2. 中国水产科学研究院黄海水产研究所青岛海洋科技中心海洋渔业科学与食物产出过程功能实验室 农业农村部海水养殖病害防治重点实验室青岛市海水养殖流行病学与生物安保重点实验室 山东 青岛 266071
2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China
对虾传染性皮下和造血组织坏死病(infectious hypodermal and haematopoietic necrosis, IHHN)也称慢性矮小畸形综合症(runt-deformity syndrome, RDS) (Kalagayan et al, 1991),是虾类重要疾病之一,严重危害世界对虾养殖业。被世界动物卫生组织(World Organization for Animal Health, WOAH)列为须向其申报的甲壳类动物疫病(WOAH, 2023)。该病病原为对虾传染性皮下和造血组织坏死病毒(IHHNV),1981年在美国夏威夷地区首次被发现(Lightner et al, 1983),随后传播至澳大利亚、新加坡、马来西亚、韩国、巴西和中国等全球多个国家和地区(Saksmerprome et al, 2010; Kim et al, 2011; Yang et al, 2007)。IHHNV属于细小病毒科(Parvoviridae),是目前发现对虾病毒中最小的病毒,单链DNA,无囊膜,病毒粒子大小约为20~22 nm (Bonami et al, 1990)。细角滨对虾(Litopenaeus stylirostris)感染IHHNV后可导致其90%的死亡率(Lightner et al, 1983),凡纳对虾(Penaeus vannamei)感染该病原后不会导致较高死亡率,但会引起幼虾生长缓慢、畸形,造成较大的经济损失,在缺乏有效的防治措施防控IHHNV感染的情况下,早检测早预防显得尤为重要。
IHHNV检测方法包括组织病理学法、普通PCR方法、实时荧光定量PCR (RT-qPCR)检测法、测序法、原位杂交法、环介导等温扩增技术(LAMP)和生物指示法等(Bell et al, 1988; Lightner, 1996; Tang et al, 2007; Arunrut et al, 2011; Sun et al, 2006; Tang et al, 2006; Mari, 1993; Tang, 2000)。目前,较为广泛使用的分子生物学方法为WOAH推荐的IHHNV普通PCR方法和RT-qPCR检测法。在分子生物学检测方法中,病毒的核酸提取质量直接影响检测的准确度,因此,为提高样品质量,通常选用冰冻、冰鲜、乙醇或其他核酸保存试剂保护病毒核酸(杜迎彬等, 2013; 陈大菾等, 2015)。但低温保存条件和保存溶液的成分限制了产业调研和生物样品的长途运输,尤其给跨境跨区域传递带来一定困难,为此探寻一种高效便捷的病毒核酸保存技术有助于水产养殖疾病病原的检测。
FTA (flinders technology associates)卡是一种用于快速收集、储存各种遗传物质的介质(Rajendram et al, 2006),可以方便、快捷地保存核酸并达到远距离运输样品的目的。FTA卡是英国Whatman公司的专利产品,该卡片用于在室温条件下采集、储存和运输组织、核酸等样品,并可直接提取核酸进行检测,FTA卡通过邮寄方式常温寄送且无需作为危险及特殊物品处理。经化学处理的FTA卡作为核酸载体,具有许多优点,FTA卡不仅对核酸的吸附性好,能使核酸紧密附着在卡片上,还能使核酸免于紫外线的降解,且抑制真菌的生长。研究发现,DNA固定在卡片上,可常温保存十几年,因此,应用FTA卡存储生物样品DNA受到广泛重视(Corradini et al, 2019; Smith et al, 2004),并在医学及微生物相关等多个领域进行了研究与应用(贾霄等, 2020; Shalaby et al, 2020; 毛乃颖等, 2015; 李伟昊等, 2009)。毛乃颖等(2015)研究显示,FTA卡常温运输麻疹病毒(measlesvirus, MV)会导致病毒滴度降低,但不影响病毒的检测效果。
FTA卡已在人类和动物医学等领域得到广泛应用(赵兴春等, 2012; 陶晓岚等, 2014; 刘亚举等, 2012; 聂同钢等, 2009; 王新杰等, 2012; 刘建兴等, 2014),并成功用于家畜病原及病毒核酸的存储运输(蔡颖等, 2008; Picard-Meyer et al, 2007; Perozo et al, 2006; Muthukrishnan et al, 2008; Maldonado et al, 2009; Inoue et al, 2007)。在水产动物方面,已有研究者将FTA卡用于保存白斑综合征病毒(white spot syndrome virus, WSSV)、虾肝肠胞虫(Enterocytozoon hepatopenaei, EHP)等(Sudhakaran et al, 2010; Patil et al, 2013; Karthikeyan et al, 2020),但尚未有对其所保存DNA洗脱效果的相关研究报道,限制了FTA卡的应用。
