2. 青岛理工大学环境与市政工程学院 山东 青岛 266520
2. School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
我国是世界上最大的海水养殖国家,海水养殖业已成为国民经济的支柱产业之一(Wang et al, 2018),其中,投饵型的陆基工厂化养殖和高潮带池塘养殖作为主要模式占海水养殖总面积的22%,仅北方地区养殖面积就达19.9万hm2。但随着集约化海水养殖的快速发展,海水养殖废水产生的环境问题受到高度重视。首先,海水养殖池中含有的残饵、生物尸体、养殖物代谢产物等会产生有机物、氨氮、亚硝态氮等有毒有害物质(Sun et al, 2016);其次,海水养殖地大部分位于海湾,水交换条件差,易产生积累污染;此外,海水养殖地又处于近岸水域,易受沿岸工农业和生活污水影响,污染物环境背景值高。因此,海水养殖废水需要被处理达到排放标准后才能进行排放,否则会加剧受纳海域富营养化的发生,例如近岸海域赤潮、绿潮的频繁暴发(林森杰等, 2019)。
人工湿地是一种天然的生物过滤器,具有高效低耗、运行管理简单、碳中和潜力大等优点(Valipour et al, 2015),被广泛应用于二级、三级污水处理、海岸缓冲带处理以及水产养殖废水处理(Fu et al, 2019)。将人工湿地作为海水养殖尾水的生物净化单元具有很大的应用前景。脱氮是人工湿地的主要任务之一,自然水体中氮含量超过其自净能力不仅会导致水环境的富营养化,在严重情况下还会对水生态系统造成永久性的破坏,最终危害人类健康(Chu et al, 2022)。
与其他废水相比,海水养殖尾水具有盐度高、碳氮比低的特点,形成了海水人工湿地独特的处理环境。本文针对海水养殖尾水人工湿地构建方式、基质材料选取、耐盐植物筛选、氮循环微生物以及运行参数调控4个方面,对海水养殖尾水人工湿地处理系统及其脱氮过程的最新研究进展进行综述,以期为调控海水人工湿地的实际运行和提高海水养殖尾水处理技术水平提供理论基础与支持。
1 海水人工湿地的构建方式人工湿地是由基质、植物和微生物共同组成的一种复合污水生态处理工程(Shi et al, 2011),通过基质的吸附、滞留、氧化还原等物理化学作用,植物的吸收作用以及微生物的分解作用,可以有效去除水体中的污染物质(Parde et al, 2021; Shruthi et al, 2021)。目前,被广泛应用的人工湿地为表面流人工湿地和潜流人工湿地,其中,潜流人工湿地又分为水平潜流和垂直潜流。
在表面流人工湿地中,水流从基质上方水平流过,通过植物吸收以及基质和植被根系表面附着的微生物来实现污水的净化(Valipour et al, 2015)。显然,表面流湿地占地面积大、污染物负荷低、去污能力有限。水平潜流是将进水布置在地表以下的高度,使水流在基质内部水平流过。但是,水体长期在湿地内部流动导致溶解氧含量低,水体长期处于缺氧或厌氧状态,易使微生物的硝化能力受到限制(Parde et al, 2021)。而垂直潜流是将进水均匀分配到基质表面,使其纵向渗入到底部,进而可以形成好氧–缺氧–厌氧交替的环境,可提高人工湿地的综合脱氮效率,并且其水力负荷高、占地面积小(Shruthi et al, 2021)。为了进一步增强垂直潜流人工湿地的脱氮效果,Chen等(2022)通过调控湿地内部水位,形成部分饱和垂直潜流人工湿地,通过对人工合成海水养殖尾水进行处理,饱和区在60 cm时对总无机氮(total inorganic nitrogen, TIN)的去除率可以达到97.3%。
此外,将多种类型湿地联用可以优势互补,提高海水人工湿地整体的去污能力。例如,将垂直潜流和水平潜流串联组合,可以将二者的硝化作用和反硝化作用能力耦合,提高系统整体的脱氮效能(Yazdani et al, 2019);近年来,针对海水养殖废水溶解氧(DO)含量高的特点,我们探索将2个垂直潜流组合,构成复合垂直潜流人工湿地,水流在湿地内部流动时间长,并且可以形成好氧–缺氧–厌氧–缺氧–好氧不断变化的氧化还原环境,因此,它的去污能力更高,脱氮效果更好。我们前期采用复合垂直潜流人工湿地处理海水养殖尾水,取得了良好的去除效果(贾军等, 2021; 唐小双等, 2021; 赵可歆等, 2022)。
2 基质的选取基质作为海水人工湿地的关键组成部分,在脱氮方面发挥着重要作用。首先,顶部基质可以支撑耐盐植物的生长,利用植物的作用进行脱氮;其次,基质可以在其表面附着硝化细菌、反硝化细菌等氮循环微生物形成生物膜,去除水中的氮元素;再次,部分基质本身对水中的氨氮、亚硝态氮等具有物理吸附作用;最后,某些基质可以作为缓释碳源,促进异养反硝化的进行或者提供电子供体与微生物的自养反硝化反应进行耦合。
2.1 基质材料的选取及级配基质对氮的吸附作用以及作为生物膜的载体受到基质材料本身的化学结构和基质粒径、孔隙率、比表面积、表面粗糙度等物理性质的影响。不同材料基质对氮的吸附容量差异悬殊,如陶粒、火山岩、石英砂等均对氨氮具有较好的吸附效果,对氨氮的吸附范围可在2~1 700 mg/kg (赵倩等, 2021)。随着吸附量的增大,基质吸附作用也随之减小,直至失去吸附效果。因此,在关注基质吸附容量的同时,还应关注其解吸能力。吸附与解吸能力是决定基质使用时长的主要因素之一。目前,对海水人工湿地基质吸附与解吸性能及盐度对其影响的研究还很少。除了基质本身的吸附作用,较高的比表面积会为氮循环微生物提供更多的附着场所,从而提高脱氮性能。此外,粒径越小,基质的比表面积越大。但随着人工湿地长期运行,过小的孔隙率易造成基质内部堵塞,从而降低湿地的过流能力和脱氮效果(Yang et al, 2018)。因此,海水人工湿地设计时要合理搭配不同基质层的粒径大小。表 2总结了常用的海水人工湿地基质材质、粒径及埋设深度。
海水养殖尾水的高盐度也是人工湿地基质选择所需要考虑的重要因素。Zhou等(2021)比较了土壤、砂子、砾石3种基质在表流人工湿地中的净化能力,研究表明,在较高盐度下,土壤对总氮的去除效率更高。因为与砂子和砾石相比,土壤在不同盐度下根际细菌群落的稳定性更高。但总的来说,目前盐度对海水人工湿地基质选择影响的研究依然较少。
2.2 特殊基质材料的水质强化净化机制面对海水养殖尾水碳源不足的问题,选择具有缓释碳源作用的材料作为海水人工湿地的填充基质是一种解决方案。以玉米芯、木屑、秸秆为代表的农业废弃物及其加工产物生物炭统称为生物碳源。其中,生物炭一般是由农业废弃物在无氧环境下低温热解而成的富碳产物(Do Minh et al, 2020),其内部通常孔隙发达,具有高比表面积,不仅可以为异养反硝化微生物提供有机碳源,还具有较高的吸附能力。研究表明,即使已经长期使用的生物炭也可以通过吸附–解析的过程连续地提供碳源,从而促进异养反硝化的进行(Zhou et al, 2019)。此外,由于生物炭的高吸附能力,会在其表面富集氨氮,从而促进了硝化作用的高效进行(Zhou et al, 2017)。同时,多孔材料为微生物附着提供了更多的场所,有利于形成生物膜(de Rozari et al, 2018)。生物炭的添加增加了人工湿地微生物群落的多样性和组成,其生物膜上微生物的种类数量、Simpson和Shannon指数均显著高于陶粒(Deng et al, 2019; Ji et al, 2020)。
利用部分基质可以提供电子供体从而驱动自养反硝化反应的原理,也可以提高海水养殖尾水人工湿地低C/N条件下的脱氮效率。在海水人工湿地中,最常见的是以黄铁矿(FeS2)作为基质,其Fe2+和S–1可以被O2氧化,从而释放电子,驱动铁基和硫基自养反硝化过程(Yang et al, 2017)。此外,在黄铁矿进行氧化反应的同时会在其周围形成厌氧的环境,进一步提供了反硝化的条件。近年来,铁–碳作为海水人工湿地的基质也被尝试。铁–碳结合电化学辅助技术,可以在阳极上生成Fe2+,阴极上生成H2,从而可以同时驱动铁自养和氢自养反硝化(Deng et al, 2020)。Ma等(2021)根据实验条件下微生物酶活性和基因丰度,证明铁–碳的添加促进了海水人工湿地中的厌氧氨氧化和反硝化过程。
3 耐盐植物的筛选植物是海水人工湿地的重要组成部分,对污水脱氮起着关键作用。除了微生物的硝化、反硝化等作用,污水中一部分氮会被植物直接吸收用于自身的生长。研究发现,相比于其他形式的氮,植物更倾向于吸收利用氨氮(Almeida et al, 2019)。此外,除了大气复氧,植物是人工湿地内部氧气的主要来源,植物的通气组织将氧气输送到根部并向周围环境中扩散,在植物根际形成了氧化还原的根际微生态系统。湿地内部有氧的环境促进了硝化细菌的繁殖,提高了微生物硝化作用的强度(Sun et al, 2019)。同时,植物根系会向周围土壤释放分泌物,这些分泌物可以作为异养反硝化细菌的碳源,从而促进反硝化作用的进行(Wu et al, 2017)。植物对硝化、反硝化微生物的影响进而会影响人工湿地的整体脱氮效果。如Song等(2019)发现,与未种植系统相比,种植系统的基质中amoA、nirS、nirK和nosZ等硝化、反硝化基因的丰度显著更高。Du等(2018)研究发现,与未种植植物相比,种植美人蕉(Canna indica L.)的复合垂直流人工湿地对总氮(total nitrogen, TN)的去除率提高了10.35%。吴俊泽等(2019)的研究表明,未种植植物的海水人工湿地微生物反硝化过程受到抑制,导致湿地对NO3–-N和TN的去除效果不理想。
