2. 崂山实验室海洋生态与环境科学功能实验室 山东 青岛 266071;
3. 浙江海洋大学水产学院 浙江 舟山 316022;
4. 盘锦光合蟹业有限公司 辽宁 盘锦 124200
2. Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China;
3. School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China;
4. Panjin Guanghe Crab Industry Co., Ltd, Panjin 124200, China
四角蛤蜊(Mactra veneriformis)俗称白蚬子,隶属于软体动物门、瓣鳃纲、帘蛤目、蛤蜊科(闫喜武等, 2011),是常见的底栖经济贝类,营养价值高,广泛分布于山东、辽宁(刘强等, 2018)。蛤蜊岗位于辽东湾北部,由双台子河和辽河冲击而成,面积约10 000 hm2,底质肥沃,是四角蛤蜊等滩涂贝类的重要产地之一(王金叶等, 2016; 柳圭泽等, 2020),但过度捕捞、环境污染等问题导致其资源量逐年下降(康婧等, 2017)。在贝类遗传育种中,活体湿重及软组织湿重等质量性状是选育优良品种的重要目标性状(张存善等, 2009),相较于活体湿重和软组织湿重等重要的质量性状,壳长、壳宽及壳高等形态性状具有可观性和可度量性,使选育标准转变为量化标准(邢钱钱等, 2022),研究壳长、壳宽和壳高等形态性状对质量性状的影响,有利于筛选出优良贝类群体(方军等, 2017)。在水产生物选择育种工作中,通过相关分析、通径分析建立形态性状与质量性状之间的最优回归方程得到了广泛应用。在贝类中的研究结果显示,不同贝龄和不同环境会影响贝类的生长性状,杜美荣等(2016)研究表明,如对栉孔扇贝(Chlamys farreri)以体重为目标时,青岛海域种贝优先选择壳高,荣成海域为壳长,而大连海域为壳宽。巫旗生等(2018)研究表明,对福建牡蛎(Crassostrea angulata) 1~2龄群体影响体质量的主要因素为壳宽,而3~4龄群体为壳高。Huo等(2010)的研究表明,不同贝龄的菲律宾蛤仔(Ruditapes philippinarum)形态性状对质量性状的决定程度有所不同。这些研究结果表明,贝类的形态通径在不同种类之间以及相同种类在不同生长环境之间都可能存在显著差异,必须开展针对性的研究,然而,目前对不同贝龄四角蛤蜊的分析还未见报道。
本研究以蛤蜊岗1~3龄四角蛤蜊为研究对象,测量其形态性状及质量性状,利用通径分析探究不同贝龄四角蛤蜊形态性状与质量性状的相关性,建立不同贝龄四角蛤蜊形态性状与质量性状的最优回归方程,以期探明不同贝龄四角蛤蜊的最佳测量指标,为四角蛤蜊的良种选育提供参考资料。
1 材料与方法 1.1 材料来源实验所用四角蛤蜊于2022年9月取自辽东湾蛤蜊岗,通过观察壳表面生长线确定贝龄(郭春阳等, 2016),共取得80枚1龄、104枚2龄和168枚3龄的四角蛤蜊。
1.2 数据测定使用数显卡尺(精度0.01mm)分别测量四角蛤蜊的壳长(SL)、壳宽(SW)及壳高(SH)共3个形态性状(测量位点如图 1所示),使用电子天平(精度0.01g)称量活体湿重(BW)和壳重,并用活体湿重减去壳重得到软组织湿重(RW),采用Excel 2016计算各参数的平均值(mean)、标准差(standard deviation, SD)及变异系数(coefficient of variation, CV)。
采用SPSS 17软件对各数量性状进行t检验、相关分析及通径分析,设置显著性水平P < 0.05为差异显著,P < 0.01为差异极显著。剔除不显著的形态性状,利用保留下来的形态性状计算决定系数并构建质量性状的最优多元回归方程。通径分析将相关关系分解为直接作用(直接通径系数)和间接作用(间接通径系数)。
变异系数公式为:CV=
间接通径系数公式为:Pij=rijPj
式中,Pij为i性状对j性状的间接通径系数;rij为i性状与j性状的相关系数;Pj为j性状对质量性状的直接通径系数。
根据相关分析和通径分析计算单参数决定系数和两参数共同决定系数。计算公式如下:
$ d_{i}=P_{i}^{2} $ |
$ d_{ij}=2P_{i}P_{ij} $ |
式中,di为i性状对质量性状的单参数决定系数;dij为i性状和j性状对质量性状的多参数共同决定系数;Pi为i性状对质量性状的直接通径系数。