FTA卡用于保存感染病原的生物组织需要经过洗脱环节,以便游离出病原的DNA成分,为探讨FTA卡作为IHHNV核酸载体的应用效果,本研究设计7种FTA卡的洗脱方案,通过RT-qPCR方法检测其黏附IHHNV核酸的洗脱效果,并选用对虾病原WSSV、EHP、虾十足目虹彩病毒(Decapod iridescent virus 1, DIV1)、偷死野田村病毒(covert mortality noda virus, CMNV)、致急性肝胰腺坏死副溶血弧菌(Vibrio parahaemolyticus, VpAHPND)为实验材料,测试本方法用于其他虾类病原保存及洗脱的效果,以期为建立一种简易的DNA保存方法提供技术支撑。
1 材料与方法 1.1 样本来源及核酸提取IHHNV DNA样品制备:阳性样品为本实验室保存,采自山东省潍坊地区感染IHHNV的凡纳对虾;阴性样品为采集于江苏赣榆地区的中国对虾(Penaeus chinensis)。分别取IHHNV阳性和阴性的对虾鳃组织30 g,使用海洋动物组织基因组DNA提取试剂盒(天根生化科技有限公司)提取DNA,提取方法参考试剂盒说明书。
WSSV、VpAHPND、EHP、DIV1和CMNV核酸样品均为本实验室提取保存。
FTA卡购自GE Healthcare UK Limited,TE缓冲液(10 mmol/L Tris-HCl,1 mmol/L EDTA,pH=8.0)购自天根生化科技有限公司,FTA纯化试剂购自上海金畔生物科技有限公司。
1.2 IHHNV DNA浓度梯度液制备及最佳点膜浓度的确定将IHHNV DNA提取液进行10–1、10–2、10–3、10–4、10–5、10–6、10–7倍梯度稀释,各稀释梯度用涡旋振荡充分混匀,应用RT-qPCR方法测定病毒载量,根据检测结果选择合适的梯度,用作FTA卡膜片点样目标核酸。
1.3 点样将China FTATM Card (WhatmanTM,英国)剪成边长为2 mm的正方形膜片,将膜片置于平皿中,分别在各膜片上点各梯度浓度的IHHNV DNA,每片点样2.5 μL,设置阴性膜片(点阴性样品),膜片点样后室温晾干1 d。同时,对虾类其他病原(WSSV、VpAHPND、EHP、DIV1、CMNV)一并点样,处理方法相同,每个浓度设置3个平行。
1.4 洗脱方案根据不同的洗脱液配方,共设计7种洗脱方案,具体方法如表 1所示。方案1:室温条件下,先用FTA纯化试剂洗脱3次,再用TE缓冲液洗脱2次,每次均为5 min;方案2:室温条件下,先用FTA纯化试剂洗脱1次,再用TE缓冲液洗脱1次,每次均为5 min;方案3和方案4均只用TE缓冲液洗脱1次,洗脱时间均为5 min;方案5:只用去离子水洗脱2次,每次均为5 min;方案6:只用去离子水洗脱1次,洗脱时间为30 min;方案7:只用FTA纯化试剂洗脱1次,洗脱时间为2 min。所有方案室温条件下洗脱均为浸泡,95 ℃洗脱方式为PCR仪加热,其中方案1、5和7最后一次洗脱液洗脱后的膜片均在室温下干燥1 h,剩余方案洗脱后的膜片无需处理。IHHNV DNA的每种方案的洗脱液和膜片均留待检测,并设置1组未经洗脱而直接用于各个稀释梯度的膜片进行RT-qPCR检测。
RT-qPCR检测IHHNV、WSSV、EHP、VpAHPND、DIV1和CMNV等6种病原的核酸,引物探针、体系和程序等信息见表 2。
引物和TaqMan探针由生工生物工程(上海)股份有限公司合成。PCR反应体系:Luna Universal Probe qPCR Mix 10 μL,10 μmol/L的上下游引物各0.8 μL,10 μmol/L的探针0.4 μL,无核酸酶水7 μL,DNA模板1 μL,总体积20 μL。IHHNV反应程序:预变性95 ℃ 5 min,变性95 ℃ 15 s,延伸60 ℃ 30 s,共40个循环。EHP、VpAHPND、DIV1和WSSV反应程序:预变性95 ℃ 5 min,变性95 ℃ 15 s,延伸60 ℃ 20 s,共40个循环。CMNV反应程序:反转录55 ℃ 15 min,预变性95 ℃ 5 min,变性95 ℃ 15 s,延伸60 ℃ 20 s,共40个循环。
1.6 不同洗脱方案洗脱液中IHHNV DNA溶出情况RT-qPCR检测7种方案洗脱过程中洗脱液中IHHNV DNA的病毒载量,观察不同洗脱方法洗脱过程中各洗脱阶段IHHNV DNA的溶出情况。选择稀释梯度为10–1的膜片用7种洗脱方案进行洗脱,检测各个阶段洗脱液中IHHNV DNA病毒载量,验证不同洗脱方案各个洗脱阶段是否有核酸溶出。
1.7 FTA卡保存IHHNV最佳洗脱条件的确定根据RT-qPCR检测7种方案最后一次洗脱液和最后一次洗脱后的膜片中IHHNV DNA的病毒载量,结合检出率等综合分析FTA卡保存IHHNV最佳洗脱条件。