海水人工湿地具有高盐度的特点,高盐胁迫下湿地植物的生存会受到限制。不同种类植物对附着于其根系的各种具有氮代谢功能的微生物的活性和多样性会产生显著影响。筛选出具有较高脱氮效能的耐盐植物是提高海水人工湿地整体脱氮性能的重要环节。保证植物可以在高盐环境中存活是植物筛选的第一步,海水养殖尾水的盐度一般高于20,因此,植物筛选需要着眼于盐生植物,目前,海水人工湿地一般选用挺水植物[芦苇(Phragmites australis)、美人蕉、再力花(Thalia dealbata)、水葱(Scirpus validus)、香蒲(Typha orientalis)等]、沉水植物[白骨壤(Avicennia marina)、秋茄(Kandelia candel)、桐花等]和湿生植物[鸢尾(Iris tectorum)、香根草(Chrysopogon zizanioides)、海蓬子(Salicornia bigelovii)、盐地碱蓬(Suaeda salsa)等]来处理海水养殖尾水(张翠雅等, 2023)。陶磊等(2015)通过比较6种挺水植物的耐盐性能发现,互花米草(Spartina alterniflora)和芦苇可以在盐度大于15时良好生长,其中,互花米草可以在更高盐度环境中生长繁殖,在盐度大于25时仍有新芽长出。其次,需要比较植物的脱氮能力,从而筛选出增强海水人工湿地脱氮性能的耐盐植物。同时,不同植物对地理位置和气候条件的适应性不同,应因地制宜尽量选取适合当地生长条件的耐盐植物,以发挥其在人工湿地处理中的最佳作用。表 1总结了国内外学者构建海水人工湿地常采用的植物种类及其脱氮效能。从表 1可看出,绝大多数耐盐植物对氨氮和亚硝酸氮的去除效果很好,但只有互花米草和海蓬子对硝酸氮的去除效果较好,进而总氮去除效果较好,因此, 今后可以探索将互花米草和海蓬子用于海水人工湿地的可能性。
研究表明,即使在最适宜的条件下,人工湿地中植物的贡献仍低于15% (Wei et al, 2019),而在没有较强的微生物活性下,底物和植物组合的总脱氮效率也只能达到20%左右(Li et al, 2015)。因此,微生物脱氮被认为是人工湿地脱氮的主要贡献者。随着高通量测序、宏基因组、宏转录组等分子生态学技术的快速发展和测序成本的不断下降,近年来对微生物的氮代谢路径和相关微生物及功能基因有许多新的发现,由于海水人工湿地处理系统起步较晚,目前,人工湿地中氮循环微生物的研究成果大多是基于淡水人工湿地。可为今后海水人工湿地相关微生物的研究提供借鉴。在人工湿地脱氮的过程中,DO是影响脱氮微生物分布和发挥功能的一个重要环境因子。微生物分布也具有明显的分层效应(Wang et al, 2021)。人工湿地中上层的DO相对较高,有利于好氧微生物的生长繁殖。在传统的硝化过程中,氨首先在好氧条件下被亚硝化单胞属(Nitrosomonas sp.)等氨氧化细菌(AOB)和古菌(AOA)氧化为亚硝酸盐(Tang et al, 2020)。氨单加氧酶编码基因amoA常被当作检测这类菌的分子标记。亚硝酸盐在亚硝酸盐氧化菌(NOB)的作用下氧化为硝酸盐。人工湿地中常见的NOB为硝化螺菌(Nitrospira)和硝化杆菌(Nitrobacter),关键酶是亚硝酸盐氧化还原酶(NXR),其编码基因nxrAB也常被用来检测亚硝酸氧化的过程(Yang et al, 2020)。在人工湿地处理中氨氮浓度为0.34~550 mg/L时,AOB在氨氧化过程中起主导作用(Li et al, 2018)。研究表明,在海洋环境中AOA对氨氮具有更高的亲和力,因此,在海水人工湿地处理高盐、低营养盐的海水养殖尾水的环境中,AOA的作用不容忽视(Könneke et al, 2005)。
人工湿地底层的DO相对较低,更有利于厌氧和兼性厌氧微生物的生长繁殖。由厌氧氨氧化菌(AnAOB)主导的厌氧氨氧化反应(anammox)可以在厌氧条件下,以氨氮为电子供体、亚硝氮为电子受体,实现氨氮和亚硝氮的同步脱除并生成N2 (Huang et al, 2022)。Harhangi等(2012)研究表明,利用联氨合成酶基因hasA可以检测目前已知的所有厌氧氨氧化菌。据报道,在0.5~1.0的低C/N时,AnAOB对脱氮的贡献较高(Takekawa et al, 2014)。因此,对于海水养殖废水,厌氧氨氧化过程也是重点研究对象之一。将厌氧氨氧化耦合其他技术,如将传统的两段式硝化反应终止在生成亚硝酸盐阶段,即短程硝化技术(Hausherr et al, 2022),或者将厌氧氨氧化产生的硝氮转化成亚硝氮被AnAOB利用,即部分反硝化工艺(Cao et al, 2013),则可以为厌氧氨氧化提供更多的电子受体,还可以节约碳源和曝气量,降低运行成本。
在N的还原过程中,存在反硝化反应和亚硝酸盐异化还原为铵(DNRA)两种相互竞争的过程。只有在反硝化过程中,硝酸盐最终被还原为N2离开系统,才能实现水体氮的最终脱离。具有反硝化作用的细菌种类繁多,功能菌群以假单胞菌属(Pseudomonas)、芽孢杆菌属(Bacillus)、副球菌属(Paracoccus)等属的细菌为主,盐单胞菌属(Halomonas)、栖苏打菌属(Nitrincola)和大洋单胞菌属(Oceanimonas)等属的细菌也会参与反硝化过程(Pan et al, 2020)。反硝化涉及的主要功能基因有硝酸盐还原酶基因簇(nar)、亚硝酸盐还原酶基因(nirS或nirK),一氧化氮还原酶基因(norZ或norVW),一氧化二氮还原酶基因(nosZ)等(Orellana et al, 2018)。其中,传统的反硝化理论是厌氧条件下的异养反硝化。而最近好氧反硝化菌的发现,为反硝化提供了另外的可能路径,为污水处理系统中在同一反应池中完成硝化和反硝化提供了可能(李秋芬等, 2019)。此外,正如人工湿地固体碳源所述,利用无机物作为电子供体,可以驱动硫自养(Chu et al, 2022; Yang et al, 2017)、氢自养(缪润珠等, 2022)、铁自养(Pang et al, 2021)等自养反硝化过程。而在DNRA过程中,亚硝酸盐被还原为铵,进而可被其他微生物生长利用,N最终被留在系统中(Burgin et al, 2007)。脱硫单胞菌目(Desulfuromonadales)中的索氏菌属(Thauera)、嗜氢胞菌(Hydrogenophaga)、希瓦氏菌属(Shewanella)和地杆菌属(Geobacter)的细菌是驱动DNRA重要的微生物。DNRA过程通常被细胞色素C亚硝酸盐还原酶(ccNIR)所驱动,nrfA通常被作为其标记功能基因(Papaspyrou et al, 2014; Welsh et al, 2014)。通常厌氧反硝化和DNRA是共存的,而DNRA微生物比厌氧反硝化的厌氧程度更高。但是,影响这两种竞争机制的主要因素不是由DO决定的,而是有机物的约束。DNRA只有在C: NO3–-N > 12的条件下才可以单独发生(Tang et al, 2020)。
近年来,在污水处理中发现了可以将氨氮直接转化为硝态氮的完全氨氧化菌(comammox),打破了近百年来两段式硝化反应的传统认知(Luo et al, 2022)。这类菌既能产生氨氧化酶,又能产生亚硝酸盐氧化还原酶,可独立完成氨到硝酸盐的转化,它们和亚硝酸盐氧化菌同属硝化螺菌属(Nitrospira),可以利用一对通用引物检测它们在不同生态系统的丰度和种类组成(Zhao et al, 2019)。Comammox具有复杂的生态位。研究表明,Comammox与传统的硝化微生物可以共存,但存在对底物的竞争。Comammox对铵氮的亲和力较高(Kits et al, 2017),在低铵氮的环境下,Comammox可以竞争过AOA和AOB。同时,Comammox广泛存在于Nitrospira谱系Ⅱ中,较低的亚硝酸盐浓度对Comammox也是有利的(Maixner et al, 2006)。因此,Comammox能更好地适应海水养殖尾水寡营养条件,如果耦合其他脱氮过程,在深度脱氮、降低成本、减少温室气体(N2O)排放等方面具有一定的优势和潜力。此外,Comammox对DO也具有更高的亲和力(Costa et al, 2006),更适合在低DO下生存。van Kessel等(2015)研究表明,Comammox与Anammox可以在缺氧条件下共生形成紧密的共聚体。因此,在海水人工湿地底部缺氧的环境中,也可能存在Comammox增强人工湿地硝化作用的现象,有待进一步研究证明。
随着盐度的增加,人工湿地对氨氮、亚硝酸氮和总氮的去除率明显下降(Fu et al, 2019; Wang et al, 2021),其原因可能是高盐的胁迫抑制了某些氮代谢功能菌的生长和活性,只有耐盐的菌才能在海水人工湿地中存活下来,并发挥作用(Fu et al, 2019)。因此,海水人工湿地中的微生物种类组成和菌群活性有其独特的特点,Wang等(2021)研究了人工湿地中的微生物群落对盐胁迫的响应,结果表明,微生物群落结构和丰度也因盐度不同而变化,具有反硝化功能的一些细菌(如节杆菌属Arthrobacter sp.)在有盐湿地中的丰度明显低于无盐的湿地。但除此之外,目前,关于真正海水人工湿地中氮代谢菌的研究还相当少见。因此,很有必要利用这些分子生态学技术对微生物驱动下的海水养殖尾水人工湿地系统内的脱氮的微生物及其关键功能基因进行深入的研究,形成更加清晰的认识。