2 结果与分析 2.1 各数量性状的描述性统计量和相关分析1~3龄四角蛤蜊质量性状的变异系数均大于形态性状(表 1)。1~3龄四角蛤蜊的活体湿重分别为(4.03± 0.65) g、(10.43±2.21) g和(17.03±1.99) g,软组织湿重分别为(2.49±0.38) g、(5.25±1.14) g和(8.74±1.14) g。1~3龄四角蛤蜊形态性状均为壳长 > 壳高 > 壳宽。对1~3龄四角蛤蜊各性状均进行t检验,结果显示,不同贝龄四角蛤蜊各性状间均存在极显著差异,表明对不同贝龄四角蛤蜊的形状差异进行分析具有统计学意义。
相关系数矩阵(表 2)显示所有性状均表现为极显著相关(P < 0.01),其中,1~3龄均为壳宽与活体湿重的相关性最高,分别为0.893、0.891和0.816;与软组织湿重相关性最高的形态形状,在1龄贝为壳宽,在2龄和3龄贝均为壳长,相关系数分别为0.805、0.739和0.656。
1龄和3龄四角蛤蜊各形态性状对质量性状的通径系数均达到极显著性水平(P < 0.01),无性状被剔除。2龄四角蛤蜊壳高对质量性状未达到显著水平(P > 0.05),因此被剔除(表 3)。1~3龄四角蛤蜊均为壳宽对活体湿重的直接作用最大,直接通径系数分别为0.509、0.692和0.533;2龄四角蛤蜊仅有壳长对活体湿重的直接作用小于间接作用,3龄四角蛤蜊仅有壳宽对活体湿重的直接作用大于间接作用。1龄四角蛤蜊壳宽对软组织湿重的直接作用最大,而2龄和3龄四角蛤蜊均为壳长,直接通径系数分别为0.392、0.488和0.327,且1龄四角蛤蜊所有形态性状对软组织湿重的直接作用均小于间接作用。
图 2中SL-SL、SW-SW和SH-SH表示单参数决定系数,SL-SW、SL-SH和SW-SH表示两参数共同决定系数。1~3龄四角蛤蜊均为壳宽对活体湿重的单参数决定系数最大,分别为0.259、0.479和0.284。1龄四角蛤蜊对软组织湿重单参数决定系数最大的形态性状为壳宽,而2龄和3龄为壳长,分别为0.154、0.238和0.107。1龄和2龄四角蛤蜊壳长通过壳宽对活体湿重和软组织湿重的间接决定程度最大;3龄四角蛤蜊壳长通过壳宽对活体湿重的间接决定程度最大,壳长通过壳高对软组织湿重的间接决定程度最大。
对形态性状和质量性状进行回归分析,采用逐步加入–剔除的方法,并进行显著性检验,剔除不显著的性状,建立不同贝龄四角蛤蜊形态性状对质量性状b的最优回归方程:
$ \begin{aligned} & \mathrm{BW}_{1 \text { 龄}}=-8.100+0.161 \mathrm{SL}+0.399 \mathrm{SW}+0.107 \mathrm{SH}, R^2=0.898 \\ & \mathrm{RW}_{1 \text { 龄}}=-3.968+0.083 \mathrm{SL}+0.179 \mathrm{SW}+0.083 \mathrm{SH}, R^2=0.738 \\ & \mathrm{BW}_{2 \text { 龄}}=-20.079+0.402 \mathrm{SL}+0.868 \mathrm{SW}, R^2=0.859\\ & \mathrm{RW}_{2 \text { 龄}}=-9.879+0.314 \mathrm{SL}+0.262 \mathrm{SW}, R^2=0.648 \\ & \mathrm{BW}_{3 \text { 龄}}=-28.849+0.449 \mathrm{SL}+0.847 \mathrm{SW}+0.269 \mathrm{SH}, R^2=0.815 \\ & \mathrm{RW}_{3 \text { 龄}}=-13.418+0.258 \mathrm{SL}+0.257 \mathrm{SW}+0.200 \mathrm{SH}, R^2=0.538 \end{aligned} $ |
偏回归系数检验显示,除壳高外,壳长、壳宽对2龄四角蛤蜊的活体湿重和软组织湿重产生极显著影响(P < 0.01),而所有形态性状均对1龄和3龄四角蛤蜊的质量性状产生极显著影响(P < 0.01)(表 4)。最优回归方程的方差分析显示,保留下来的形态性状与质量性状的回归均达到极显著水平(P < 0.01)(表 5)。其中,F值分别为222.042、71.486、306.867、92.781、241.302和63.750,均达到极显著水平(P < 0.01)。
均值、标准差和变异系数是衡量数量性状的重要参数(张新明等, 2022),通径分析既可以反映自变量与因变量的直接作用,又可以反映自变量对其他自变量的间接作用,是分析水生生物生长相关特征的有用工具(Luo et al, 2013)。本研究中,1~3龄四角蛤蜊质量性状的变异系数均大于形态性状的变异系数,具有更大的选育潜力(李艳慧等, 2022; 陈红林等, 2019)。t检验结果显示,1~3龄四角蛤蜊的数量性状之间均存在极显著差异,表明对不同贝龄四角蛤蜊进行分析是有意义的。相关分析结果表明,不同生长阶段,四角蛤蜊的形态性状与体质量的相关程度有所差异。相似的,薛宝宝等(2018)的研究也发现,4月龄和11月龄缢蛏(Sinonovacula constricta)与活体质量相关系数最高的为壳长,而9月龄壳高与活体质量相关系数最高。林先鑫等(2019)也发现企鹅珍珠贝(Pteria penguin) 6月龄与湿重相关系数最高的为壳宽,8月龄与湿重相关系数最高的为壳高。本研究中,1~3龄四角蛤蜊壳宽与活体湿重的相关性最大;1龄四角蛤蜊与软组织湿重相关性最大的性状为壳宽,而2龄和3龄四角蛤蜊为壳长。