1.8 FTA卡洗脱效果验证根据IHHNV FTA卡洗脱方案结果,选取最优的方案,验证所建立方法在WSSV、VpAHPND、EHP、DIV1和CMNV等5种病原上的应用效果。WSSV、VpAHPND、EHP、DIV1和CMNV在核酸未点膜前的RT-qPCR检测病毒载量分别为6.40×107、1.41×106、2.39×105、1.94×106和4.22×106 copies/μL。测试选择方案1和4。方案1检测最后一次洗脱后的膜片,方案4检测最后一次洗脱液。
2 结果 2.1 IHHNV DNA最佳点膜浓度的确定为确定最佳点膜浓度,采用RT-qPCR方法检测不同稀释梯度的IHHNV含量,结果显示,原液病毒拷贝数为2.75×106 copies/μL,溶液每稀释10倍,拷贝数降低1个数量级,稀释到10–4病毒拷贝数为1.78×102 copies/μL,稀释到10–5~10–7数量级时检测不出病毒拷贝数。根据结果选择原液及稀释梯度10–1、10–2、10–3和10–4用作FTA卡膜片点样核酸目标样品。
2.2 不同洗脱方案洗脱液中IHHNV DNA溶出情况检测7种方案洗脱过程中洗脱液中的IHHNV核酸溶出情况,结果见表 3。由表 3可知,每种方案洗脱过程中的洗脱液均检测出病毒拷贝数,方案1中FTA纯化试剂3次洗脱病毒拷贝数相差不大,TE缓冲液2次洗脱病毒拷贝数相差略大于FTA纯化试剂洗脱,但二者洗脱后病毒拷贝数总体相差不大;方案2中,TE缓冲液洗脱后的病毒拷贝数略高于FTA卡纯化试剂洗脱后的病毒拷贝数;方案5中,灭菌去离子水2次洗脱后,病毒拷贝数相差不大;方案4和方案6洗脱后病毒拷贝数比其他5种方案洗脱后病毒拷贝数高1个数量级,且方案4拷贝数略高于方案6。表明,FTA卡在不同的洗脱过程中均存在核酸的溶出。
将7种方案的各稀释梯度膜片最后一次洗脱液和膜片中的IHHNV DNA进行RT-qPCR检测,洗脱液检测结果如表 4所示,病毒原液经过104倍稀释后进行点膜,各膜片组的洗脱液中检测不到病毒,而10–3稀释组中病毒核酸检出最高浓度组为洗脱方案5,检测值为(15.9±3.40)×102 copies/μL,最接近初始点样液浓度,即灵敏度最高;最低组为洗脱方案2,检测值为(2.45±0.53)×102 copies/μL,即灵敏度最低。分析该稀释度下的洗脱组的病毒阳性检出率(表 5),由表 5可知,该稀释浓度条件下病毒阳性检出率最高的组为方案2、4、6,均为55.56%,其他各洗脱方案的检出率均低于45%,表明,点膜的核酸浓度在10–3稀释组(浓度1.82×103 copies/μL),各方案的准确度均较低。
病毒原液经过102倍稀释后,病毒核酸检出最高浓度组为洗脱方案4,检测值为(4.02±0.50)×103 copies/μL,最接近初始点样液浓度,即灵敏度最高;最低组为洗脱方案1,检测值为(0.93±0.11)×103 copies/μL,即灵敏度最低。分析该稀释度下的洗脱组的病毒阳性检出率(表 5),由表 5可知,该稀释浓度条件下病毒阳性检出率最高的组为洗脱方案2和4,均为100.00%,其他各洗脱方案的检出率均低于88.89%。综上可知,按照洗脱方案4进行膜洗脱,采用洗脱液为模板进行检测,可获得较高的灵敏度和准确度。综上,采用FTA卡作为IHHNV DNA载体,适宜的点膜浓度在1.47×104 copies/μL以上。
若以膜片为模板,仅有洗脱方案1能获得检测结果,其他方案的膜片均无病毒数检出(见表 6),且各稀释梯度组的检出率均为100%。表明,若采用膜片为IHHNV病毒检测模板,最佳的洗脱方案为方案1。该方案下,点膜的DNA浓度达到1.82×103 copies/μL即可检出。
根据FTA卡保存IHHNV DNA 7种洗脱方案的结果,选择最佳的方案1和4来验证WSSV、DIV1、CMNV、VpAHPND和EHP DNA的保存效果。结果显示,5种核酸均为方案1病毒拷贝数略高于方案4,核酸(除EHP外)均为洗脱后拷贝数比未点膜前原液拷贝数低1个数量级,EHP为低2个数量级。由于5种核酸未点膜前的原液拷贝数数量级高于104,因此,结果与IHHNV洗脱结果一致,则表明选出的最优方案适用于其他病毒。5种核酸2种方案的洗脱结果见表 7。
FTA卡固定核酸具有诸多优点,在核酸回收方面也具有较大的优势。Karthikeyan等(2020)比较了FTA-DNA的回收法、试剂盒法DNA提取方法(DNeasy® Blood & Tissue)和盐酸胍法,通过半定量PCR分析DNA提取率,发现FTA卡DNA回收极限为10–4,试剂盒法为10–2,盐酸胍法为10–3,可以看出,FTA卡提取法回收DNA效果最佳;Sudhakaran (2010)使用FTA卡从垂死虾血淋巴的10倍稀释液中制备DNA样品,通过半定量和定量PCR分析,获得了良好的实验结果。本研究将IHHNV DNA吸附于FTA卡上,利用RT-qPCR方法检测洗脱后的洗脱液及膜片,同时进行其他5种虾类病原(DIV1、CMNV、WSSV、VpAHPND和EHP)核酸的实验验证,证明了FTA卡在保存甲壳类病原方面具有广泛的应用空间。