5 海水人工湿地的运行调控 5.1 进水碳氮比及外加碳源与其他废水相比,海水养殖废水量大、污染物含量低,C/N低,不利于微生物的反硝化作用,从而降低了人工湿地对NO3–-N的去除效率(Fu et al, 2017)。据报道,当污废水中的C/N < 3.4时,反硝化过程就会因碳源不足而受到抑制(Meng et al, 2015)。郑冰冰等(2020)利用AO/MBBR反应器处理海水养殖废水时发现,C/N由12降至1的过程中,氨氧化、亚硝酸盐氧化相关酶活性不受影响;而反硝化酶在C/N<5时会受到抑制,导致NO3–-N积累严重。对此,可以在人工湿地内部投加液体碳源,如葡萄糖、甲醇等。但因液体碳源易流失、消耗快,从而导致处理效果不佳,而且此种方法成本较高,部分外加物质具有致病性,存在二次污染的风险(车轩等, 2007)。
此外,也可以利用固体碳源。如将天然黄铁矿(Chu et al, 2022; Xu et al, 2021)作为人工湿地底部基质促进硫自养反硝化的发生,或者利用高分子缓释碳源如聚已酸内酯(PCL)、聚乳酸(PLA)等(Wang et al, 2016; Xiong et al, 2019)。但是,基于黄铁矿的自养反硝化反应会产生硫酸盐副产物,而人工聚合物成本高, 难以实现广泛应用。近年来,农业废弃物因其来源广泛、价格低廉、其水解产生的糖类物质可以作为外部碳源利用,是人工湿地外加碳源的研究热点。Yuan等(2020)利用木屑作为人工湿地的基质进行填充,考察了木屑直接作为缓释碳源对合成废水的净化性能,其中TN的去除率稳定在61.94%~74.4%。但直接将植物碳源埋藏到基质内部会堵塞基质,且不易清理、难操作。将植物碳源单独放到一个分解池中进行预处理(酸处理、碱处理、辐射等),外加植物浸出液同样是一种解决方案(张旭等, 2021)。Li等(2019)探究了将玉米芯作为植物碳源在海水中的碳源释放量和将其应用于海水人工湿地的反硝化情况。实验表明,经NaOH处理后的玉米芯相比于未处理的玉米芯在海水中表现出更高的碳源释放量;但直接添加玉米芯会导致湿地出水COD较高,如果释放的碳源过多必然会影响人工湿地的硝化能力。而将经过预处理的玉米芯浸出液添加到人工湿地中与其直接放置到基质内部表现出相似的反硝化能力,且采用这种方式可以灵活控制碳源的投加量,进而找到最佳投量。
同时,人工湿地种植植物的凋落物也是湿地碳源之一,与农业废弃物相比体现了“原位处理,就地取材”的经济性。谭佩阳等(2022)对比了6种湿地植物的碳源释放量并进行了反硝化实验,发现美人蕉、香蒲、南荻(Miscanthus lutarioriparius)等挺水植物不但碳源释放量高,而且氮素释放量少,适合作为原位碳源添加材料。Gu等(2021)利用黄菖蒲(Iris pseudacorus L.)凋落物强化潜流人工湿地处理模拟低C/N城市污水处理厂尾水,发现人工湿地中添加黄菖蒲凋落物对氮的去除能力达到796.20~1 278.90 mg N/(m2·d1)。但以上研究是针对淡水人工湿地,淡水挺水植物由于耐盐性差,在海水人工湿地中难以很好生长,因此,对于海水人工湿地的原位植物固体碳源的种类和应用效果有待进一步研究。
5.2 溶解氧的调控溶解氧是影响人工湿地脱氮效能的一个关键因素,会直接影响硝化细菌和反硝化细菌的生长。研究表明,充足的氧可以通过促进硝化反应而增加NH4+-N的去除率,一般认为,当DO约为1.5 mg/L时,硝化作用就可以顺利进行(Vymazal, 2007; Ye et al, 2009)。但氧过量时去除率反而会有所下降(Li et al, 2014),同时,溶氧浓度过高会破坏反硝化反应需要的厌氧环境,从而降低TN去除效率并增加温室气体N2O的排放量(Fan et al, 2013)。此外,DO过高时还会影响有机碳的浓度,间接影响反硝化作用(Parde et al, 2021)。因此,为了实现高脱氮率,应保持交替的缺氧和有氧环境,而不是单一的有氧或厌氧环境。
对海水养殖水体来讲,为了保持养殖物的活性需要连续对其进行曝气,例如凡纳对虾养殖池需要保证7~8 mg/L的DO (刘洋等, 2020),海水养殖尾水通常也具有较高的DO。因此,在海水人工湿地供氧调控模式选择上,如果在湿地内部连续供氧则会导致DO过高,而采用间歇曝气则可以在湿地内部营造一种交替的好氧和缺氧环境,分别促进好氧硝化和缺氧反硝化作用。郭烨烨等(2014)研究表明,在水力停留时间为3 d的情况下,对NH4+-N、TN和COD的去除率较常规潜流人工湿地系统分别提高了74.1%、56.4%和18.1%。Feng等(2020)研究发现,保持每天2 h 1.0 L/min的间歇供氧可以达到人工湿地畜禽养殖废水处理的理想效果。此外,王艳艳等(2017)研究表明,潮汐式间歇进水可提高复合垂直流海水人工湿地系统对NH4+-N、NO3–-N和DIN的去除率,是一种有效的系统调控手段,且发现在实验范围内间歇12 h最为合理。
由此可见,精准调控人工湿地的供氧模式和供氧量,优化系统内部不同时空的溶氧分布,是未来人工湿地系统脱氮技术的发展趋势。但这些调控手段的作用对象是系统内的脱氮微生物,而目前针对海水人工湿地中脱氮菌群组成、分布和代谢活性的变化过程,及其对这些供氧调控手段的响应关系尚不清楚,更谈不上认识调控手段的作用机理。而且,海水人工湿地系统是否也存在可在溶解氧较高条件下完成反硝化过程的好氧反硝化菌及可直接实现短程硝化反硝化过程的厌氧氨氧化菌,如何改进供氧模式充分发挥这些菌的作用,都有待进一步探究。
5.3 水力条件参数的调控海水人工湿地的水力运行条件对其脱氮效果具有重要影响。水力负荷(HLR)过大,会导致湿地对污染物的截留能力降低,但过小的HLR则易使基质堵塞,脱氮能力也会下降(白雪原等, 2022)。水力停留时间(HRT)与人工湿地微生物群落的构建息息相关,湿地内部合适的氮循环微生物群落的形成需要较长的HRT,在人工湿地净化过程中,也需要保证微生物与水体之间充分的接触时间(Saeed et al, 2012)。但过高的HRT通常会使基质内部出现大面积的死水区,反而会降低人工湿地的去污性能,同时也会造成其占地面积大、资金投入高。贾军等(2021)对人工湿地处理海水牙鲆养殖尾水时发现,无机氮的去除率随着HLR的增加而降低,而随着HRT的增大,无机氮、磷酸盐、COD均会出现由增到降的转折点。在实验范围内,利用人工湿地系统处理牙鲆养殖尾水,HLR为20 m3/d、HRT为4.5 h时可实现DIN、
周林飞等(2021)研究发现,人工湿地的水力条件对植物的生长也具有显著影响,进而影响湿地植物的净化效率。其中,水深是影响湿地植物生长的主要的水力因素之一。王丹等(2010)研究了太湖湿地芦苇的生长状况与水深的关系,结果表明,芦苇的根冠比及密度与水深呈反比,芦苇的株高与水深呈正比。胡碧莹等(2017)对菖蒲和美人蕉等湿地常用的5种植物在不同水深下的TN去除效果进行了研究,发现在实验范围内水深40 cm处5种植物TN的净化效果普遍不如水深20 cm、10 cm处。海水人工湿地中耐盐植物的生长和脱氮效果与水深同样具有相关性,但是对于海水特殊环境下水深对耐盐植物的影响有待进一步研究。
6 总结与展望综上所述,人工湿地的基质、植物、微生物是其发挥功能的决定因素,水力运行参数是重要的影响因素,各因素间相互协同、相互制约,构成一个复杂的网络,在湿地构建和运行中需要统筹考虑多种因素,达到相互促进、和谐统一,才能保证人工湿地平稳、高效运行。
海水养殖尾水人工湿地处理系统的构建可以借鉴淡水人工湿地的最新研究结果和运行经验,但海水养殖尾水的高盐度和低C/N的特点决定了其特殊性要求,需要针对性地进行研究,今后可重点在以下几个方面深入研究:1. 海水对基质吸附和解析氨氮等营养盐的影响,具有缓释碳源或驱动自养反硝化功能基质的筛选和应用技术;2. 耐盐植物的营养盐吸收能力及其根系微生物群落结构和脱氮功能研究;3. 基质内脱氮微生物群落组成时空分布特征及功能基因代谢活性研究;4. 脱氮微生物代谢活性对间歇曝气、潮汐流等不同供氧调控模式的响应,以此为基础的最佳供氧模式、水力停留时间和水力负荷的研究等。
通过对上述理论和技术问题的深入研究,不仅可以揭示海水养殖尾水人工湿地处理系统中氮循环菌群组成及其动态演替规律、各功能基因活性的动态变化规律,而且能为今后海水养殖尾水处理系统运行工艺优化、脱氮效能提高和海洋脱氮生物资源开发利用提供理论依据,进而突破养殖尾水净化处理的技术瓶颈,提高人工湿地脱氮的综合能力,形成可广泛推广的海水净化技术,在推动海水养殖业可持续发展的同时,保护海洋生态环境,实现陆海统筹发展。
ALMEIDA A, RIBEIRO C, CARVALHO F, et al. Phytoremediation potential of Vetiveria zizanioides and Oryza sativa to nitrate and organic substance removal in vertical flow constructed wetland systems. Ecological Engineering, 2019, 138: 19-27 DOI:10.1016/j.ecoleng.2019.06.020 |
BAI X Y, JIANG H B, YANG T, et al. Efficiency and microbial characteristics of horizontal subsurface flow constructed wetland in treating tail water from urban sewage plant under different hydraulic loads. Environmental Ecology, 2022, 4(9): 108-114 [白雪原, 姜海波, 阳涛, 等. 不同水力负荷条件下水平潜流人工湿地处理城镇污水处理厂尾水的效率及微生物特征研究. 环境生态学, 2022, 4(9): 108-114] |