本研究中,1~3龄四角蛤蜊均为壳宽对活体湿重的直接作用最大,1龄四角蛤蜊壳宽对软组织的直接作用最大,而2龄和3龄四角蛤蜊为壳长。这说明不同生长时期,形态性状对质量性状的影响效果也不同。张根芳等(2014)对背瘤丽蚌(Lamprotula leai)的通径分析发现,活体重是影响养殖条件下2~4龄背瘤丽蚌壳重的最主要性状。李莉等(2015)研究发现,1龄毛蚶(Scapharca subcrenata)主要影响因子为壳长,2龄毛蚶主要影响因子为壳长和壳宽,3龄时影响毛蚶体质量的主要因子为壳宽。杜美荣等(2017)研究发现,1龄栉孔扇贝的主要影响因子为壳长,2龄时主要影响因子为壳高。这些差异可能是不同种双壳贝类遗传特性和所处环境有所不同,因此,通径分析结果也有所差别。
在回归方程中,当单参数决定系数和两参数共同决定系数的总和或者相关指数R2≥0.85时,就可以确定影响应变量的主要自变量(刘阳等, 2019; 鲍虞园等, 2020)。本研究1龄和2龄四角蛤蜊保留形态性状对活体湿重的R2值(0.898和0.859)均大于0.850,表明其是影响活体湿重的主要因素,但3龄四角蛤蜊形态性状对活体湿重的R2值(0.815)小于0.850,表明除了本研究分析的性状以外,可能还存在其他影响性状。原因可能是随着四角蛤蜊的生长,壳的厚度逐渐增加,对活体重量的影响效果也随之增大。在栉孔扇贝(刘小林等, 2002)和平濑掌扇贝(Volachlamys hirasei) (宋坚等, 2015)的通径分析中,壳厚是影响活体湿重的次要因素已经得到了证实。同时,本研究中1~3龄四角蛤蜊形态性状对软组织湿重的R2值(0.738、0.648和0.538)均小于0.850,表明还存在其他影响软组织湿重的关键因素。四角蛤蜊1龄即达到性成熟年龄,软体部性腺发育程度可能与软组织湿重的大小密切相关,同时,取样期间主要处于四角蛤蜊性腺发育的增殖期至耗尽期,同时性腺发育程度受环境影响较大(柯巧珍, 2012; 刘项峰等, 2021)。在菲律宾蛤仔(Huo et al, 2010)、福建牡蛎(巫旗生等, 2018)的研究中也认为性腺质量是影响软组织湿重的关键因素。
综上所述,本研究通过对1~3龄四角蛤蜊的形态性状和质量性状进行相关分析、通径分析及多元回归分析,确定影响不同贝龄四角蛤蜊质量性状的关键形态性状,结果可为四角蛤蜊的良种选育及亲贝选择提供参考依据。
BAO Y Y, YE G L, JIE X Y. Effects of morphological characters on body weight of artificailly bred the first instars of horseshoe crabs (Tachypleus tridentatus). Progress in Fishery Sciences, 2020, 41(4): 77-84 [鲍虞园, 叶国玲, 颉晓勇. 中国鲎人工繁育及1龄稚鲎形态性状对体质量的影响. 渔业科学进展, 2020, 41(4): 77-84] |
CHEN H L, SI Z X, DU J X, et al. Correlation and path coefficient analysis of the morphometric traits and body weight for the four color patterns of Oujiang color common carp. Progress in Fishery Sciences, 2019, 40(5): 110-116 [陈红林, 司周旋, 杜金星, 等. 四种体色瓯江彩鲤形态性状与体质量的相关性与通径分析. 渔业科学进展, 2019, 40(5): 110-116] |
DU M R, FANG J G, BAO Z M, et al. Correlation and path cofficient analysis for Chlamys farreri cultured in different sea areas. Oceanologia et Limnologia Sinica, 2016, 47(5): 963-970 [杜美荣, 方建光, 包振民, 等. 不同养殖海域栉孔扇贝(Chlamys farreri)混合家系的通径分析. 海洋与湖沼, 2016, 47(5): 963-970] |