目前,对FTA卡的应用研究多见于其保存和运输组织样品的核酸效果,对保存样品量、分离方法与检出效果的关系研究报道较少。本研究显示,由方案1和2的各洗脱液体积及洗脱次数不同可得出,洗脱液的体积和洗脱次数会影响检出结果;由方案3和4的温度差异可得出,洗脱的温度会影响检出结果;由方案5和7洗脱液的不同可得出,洗脱液的种类也会影响检出结果。因此,FTA卡用于虾病原核酸保存,不仅对样品的核酸量有要求,不同的膜片洗脱方法也直接影响样品的检出结果。本研究结果显示,在膜面积及点样体积一定的条件下,膜片上的核酸浓度高于104 copies/μL,PCR检测可获得理想的灵敏度及检测准确度;在膜片的后处理中,洗脱是重要的环节之一,用未经洗脱的膜片做模板得不到理想的病原核酸扩增效果,因为FTA卡上含有的蛋白变性剂及核酸吸附剂阻碍核酸的溶出,而洗脱剂的种类、洗脱的温度和时间也直接影响检测结果。本研究还表明,膜片经FTA纯化试剂、TE缓冲液及去离子水洗脱,各阶段均有目标核酸的溶出,导致膜片中核酸载量的降低,进而影响模板效果,同时,发现溶解有核酸的洗脱液可以作为模板进行PCR检测,可以弥补FTA卡作为模板在检测中带来的不足。
常规保存运输病毒DNA的方法在跨区域跨境运输过程中因保存介质和运输条件的限制会对检测结果造成不同程度的影响,且用于保存DNA的乙醇和甲醛等有机物作为保存溶液的成分在交通运输中是被严格禁止的,制约了实验室间国内及国际生物样品传递和交流,FTA卡保存DNA可以在常温下进行运输,寄送方便,是一种方便、快捷、可靠的保存运输方式。FTA卡保存运输组织样品可以为野外采样提供更便利的途径,具有更广泛的应用价值。FTA卡保存感染IHHNV生物组织样品的时效性及保存温度、湿度等条件对保存效果的影响有待后续的深入研究。
ARUNRUT N, PROMBUN P, SAKSMERPROME V, et al. Rapid and sensitive detection of infectious hypodermal and hematopoietic necrosis virus by loop-mediated isothermal amplification combined with a lateral flow dipstick. Journal of Virological Methods, 2011, 171(1): 21-25 DOI:10.1016/j.jviromet.2010.09.022 |
BELL T A, LIGHTNER D V. A handbook of normal penaeid shrimp histology. World Aquaculture Society, 1988
|
BONAMI J R, TRUMPER B, MARI J, et al. Purification and characterization of the infectious hypodermal and haematopoietic necrosis virus of penaeid shrimps. Journal of General Virology, 1990, 71(11): 2657-2664 DOI:10.1099/0022-1317-71-11-2657 |
CAI Y, LU C Y, XIANG D P, et al. Identification of Listeria monocytogenes by FTA card-16S rRNA sequencing method. Chinese Journal of Public Health, 2008, 24(10): 1276-1277 [蔡颖, 卢次勇, 相大鹏, 等. 李斯特菌FTA卡-16S rRNA测序法鉴定. 中国公共卫生, 2008, 24(10): 1276-1277] |
CHEN D T, HUANG J, WANG H L, et al. Selection and optimization of simple and convenient sample solutions for shrimp tissue preservation at normal temperature. Progress in Fishery Sciences, 2015, 36(5): 71-80 [陈大菾, 黄倢, 王海亮, 等. 凡纳滨对虾(Litopenaeus vannamei)组织样品常温保存液的筛选和优化. 渔业科学进展, 2015, 36(5): 71-80] |
CORRADINI B, ALÙ M, MAGNANINI E, et al. The importance of forensic storage support: DNA quality from 11-year-old saliva on FTA cards. International Journal of Legal Medicine, 2019, 133(6): 1743-1750 DOI:10.1007/s00414-019-02146-6 |