BURGIN A J, HAMILTON S K. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment, 2007, 5(2): 89-96 DOI:10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO;2 |
CAO S, WANG S, PENG Y, et al. Achieving partial denitrification with sludge fermentation liquid as carbon source: The effect of seeding sludge. Bioresource Technology, 2013, 149: 570-574 DOI:10.1016/j.biortech.2013.09.072 |
CHEN J, GAO M, ZHAO Y, et al. Nitrogen and sulfamethoxazole removal in a partially saturated vertical flow constructed wetland treating synthetic mariculture wastewater. Bioresource Technology, 2022, 358: 127401 DOI:10.1016/j.biortech.2022.127401 |
CHE X, WU J M, TAN H X, et al. Research progress of autotrophic denitrification and its application in recirculating aquaculture system. Fishery Modernization, 2007(1): 13-16 [车轩, 吴嘉敏, 谭洪新, 等. 自养反硝化研究进展及在循环水养殖系统中的应用. 渔业现代化, 2007(1): 13-16 DOI:10.3969/j.issn.1007-9580.2007.01.004] |
CHU Y, LIU W, TAN Q, et al. Vertical-flow constructed wetland based on pyrite intensification: Mixotrophic denitrification performance and mechanism. Bioresource Technology, 2022, 347: 126710 DOI:10.1016/j.biortech.2022.126710 |
COSTA E, PÉREZ J, KREFT J U. Why is metabolic labour divided in nitrification?. Trends in Microbiology, 2006, 14(5): 213-219 DOI:10.1016/j.tim.2006.03.006 |
HAUSHERR D, NIEDERDORFER R, BÜRGERMANN H, et al. Successful year-round mainstream partial nitritation anammox: Assessment of effluent quality, performance and N2O emissions. Water Research X, 2022, 16: 100145 DOI:10.1016/j.wroa.2022.100145 |
DE ROZARI P, GREENWAY M, EL HANANDEH A. Nitrogen removal from sewage and septage in constructed wetland mesocosms using sand media amended with biochar. Ecological Engineering, 2018, 111: 1-10 DOI:10.1016/j.ecoleng.2017.11.002 |
DENG C, HUANG L, LIANG Y, et al. Response of microbes to biochar strengthen nitrogen removal in subsurface flow constructed wetlands: Microbial community structure and metabolite characteristics. Science of the Total Environment, 2019, 694: 133687 DOI:10.1016/j.scitotenv.2019.133687 |
DENG S, LI D, YANG X, et al. Novel characteristics on micro- electrolysis mediated Fe(0)-oxidizing autotrophic denitrification with aeration: Efficiency, iron-compounds transformation, N2O and NO2– accumulation, and microbial characteristics. Chemical Engineering Journal, 2020, 387: 123409 DOI:10.1016/j.cej.2019.123409 |
DO MINH T, SONG J, DEB A, et al. Biochar based catalysts for the abatement of emerging pollutants: A review. Chemical Engineering Journal, 2020, 394: 124856 DOI:10.1016/j.cej.2020.124856 |
DU L, TRINH X, CHEN Q, et al. Enhancement of microbial nitrogen removal pathway by vegetation in integrated vertical- flow constructed wetlands (IVCWs) for treating reclaimed water. Bioresource Technology, 2018, 249: 644-651 DOI:10.1016/j.biortech.2017.10.074 |
FAN J, ZHANG B, ZHANG J, et al. Intermittent aeration strategy to enhance organics and nitrogen removal in subsurface flow constructed wetlands. Bioresource Technology, 2013, 141: 117-122 DOI:10.1016/j.biortech.2013.03.077 |
FENG L, LIU Y, ZHANG J, et al. Dynamic variation in nitrogen removal of constructed wetlands modified by biochar for treating secondary livestock effluent under varying oxygen supplying conditions. Journal of Environmental Management, 2020, 260 |
FU G, HUANG S L, GUO Z, et al. Effect of plant-based carbon sources on denitrifying microorganisms in a vertical flow constructed wetland. Bioresource Technology, 2017, 224: 214-221 DOI:10.1016/j.biortech.2016.11.007 |
FU G, ZHAO L, HUANG S L, et al. Isolation and identification of a salt-tolerant aerobic denitrifying bacterial strain and its application to saline wastewater treatment in constructed wetlands. Bioresource Technology, 2019, 290: 121725 DOI:10.1016/j.biortech.2019.121725 |
GAO F, YANG Z H, LI C, et al. Effect of saline aquaculture wastewater treatment by constructed mangrove wetland. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(17): 192-198 [高锋, 杨朝晖, 李晨, 等. 秋茄人工湿地净化循环海水养殖废水效果. 农业工程学报, 2012, 28(17): 192-198] |