DU M R, FANG J G, GAO Y P, et al. Correlation and path analysis of quantitative traits of different-age Chlamys farreri. Journal of Fisheries of China, 2017, 41(4): 580-587 [杜美荣, 方建光, 高亚平, 等. 不同贝龄栉孔扇贝数量性状的相关性和通径分析. 水产学报, 2017, 41(4): 580-587] |
FANG J, XIAO G Q, ZHANG J M, et al. Effect of morphological traits on live body weight in clam Meretrix meretrix with two kind color shells. Journal of Dalian Ocean University, 2017, 32(3): 310-315 [方军, 肖国强, 张炯明, 等. 两种壳色文蛤壳形态性状对活体质量的影响. 大连海洋大学学报, 2017, 32(3): 310-315] |
GUO C Y, XU S L. Research development of the Mactridae. Journal of Biology, 2016, 33(1): 86–91, 103 [郭春阳, 徐善良. 蛤蜊科贝类的研究进展. 生物学杂志, 2016, 33(1): 86–91, 103] |
HUO Z M, YAN X W, ZHAO L Q, et al. Effects of shell morphological traits on the weight traits of Manila clam (Ruditapes philippinarum). Acta Ecologica Sinica, 2010, 30(5): 251-256 DOI:10.1016/j.chnaes.2010.08.004 |
KANG J, SUN Y G, LI F, et al. Ecological sensitivity of the Liaohe estuary to changes in sea area use. China Environmental Science, 2017, 37(12): 4722-4733 [康婧, 孙永光, 李方, 等. 辽河口海域使用变化下的生态敏感性分析. 中国环境科学, 2017, 37(12): 4722-4733] |
KE Q Z. Studies on reproductive physiology of Mactra veneriformis and Gomphina aequilatera. Master′s Thesis of Ocean University of China, 2012 [柯巧珍. 四角蛤蜊(Mactra veneriformis)和等边浅蛤(Gomphina aequilatera)的繁殖生理学研究. 中国海洋大学硕士研究生学位论文, 2012]
|
LI L, ZHENG Y Y, XU K F, et al. The relationship between morphometric traits and body weight of Scapharca subcrenata at different ages. Marine Sciences, 2015, 39(6): 54-58 [李莉, 郑永允, 徐科凤, 等. 不同贝龄毛蚶壳形态性状对体质量的影响. 海洋科学, 2015, 39(6): 54-58] |
LI Y H, CHEN S A, CHENG Y. Path analysis and growth curve fitting of morphological traits and body weight of Triplophysa yarkandensi. Journal of Fishery Sciences of China, 2022, 29(1): 49-57 [李艳慧, 陈生熬, 程勇. 叶尔羌高原鳅形态性状与体重的通径分析及曲线拟合. 中国水产科学, 2022, 29(1): 49-57] |
LIN X X, DENG Z H, CHEN M Q, et al. Path analysis of morphological traits to wet weight of Pteria penguin at different ages. Journal of Southern Agriculture, 2019, 50(9): 2088-2094 [林先鑫, 邓正华, 陈明强, 等. 两种贝龄企鹅珍珠贝形态性状对湿重的通径分析. 南方农业学报, 2019, 50(9): 2088-2094] |