DU Y B, WANG Z J, YANG B, et al. Ammonium preservation of shrimp tissue RNA at normal temperature and its effects. Progress in Fishery Sciences, 2013, 34(3): 88-96 [杜迎彬, 王志杰, 杨冰, 等. 对虾组织样品中RNA的铵盐常温保存法及其效果. 渔业科学进展, 2013, 34(3): 88-96] |
INOUE R, TSUKAHARA T, SUNABA C, et al. Simple and rapid detection of the porcine reproductive and respiratory syndrome virus from pig whole blood using filter paper. Journal of Virological Methods, 2007, 141(1): 102-106 DOI:10.1016/j.jviromet.2006.11.030 |
JIA X, CAO D, WANG W W, et al. Collection and preservation of costicartilage tissue with FTA card at room temperature. Forensic Science and Technology, 2020, 45(5): 503-506 [贾霄, 曹丹, 王文雯, 等. FTA卡采集和常温保存肋软骨组织的方法. 刑事技术, 2020, 45(5): 503-506] |
KALAGAYAN H, GODIN D, KANNA R, et al. IHHN virus as an etiological factor in runt-deformity syndrome (RDS) of juvenile Penaeus vannamei cultured in Hawaii. Journal of the World Aquaculture Society, 1991, 22(4): 235-243 DOI:10.1111/j.1749-7345.1991.tb00740.x |
KARTHIKEYAN K, SARANYA R, BHARATH R, et al. A simple filter paper-based method for transporting and storing Enterocytozoon hepatopenaei DNA from infected Litopenaeus vannamei tissues. Journal of Invertebrate Pathology, 2020, 169: 107305 DOI:10.1016/j.jip.2019.107305 |
KIM J H, CHORESCA C H, SHIN S P, et al. Detection of infectious hypodermal and hematopoietic necrosis virus (IHHNV) in Litopenaeus vannamei shrimp cultured in South Korea. Aquaculture, 2011, 313(1/2/3/4): 161-164 |
KUANG J Z, NIE T G, YANG Z, et al. A simple and rapid modified-new method for DNA extraction of FTA bloodstains. Chinese Journal of Forensic Medicine, 2008, 23(2): 108-110 [匡金枝, 聂同钢, 杨智, 等. FTA-DNA直接提取法的研究与应用. 中国法医学杂志, 2008, 23(2): 108-110] |
LI W H, ZHANG H Y, LIU W H, et al. FTA filter paper-based template preparation for the PCR detection of Salmonella in meat. Food Science, 2009, 30(16): 254-257 [李伟昊, 张会彦, 刘卫华, 等. FTA滤膜用于PCR检测肉中的沙门氏菌. 食品科学, 2009, 30(16): 254-257] |
LIGHTNER D V, REDMAN R M, BELL T A. Infectious hypodermal and hematopoietic necrosis, a newly recognized virus disease of penaeid shrimp. Journal of Invertebrate Pathology, 1983, 42(1): 62-70 DOI:10.1016/0022-2011(83)90202-1 |