GU X, CHEN D, WU F, et al. Recycled utilization of Iris pseudacorus in constructed wetlands: Litters self-consumption and nitrogen removal improvement. Chemosphere, 2021, 262: 127863 DOI:10.1016/j.chemosphere.2020.127863 |
GUO Y Y, YANG S Y, HUANG Y, et al. Effect of intermittent aeration on performance of nitrogen removal in domestic wastewater treatment by subsurface constructed wetlands. Chinese Jourmal of Environmental Engineering, 2014, 8(4): 1405-1409 [郭烨烨, 杨淑英, 黄莹, 等. 间歇曝气潜流人工湿地的污水脱氮效果. 环境工程学报, 2014, 8(4): 1405-1409] |
HARHANGI H R, LE ROY M, VAN ALEN T, et al. Hydrazine synthase, a unique phylomarker with which to study the presence and biodiversity of anammox bacteria. Applied and Environmental Microbiology, 2012, 78(3): 752-758 DOI:10.1128/AEM.07113-11 |
HU B Y, WANG H Y. Purification effects of wetland plants in reclaimed water under different hydraulic conditions. Journal of Anhui Agricultural Sciences, 2017, 45(8): 81-85 [胡碧莹, 王海洋. 湿地植物在不同水力条件下对中水的净化效果. 安徽农业科学, 2017, 45(8): 81-85] |
HU J N. Removal of nitrogen and phosphorus pollutant in aquaculture wastewater utilizing Suaeda salsa constructed wetlands and its underlying molecular mechanism. Master′s Thesis of Shandong University, 2018 [胡健楠. 盐地碱蓬人工湿地去除H海水养殖废水中氮磷污染物及其机制研究. 山东大学硕士研究生研究论文, 2018]
|
HUANG D, FU J, LI Z, et al. Inhibition of wastewater pollutants on the anammox process: A review. Science of the Total Environment, 2022, 803: 150009 DOI:10.1016/j.scitotenv.2021.150009 |
JI B, CHEN J, MEI J, et al. Roles of biochar media and oxygen supply strategies in treatment performance, greenhouse gas emissions, and bacterial community features of subsurface- flow constructed wetlands. Bioresource Technology, 2020, 302: 122890 DOI:10.1016/j.biortech.2020.122890 |
JIA J, CUI Z G, TANG X S, et al. Analysis of purification effects and influences of seawater constructed wetland under different hydraulic conditions. Fishery Modernization, 2021, 48(5): 26-35 [贾军, 崔正国, 唐小双, 等. 不同水力条件下海水人工湿地净化效果及其影响分析. 渔业现代化, 2021, 48(5): 26-35 DOI:10.3969/j.issn.1007-9580.2021.05.004] |
KITS K D, SEDLACEK C J, LEBEDEVA E V, et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature, 2017, 549(7671): 269-272 DOI:10.1038/nature23679 |
KÖNNEKE M, BERNHARD A E, DE LA TORRE J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 2005, 437(7058): 543-546 DOI:10.1038/nature03911 |
LI C, DONG Y, LEI Y, et al. Removal of low concentration nutrients in hydroponic wetlands integrated with zeolite and calcium silicate hydrate functional substrates. Ecological Engineering, 2015, 82: 442-450 DOI:10.1016/j.ecoleng.2015.05.003 |
LI F, LU L, ZHENG X, et al. Enhanced nitrogen removal in constructed wetlands: Effects of dissolved oxygen and step-feeding. Bioresource Technology, 2014, 169: 395-402 DOI:10.1016/j.biortech.2014.07.004 |
LI M, LIANG Z, CALLIER M D, et al. Nitrogen and organic matter removal and enzyme activities in constructed wetlands operated under different hydraulic operating regimes. Aquaculture, 2018a, 496: 247-254 DOI:10.1016/j.aquaculture.2018.06.016 |
LI M, LIANG Z, CALLIER M D, et al. Nutrients removal and substrate enzyme activities in vertical subsurface flow constructed wetlands for mariculture wastewater treatment: Effects of ammonia nitrogen loading rates and salinity levels. Marine Pollution Bulletin, 2018b, 131: 142-150 DOI:10.1016/j.marpolbul.2018.04.013 |
LI M, SUN L, SONG X. Adding maize cobs to vertical subsurface flow constructed wetlands treating marine recirculating aquaculture system effluents: Carbon releasing kinetics and intensified nitrogen removal. Bioresource Technology, 2019, 274: 267-271 DOI:10.1016/j.biortech.2018.09.054 |
LI Q F, LIU Q C, XU A L, et al. Screening of aerobic denitrifying bacteria based on loop-mediated isothermal amplification and denitrification performance. Biotechnology Bulletin, 2019, 35(9): 210-217 [李秋芬, 刘启臣, 徐爱玲, 等. 基于LAMP的好氧反硝化菌筛选及其反硝化性能. 生物技术通报, 2019, 35(9): 210-217] |
LIN S J, JI N J, LUO H. Recent progress in marine harmful algal bloom research. Oceanologia et Limnologia Sinica, 2019, 50(3): 495-510 [林森杰, 姬南京, 罗昊. 海洋有害藻华研究进展. 海洋与湖沼, 2019, 50(3): 495-510] |