LIU G Z, GU Y B, YE J Q, et al. Preliminary research of intertidal macrobenthic community structural features in Geligang, Liaohe estuary in summer. Marine Environmental Science, 2020, 39(3): 419–425, 437 [柳圭泽, 顾炎斌, 叶金清, 等. 蛤蜊岗夏季大型底栖动物群落结构初步研究. 海洋环境科学, 2020, 39(3): 419–425, 437] |
LIU Q, ZHANG S H, LIU Y F, et al. Survey and analysis of Mactra venerformis resources in intertidal zone of the Yellow River Delta. Marine Fisheries, 2018, 40(2): 163-170 [刘强, 张士华, 刘艳芬, 等. 黄河三角洲潮间带四角蛤蜊资源调查分析. 海洋渔业, 2018, 40(2): 163-170] |
LIU X F, XIE X, CHEN W, et al. Reproduction of surf clam Mactra veneriformis inhabiting the Liaohe estuary. Fisheries Science, 2021, 40(6): 883-888 [刘项峰, 谢玺, 陈微, 等. 辽河口四角蛤蜊繁殖周期研究. 水产科学, 2021, 40(6): 883-888] |
LIU X L, CHANG Y Q, XIANG J H, et al. Analysis of effects of shell size characters on live weight in Chinese scallop Chlamys farreri. Oceanologia et Limnologia Sinica, 2002, 33(6): 673-678 [刘小林, 常亚青, 相建海, 等. 栉孔扇贝壳尺寸性状对活体重的影响效果分析. 海洋与湖沼, 2002, 33(6): 673-678] |
LIU Y, HAN H Z, WANG T T, et al. Phenotypic analysis of the main morphological traits and body weight of black rockfish (Sebastes schlegelii). Progress in Fishery Sciences, 2019, 40(5): 117-125 [刘阳, 韩慧宗, 王腾腾, 等. 许氏平鲉体质量与形态性状的表型特征分析. 渔业科学进展, 2019, 40(5): 117-125] |
LUO X, KE C H, YOU W W. Estimates of correlations for shell morphological traits on body weight of interspecific hybrid abalone (Haliotis discus hannai and Haliotis gigantea). Journal of Shellfish Research, 2013, 32(1): 115-118 DOI:10.2983/035.032.0117 |
SONG J, XIAO D B, ZHANG W J, et al. Analysis on the effect of shell traits on live quality of two types of Volachlamys hirasei. Jiangsu Agricultural Sciences, 2015, 43(3): 215-217 [宋坚, 肖登兵, 张伟杰, 等. 2个类型平濑掌扇贝壳性状对活体质量的影响分析. 江苏农业科学, 2015, 43(3): 215-217] |
WANG J Y, ZHANG A G, LI X D, et al. Spatial distribution of buried molluscs and their relationship with sediment factors in Geligang. Marine Sciences, 2016, 40(4): 32-39 [王金叶, 张安国, 李晓东, 等. 蛤蜊岗滩涂贝类分布及其与环境因子的关系. 海洋科学, 2016, 40(4): 32-39] |
