淡水资源消耗主要集中在养殖阶段,在不影响养殖动物生长性能的前提下,合理的放养密度对水资源利用至关重要。在水产养殖过程中的环境污染(GWP、AP和EP)主要来源于饲料供应,因此,改进饲料生产工艺、建立精准投喂技术,可以减少饲料供应对环境的影响。此外,建立先进的尾水处理系统可以有效缓解水产养殖对水体富营养化的影响。

参考文献
AVADI A, VAZQUEZ-ROWE I, SYMEONIDIS A, et al. First series of seafood datasets in ecoinvent: Setting the pace for future development. International Journal of Life Cycle Assessment, 2020, 25(7): 1333-1342 DOI:10.1007/s11367-019-01659-x
AYER N W, TYEDMERS P H. Assessing alternative aquaculture technologies: Life cycle assessment of salmonid culture systems in Canada. Journal of Cleaner Production, 2009, 17: 362-373 DOI:10.1016/j.jclepro.2008.08.002
BIERMANN G, GEIST J. Life cycle assessment of common carp (Cyprinus carpio L.)—A comparison of the environmental impacts of conventional and organic carp aquaculture in Germany. Aquaculture, 2019, 501: 404-415 DOI:10.1016/j.aquaculture.2018.10.019
BOSMA R, ANH P T, POTTING J. Life cycle assessment of intensive striped catfish farming in the Mekong Delta for screening hotspots as input to environmental policy and research agenda. International Journal of Life Cycle Assessment, 2011, 16(9): 903-915 DOI:10.1007/s11367-011-0324-4
Bureau of Fisheries, Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center. China fishery statistical yearbook. Beijing: China Agriculture Press, 2021: 17-36 [农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 中国渔业统计年鉴. 北京: 中国农业出版社, 2021: 17-36]
CHEN L J, YANG H Y, ZHANG J Y, et al. Environmental life cycle assessment of different Penaeus vannamei systems in northern China. Journal of Ecology and Rural Environment, 2019, 35(8): 986-991 [陈丽娇, 杨怀宇, 张静怡, 等. 中国北方南美白对虾不同养殖模式环境影响生命周期评价. 生态与农村环境学报, 2019, 35(8): 986-991]
CHEN Z X, CAO G B, HAN S C. Life cycle assessment of rainbow trout aquaculture models in China. Journal of Agro-Environment Science, 2011, 30(10): 2113-2118 [陈中祥, 曹广斌, 韩世成. 中国虹鳟养殖模式的生命周期评价. 农业环境科学学报, 2011, 30(10): 2113-2118]
COONEY R, TAHAR A, KENNEDY A, et al. The dilemma of opportunity in developing a life cycle assessment of emerging aquaculture systems — a case study of a Eurasian perch (Perca fluviatilis) hatchery recirculating aquaculture system. Aquaculture, 2021, 536: 736403 DOI:10.1016/j.aquaculture.2021.736403
CORTES A, CASILLAS-HERNANDEZ R, CAMBESES-FRANCO C, et al. Eco-efficiency assessment of shrimp aquaculture production in Mexico. Aquaculture, 2021, 544: 737145 DOI:10.1016/j.aquaculture.2021.737145
DULLAH H, MALEK M A, HANAFIAH M M. Life cycle assessment of Nile Tilapia (Oreochromis niloticus) farming in Kenyir Lake, Terengganu. Sustainability, 2020, 12(6): 2268 DOI:10.3390/su12062268
FANG X T, ZHAO J T, WU S, et al. A two-year measurement of methane and nitrous oxide emissions from freshwater aquaculture ponds: Affected by aquaculture species, stocking and water management. Science of the Total Environment, 2022, 813: 151863 DOI:10.1016/j.scitotenv.2021.151863
GAO L F, WU J Y, GE X D, et al. Pollution load characteristics of freshwater aquaculture in the Yangtze River Economic Belt. Journal of Huazhong Agricultural University, 2021, 40(3): 64-74 [高立方, 吴静颖, 葛小东, 等. 长江经济带淡水养殖污染负荷特征分析. 华中农业大学学报, 2021, 40(3): 64-74]
GEPHART J A, HENRIKSSON P J G, PARKER R W R, et al. Environmental performance of blue foods. Nature, 2021, 597(7876): 360-365 DOI:10.1038/s41586-021-03889-2
GUAN W B, LIU K, SHI W, et al. Scientific paradigm of integrated farming of rice and fish. Acta Ecologica Sinica, 2020, 40(16): 5451-5464 [管卫兵, 刘凯, 石伟, 等. 稻渔综合种养的科学范式. 生态学报, 2020, 40(16): 5451-5464]
HOU H C, ZHANG Y, MA Z, et al. Life cycle assessment of tiger puffer (Takifugu rubripes) farming: A case study in Dalian, China. Science of the Total Environment, 2022, 823: 153522 DOI:10.1016/j.scitotenv.2022.153522
JIANG R, XU Q, LI J Y, et al. Sensitivity and uncertainty analysis of carbon footprint evaluation: A case study of rice-crayfish coculture in China. Chinese Journal of Eco-Agriculture, 2022, 30(10): 1577 [蒋榕, 徐强, 李京咏, 等. 稻虾共作模式碳足迹评价的敏感性和不确定性分析. 中国生态农业学报, 2022, 30(10): 1577-1587 DOI:10.12357/cjea.20220188]