LIU Y, SONG Z W, LI L Z, et al. Water purification by probiotic biofilms in shrimp culture systems. Journal of Hydroecology, 2020, 41(1): 92-99 [刘洋, 宋志文, 李凌志, 等. 微生态制剂-生物膜对虾养殖系统水质净化效果研究. 水生态学杂志, 2020, 41(1): 92-99] |
LUO S, PENG Y, LIU Y, et al. Research progress and prospects of complete ammonia oxidizing bacteria in wastewater treatment. Frontiers of Environmental Science and Engineering, 2022, 16(9): 123 DOI:10.1007/s11783-022-1555-2 |
LYMBERY A J, KAY G D, DOUPÉ R G, et al. The potential of a salt-tolerant plant (Distichlis spicata cv. Nypa forage) to treat effluent from inland saline aquaculture and provide livestock feed on salt-affected farmland. Science of the Total Environment, 2013, 445/446: 192-201 DOI:10.1016/j.scitotenv.2012.12.058 |
MA X, LI X, LI J, et al. Iron-carbon could enhance nitrogen removal in sesuvium portulacastrum constructed wetlands for treating mariculture effluents. Bioresource Technology, 2021, 325: 124602 DOI:10.1016/j.biortech.2020.124602 |
MAIXNER F, NOGUERA D R, ANNESER B, et al. Nitrite concentration influences the population structure of Nitrospira-like bacteria. Environmental Microbiology, 2006, 8(8): 1487-1495 |
MENG J, LI J, LI J, et al. Nitrogen removal from low COD/TN ratio manure-free piggery wastewater within an upflow microaerobic sludge reactor. Bioresource Technology, 2015, 198: 884-890 |
MIAO R Z, WANG J F, CHEN J Q, et al. Denitrification efficiency and impact factors of a hydrogen-based membrane biofilm reactor. Chinese Journal of Environmental Engineering, 2022, 16(7): 2425-2435 [缪润珠, 王建芳, 陈佳琦, 等. H2-MBfR反硝化效能及影响因素. 环境工程学报, 2022, 16(7): 2425-2435] |
ORELLANA L H, CHEE-SANFORD J C, SANFORD R A, et al. Year-round shotgun metagenomes reveal stable microbial communities in agricultural soils and novel ammonia oxidizers responding to fertilization. Applied and Environmental Microbiology, 2018, 84(2): e01646-17 |
PAN Z, ZHOU J, LIN Z, et al. Effects of cod/tn ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification- aerobic denitrification process. Bioresource Technology, 2020, 301: 122726 DOI:10.1016/j.biortech.2019.122726 |
PANG Y, WANG J. Various electron donors for biological nitrate removal: A review. Science of the Total Environment, 2021, 794: 148699 DOI:10.1016/j.scitotenv.2021.148699 |
PAPASPYROU S, SMITH C J, DONG L F, et al. Nitrate reduction functional genes and nitrate reduction potentials persist in deeper estuarine sediments. Why? PLoS One, 2014, 9(4): e94111 DOI:10.1371/journal.pone.0094111 |
PARDE D, PATWA A, SHUKLA A, et al. A review of constructed wetland on type, treatment and technology of wastewater. Environmental Technology and Innovation, 2021, 21: 101261 DOI:10.1016/j.eti.2020.101261 |
SAEED T, SUN G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. Journal of Environmental Management, 2012, 112: 429-448 DOI:10.1016/j.jenvman.2012.08.011 |
SHI Y, ZHANG G, LIU J, et al. Performance of a constructed wetland in treating brackish wastewater from commercial recirculating and super-intensive shrimp growout systems. Bioresource Technology, 2011, 102(20): 9416-9424 DOI:10.1016/j.biortech.2011.07.058 |
SHRUTHI R, SHIVASHANKARA G P. Investigation on the performance evaluation of vertical subsurface flow constructed wetland for the treatment of rural wastewater. Water science and Technology, 2021, 85(1): 16-26 |
SONG S, WANG P, LIU Y, et al. Effects of Oenanthe javanica on nitrogen removal in free-water surface constructed wetlands under low-temperature conditions. International Journal of Environmental Research and Public Health, 2019, 16(8): 1420 DOI:10.3390/ijerph16081420 |
SUN G, LIU Y, QIU D, et al. Effects of feeding rate and frequency on growth performance, digestion and nutrients balances of Atlantic salmon (Salmo salar) in recirculating aquaculture systems (RAS). Aquaculture Research, 2016, 47(1): 176-188 DOI:10.1111/are.12480 |
SUN H, XU S, WU S, et al. Enhancement of facultative anaerobic denitrifying communities by oxygen release from roots of the macrophyte in constructed wetlands. Journal of Environmental Management, 2019, 246: 157-163 |