WU Q S, NING Y, ZENG Z N, et al. Correlation and path analysis of quantitative traits of different-age "Golden Oyster#1" Crassostrea angulata. Journal of Xiamen University (Natural Science), 2018, 57(1): 72-78 [巫旗生, 宁岳, 曾志南, 等. 不同贝龄"金蛎1号"福建牡蛎数量性状的相关性和通径分析. 厦门大学学报(自然科学版), 2018, 57(1): 72-78] |
XING Q Q, YANG M M, CHEN G Z, et al. Path analysis of phenotypic traits on body weight of Macrobrachium rosenbergii before and after sexual maturity. Journal of Fisheries of China, 2022, 46(9): 1632-1645 [邢钱钱, 杨旻珉, 陈国柱, 等. 罗氏沼虾性成熟前后形态性状对体质量的通径分析. 水产学报, 2022, 46(9): 1632-1645] |
XUE B B, LI H, NIU D H, et al. Correlation and path analysis of quantitative traits of new variety of Sinonovacula constricta at different months of age. Journal of Fisheries of China, 2018, 42(6): 941-949 [薛宝宝, 李浩, 牛东红, 等. 不同月龄缢蛏新品种数量性状的相关与通径分析. 水产学报, 2018, 42(6): 941-949] |
YAN X W, WANG Y, GUO W X, et al. Effects of shell morphological traits on the weight traits of clam Mactra veberiformis reeve along northern coast in China. Journal of Fisheries of China, 2011, 35(10): 1513-1518 [闫喜武, 王琰, 郭文学, 等. 四角蛤蜊形态性状对重量性状的影响效果分析. 水产学报, 2011, 35(10): 1513-1518] |
ZHANG C S, CHANG Y Q, CAO X B, et al. Analysis of effect of body shape traits on soft-tissue weight and adductor weight in Patinopecten yessoensis Jay. Journal of Fisheries of China, 2009, 33(1): 87-94 [张存善, 常亚青, 曹学彬, 等. 虾夷扇贝体形性状对软体重和闭壳肌重的影响效果分析. 水产学报, 2009, 33(1): 87-94] |
ZHANG G F, ZHANG W F, FANG A P, et al. Correlation and path analysis of quantitative traits of different-age Lamprotula leai in artificial breeding. Oceanologia et Limnologia Sinica, 2014, 45(5): 1115-1121 [张根芳, 张文府, 方爱萍, 等. 养殖条件下不同年龄背瘤丽蚌(Lamprotula leai)数量性状的相关与通径分析. 海洋与湖沼, 2014, 45(5): 1115-1121] |
ZHANG X M, CHENG S F. Path analysis and Gray Correlation Analysis of morphological traits to body weight of Trachypenaeus curvirostirs. Progress in Fishery Sciences, 2022, 43(1): 153-162 [张新明, 程顺峰. 鹰爪虾形态性状和体重的通径分析及灰色关联分析. 渔业科学进展, 2022, 43(1): 153-162] |