LI J. Life cycle assessment (LCA) of environmental impact for aquaculture. Masterxs Thesis of Shanghai Ocean University, 2016, 1–31 [李静. 基于LCA的水产养殖环境影响评价. 上海海洋大学硕士研究生学位论文, 2016, 1–31]
LOU Q, GUO C J, DAI T T, et al. Researches on eutrophication characteristics and quality evaluation of typical aquaculture pond around Poyang Lake in summer. Freshwater Fisheries, 2020, 50(1): 44-50 [楼倩, 郭春晶, 代涛涛, 等. 夏季环鄱阳湖区典型养殖水体富营养化特征与评价. 淡水渔业, 2020, 50(1): 44-50 DOI:10.3969/j.issn.1000-6907.2020.01.007]
MA Y C, SUN L Y, LIU C Y, et al. A comparison of methane and nitrous oxide emissions from Inland mixed-fish and crab aquaculture ponds. Science of the Total Environment, 2018, 637/638: 517-512 DOI:10.1016/j.scitotenv.2018.05.040
MCGRATH K P, PELLETIER N L, TYEDMERS P H. Life cycle assessment of a novel closed-containment salmon aquaculture technology. Environmental Science and Technology, 2015, 49(9): 5628-5636 DOI:10.1021/es5051138
MIAO J Y, WANG X H, BAI S W, et al. Distance-to-target weighting factor sets in LCA for China under 2030 vision. Journal of Cleaner Production, 2021, 314: 128010 DOI:10.1016/j.jclepro.2021.128010
NAYLOR R L, HARDY R W, BUSCHMANN A H, et al. A 20-year retrospective review of global aquaculture. Nature, 2021, 591(7851): 551-563 DOI:10.1038/s41586-021-03308-6
PARKER R. Implications of high animal by-product feed inputs in life cycle assessments of farmed Atlantic salmon. International Journal of Life Cycle Assessment, 2018, 23(5): 982-994 DOI:10.1007/s11367-017-1340-9
PELLETIER N, TYEDMERS P, SONESSON U, et al. Not all salmon are created equal: Life cycle assessment (LCA) of global salmon farming systems. Environment Science and Technology, 2009, 43(23): 8730-8736 DOI:10.1021/es9010114
PELLETIER N, TYEDMERS P. Feeding farmed salmon: Is organic better?. Aquaculture, 2007, 272: 399-416 DOI:10.1016/j.aquaculture.2007.06.024
SHERRY J, KOESTER J. Life cycle assessment of aquaculture stewardship council certified Atlantic salmon (Salmo salar). Sustainability, 2020, 12(15): 6079 DOI:10.3390/su12156079
SLEESWIJK A W, VAN OERS L, GUINÉE J B, et al. Normalization in product life cycle assessment: An LCA of the global and european economic systems in the year 2000. Science of the Total Environment, 2008, 390(1): 227-240 DOI:10.1016/j.scitotenv.2007.09.040
SONG X Q, LIU Y, PETTERSEN J B, et al. Life cycle assessment of recirculating aquaculture systems: A case of Atlantic salmon farming in China. Journal of Industrial Ecology, 2019, 23(5): 1077-1086 DOI:10.1111/jiec.12845
SUN C C, WU W T, LIU J, et al. The contribution of freshwater aquaculture for nitrogen and phosphorus production in the Changjiang River and its impact on estuarine environment. Progress in Fishery Sciences, 2023, 44(1): 35-46 [孙策策, 吴文涛, 刘军, 等. 淡水养殖对长江氮磷输出的贡献及其河口环境效应. 渔业科学进展, 2023, 44(1): 35-46]
WANG J, ZHANG Y Q, SUN G X, et al. Life cycle assessment (LCA) of environmental impact for two turbot culture types. Journal of Anhui Agricultural Sciences, 2014, 42(14): 4380-4383 [王杰, 张延青, 孙国祥, 等. 基于生命周期评价(LCA)的2种大菱鲆养殖模式对环境影响对比研究. 安徽农业科学, 2014, 42(14): 4380-4383 DOI:10.3969/j.issn.0517-6611.2014.14.080]
XU P. Development and prospect of integrated rice-fish farming in China: A review. Journal of Dalian Ocean University, 2021, 36(5): 717-726 [徐跑. 中国稻鱼综合种养的发展与展望. 大连海洋大学学报, 2021, 36(5): 717-726]
XU Q, PENG X, GUO H L, et al. Rice-crayfish coculture delivers more nutrition at a lower environmental cost. Sustainable Production and Consumption, 2022, 29: 14-24 DOI:10.1016/j.spc.2021.09.020
XU X B, SUN M X, ZHANG L X. Reasearch progress on agricultural life cycle assessment. Acta Ecologica Sinica, 2021, 41(1): 422-433 [徐湘博, 孙明星, 张林秀. 农业生命周期评价研究进展. 生态学报, 2021, 41(1): 422-433]
YANG S S, ZHU S C, ZHANG D D, et al. Effects of two feeding modes on the culture performance and physiological metabolism of juvenile Chinese mitten carbs (Eriocheir sinensis) reared in a rice field. Progress in Fishery Sciences, 2023, 44(4): 188-200 [杨帅帅, 朱筛成, 张冬冬, 等. 2种饵料模式对稻田养殖中华绒螯蟹幼蟹养殖性能和生理代谢的影响. 渔业科学进展, 2023, 44(4): 188-200]