TAKEKAWA M, PARK G, SODA S, et al. Simultaneous anammox and denitrification (SAD) process in sequencing batch reactors. Bioresource Technology, 2014, 174: 159-166 DOI:10.1016/j.biortech.2014.10.021 |
TAN P Y, HOU Z Y, XIE Y H, et al. Dynamics of nutrient release from solid carbon sources of wetland plants and its effect on the efficiency of nitrogen removal from artificial wetland water bodies. Journal of Lake Sciences, 2022, 34(5): 1562-1569 [谭佩阳, 侯志勇, 谢永宏, 等. 湿地植物固体碳源养分释放动态及其对人工湿地水体脱氮效率的影响. 湖泊科学, 2022, 34(5): 1562-1569] |
TANG S, LIAO Y, XU Y, et al. Microbial coupling mechanisms of nitrogen removal in constructed wetlands: A review. Bioresource Technology, 2020, 314: 123759 DOI:10.1016/j.biortech.2020.123759 |
TANG X S, ZHANG K K, JIA J, et al. Purification characteristics of constructed wetland under different hydraulic loads after treatment of marine aquaculture tailwater. Progress in Fishery Sciences, 2021, 42(5): 16-23 [唐小双, 张可可, 贾军, 等. 不同水力负荷下人工湿地对海水养殖尾水污染物的净化特征. 渔业科学进展, 2021, 42(5): 16-23] |
TAO L, ZHAO W X, WU S X, et al. Research on salt-tolerant emergent macrophytes selection in artificial wetlands. Sichuan Environment, 2015, 34(4): 105-109 [陶磊, 赵文喜, 吴思璇, 等. 人工湿地耐盐挺水植物筛选研究. 四川环境, 2015, 34(4): 105-109] |
VALIPOUR A, RAMAN V K, AHN Y H. Effectiveness of domestic wastewater treatment using a bio-hedge water hyacinth wetland system. Water, 2015, 7(1): 329-347 |
VAN KESSEL M, SPETH D R, ALBERTSEN M, et al. Complete nitrification by a single microorganism. Nature, 2015, 528(7583): 555-559 DOI:10.1038/nature16459 |
VYMAZAL J. Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 2007, 380(1): 48-65 |
WANG D, ZHANG Y L, PANG B, et al. Study on dynamic characteristics between the biomass of phragmites communis and water depth at Taihu wetland in Suzhou. Environmental Pollution and Control, 2010, 32(7): 49-54 [王丹, 张银龙, 庞博, 等. 苏州太湖湿地芦苇生物量与水深的动态特征研究. 环境污染与防治, 2010, 32(7): 49-54] |
WANG J, CHU L. Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnology Advances, 2016, 34(6): 1103-1112 |
WANG Q Y, LIU H, SUI J. Mariculture: Developments, present status and prospects. Aquaculture in China, 2018, 38-54 |
WANG Y Y, CUI Z G, QU K M, et al. Research on nitrogen removal rate of marine aquaculture wastewater by the integrated vertical-flow constructed wetlands. Technology of Water Treatment, 2017, 43(3): 95-100 [王艳艳, 崔正国, 曲克明, 等. 复合垂直流人工湿地对海水养殖外排水脱氮效率的研究. 水处理技术, 2017, 43(3): 95-100] |
WANG Y Y, ZHU H, YAN B X, et al. Response of the microbial community to salt stress and its stratified effect in constructed wetlands. Enrironmental Science and Pollution Research, 2021, 28: 18089-18101 |
WEBB J M, QUINTÃ R, PAPADIMITRIOU S, et al. Halophyte filter beds for treatment of saline wastewater from aquaculture. Water Research, 2012, 46(16): 5102-5114 |
WEI W, TONG J, HU B X. Study on ecological dynamic model for phytoremediation of farmland drainage water. Journal of Hydrology, 2019, 578: 124026 |
WELSH A, CHEE-SANFORD J C, CONNOR L M, et al. Refined NrfA phylogeny improves pcr-based nrfA gene detection. Applied and Environmental Microbiology, 2014, 80: 2110-2119 |
WU H, WANG X, HE X, et al. Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland. Science of the Total Environment, 2017, 598: 697-703 |
WU J Z, WANG Y Y, LI Y Y, et al. Enzyme activity in constructed marine wetlands. Marine Sciences, 2019, 43(5): 36-44 [吴俊泽, 王艳艳, 李悦悦, 等. 海水人工湿地系统脱氮效果与基质酶活性的相关性. 海洋科学, 2019, 43(5): 36-44] |
XIONG R, YU X, YU L, et al. Biological denitrification using polycaprolactone-peanut shell as slow-release carbon source treating drainage of municipal WWTP. Chemosphere, 2019, 235: 434-439 |
XU Z, QIAO W, SONG X, et al. Pathways regulating the enhanced nitrogen removal in a pyrite based vertical-flow constructed wetland. Bioresource Technology, 2021, 325: 124705 |
YANG Y, CHEN T, MORRISON L, et al. Nanostructured pyrrhotite supports autotrophic denitrification for simultaneous nitrogen and phosphorus removal from secondary effluents. Chemical Engineering Journal, 2017, 328: 511-518 |
YANG Y, PAN J, ZHOU Z, et al. Complex microbial nitrogen- cycling networks in three distinct anammox-inoculated wastewater treatment systems. Water Research, 2020, 168: 115142 |
YANG Y, ZHAO Y, LIU R, et al. Global development of various emerged substrates utilized in constructed wetlands. Bioresource Technology, 2018, 261: 441-452 |
YAZDANI V, ALIZADEH GOLESTANI H. Advanced treatment of dairy industrial wastewater using vertical flow constructed wetlands. Desalination and Water Treatment, 2019, 162: 149-155 |
YE F, LI Y. Enhancement of nitrogen removal in towery hybrid constructed wetland to treat domestic wastewater for small rural communities. Ecological Engineering, 2009, 35(7): 1043-1050 |
YUAN C, ZHAO F, ZHAO X, et al. Woodchips as sustained- release carbon source to enhance the nitrogen transformation of low C/N wastewater in a baffle subsurface flow constructed wetland. Chemical Engineering Journal, 2020, 392: 124840 |
ZHANG H G, CUI Z G, MA S S, et al. Experimental research on influence factors and effect of mari-culture effluent purified by artificial wetland. Marine Environmental Science, 2012, 31(1): 20–24, 52 [张海耿, 崔正国, 马绍赛, 等. 人工湿地净化海水养殖外排水影响因素与效果实验研究. 海洋环境科学, 2012, 31(1): 20–24, 52] |
ZHANG K K, CUI Z G, LI Y Y, et al. Analysis of nitrogen degradation dynamics and its influencing factors in seawater constructed wetland. Fishery Modernization, 2020, 47(4): 44-52 [张可可, 崔正国, 李悦悦, 等. 海水人工湿地氮降解动力学模拟及其影响因素分析. 渔业现代化, 2020, 47(4): 44-52] |
ZHANG X, LIU J, XU B. Application of plant carbon source to improve nitrogen removal in constructed wetlands. Environmental Protection Science, 2021, 47(2): 118-121 [张旭, 刘佳, 许兵. 利用植物碳源提高人工湿地脱氮效果的应用研究. 环境保护科学, 2021, 47(2): 118-121] |
ZHANG C Y, CHEN F, GUO X Y, et al. Influencing factors of constructed wetland and research prospect for mariculture wastewater treatment. Journal of Dalian Ocean University, 2023, 38(5): 902-912 [张翠雅, 陈锋, 国显勇, 等. 人工湿地净化海水养殖尾水的影响因素探析及展望. 大连海洋大学学报, 2023, 38(5): 902-912] |
ZHAO K X, YIN Z D, ZHANG K K, et al. Comparison of microbial community characteristics in plant rhizosphere and other substrates in an integrated vertical flow constructed wetland. Journal of Fishery Sciences of China, 2022, 29(6): 874-889 [赵可歆, 尹振东, 张可可, 等. 复合垂直流人工湿地植物与基质层微生物群落特征比较分析. 中国水产科学, 2022, 29(6): 874-889] |
ZHAO Q, ZHUANG L L, SHENG Q, et al. Role and design principles of substrate for wasewater purification in subsurface flow constructed wetland. Environmental Engineering, 2021, 39(9): 14-22 [赵倩, 庄林岚, 盛芹, 等. 潜流人工湿地中基质在污水净化中的作用机制与选择原理. 环境工程, 2021, 39(9): 14-22] |
ZHAO Z, HUANG G, HE S, et al. Abundance and community composition of comammox bacteria in different ecosystems by a universal primer set. Science of the Total Environment, 2019, 691: 146-155 |
ZHENG B B, WU Y W, LI Y H, et al. Effect of different C/N ratio on nitrogen removal of mariculture wastewater. Research of Environmental Sciences, 2020, 33(8): 1848-1856 [郑冰冰, 吴怡伟, 李云辉, 等. 不同碳氮比对海水养殖废水脱氮效果的影响. 环境科学研究, 2020, 33(8): 1848-1856] |
ZHOU L F, KANG S Y, ZHANG J. Effects of different water depths on growth states of Typha orientalis Presl, water quality and sediment physical and chemical properties. Journal of Jilin University (Earth Science), 2021, 51(1): 231-239 [周林飞, 康思宇, 张静. 不同淹水深度对香蒲生长状况、水质及底泥理化性质的影响. 吉林大学学报(地球科学版), 2021, 51(1): 231-239] |
ZHOU S, ZHAO R, LI Q, et al. Influent salinity affects substrate selection in surface flow constructed wetlands. Environmental Science and Pollution Research, 2021, 28(44): 62235-62245 |
ZHOU X, WANG R, LIU H, et al. Nitrogen removal responses to biochar addition in intermittent-aerated subsurface flow constructed wetland microcosms: Enhancing role and mechanism. Ecological Engineering, 2019, 128: 57-65 |
ZHOU X, WANG X, ZHANG H, et al. Enhanced nitrogen removal of low C/N domestic wastewater using a biochar- amended aerated vertical flow constructed wetland. Bioresource Technology, 2017, 241: 269-275 |
ZYDOWICZ SOUSA W T, NEVES PANITZ C M, THOMAZ S M. Performance of pilot-scale vertical flow constructed wetlands with and without the emergent macrophyte Spartina alterniflora treating mariculture effluent. Brazilian Archives of Biology and Technology, 2011, 54(2): 405-413 |