LIGHTNER D V. A handbook of shrimp pathology and diagnostic procedures for diseases of cultured penaeid shrimp. World Aquaculture Society, 1996
|
LIU J X, LIN T B, LIU J. Genetic polymorphisms of 15 STR loci in Fujian Han population. Chinese Journal of Forensic Medicine, 2014, 29(5): 479-480 [刘建兴, 林天彬, 刘杰. 福建汉族人群15个STR基因座遗传多态性. 中国法医学杂志, 2014, 29(5): 479-480] |
LIU Y J, GUO L H, ZHANG B, et al. Genetic polymorphisms of Penta D and Penta E loci in Henan Han population. Chinese Journal of Forensic Medicine, 2012, 27(3): 235 [刘亚举, 郭利红, 张博, 等. 河南汉族人群Penta D和Penta E基因座遗传多态性. 中国法医学杂志, 2012, 27(3): 235] |
MALDONADO J, VALLS L, RIERA P, et al. Method for rapid detection of swine influenza virus. Veterinary Record, 2009, 165(11): 328 |
MAO N Y, WANG Y, LI F C, et al. Comparison of the room temperature transport by flinders technology associates cards and conventional refrigerated transport for measles isolates. Chinese Journal of Vaccines and Immunization, 2015, 21(3): 260–262, 351 [毛乃颖, 王艳, 李芳彩, 等. FTA卡常温运输和常规冷藏运输麻疹病毒分离株的比较. 中国疫苗和免疫, 2015, 21(3): 260–262, 351] |
MARI J, BONAMI J R, LIGHTNER D V. Partial cloning of the genome of infectious hypodermal and haematopoietic necrosis virus, an unusual parvovirus pathogenic for penaeid shrimps; diagnosis of the disease using a specific probe. Journal of General Virology, 1993, 74(12): 2637-2643 DOI:10.1099/0022-1317-74-12-2637 |
MUTHUKRISHNAN M, SINGANALLUR N B, RALLA K, et al. Evaluation of FTA cards as a laboratory and field sampling device for the detection of foot-and-mouth disease virus and serotyping by RT-PCR and real-time RT-PCR. Journal of Virological Methods, 2008, 151(2): 311-316 DOI:10.1016/j.jviromet.2008.05.020 |
NIE T G, SUN R, KUANG J Z. Genetic polymorphisms of D12S391 and D6S1043 in Tianjin Han population. Chinese Journal of Forensic Medicine, 2009, 24(5): 330-331 [聂同钢, 孙睿, 匡金枝. 天津汉族人群D12S391和D6S1043遗传多态性. 中国法医学杂志, 2009, 24(5): 330-331] |
PATIL R, SHANKAR K M, KUMAR B T N, et al. Development of a monoclonal antibody-based flow-through immunoassay (FTA) for detection of white spot syndrome virus (WSSV) in black tiger shrimp Penaeus monodon. Journal of Fish Diseases, 2013, 36(9): 753-762 DOI:10.1111/jfd.12050 |
PEROZO F, VILLEGAS P, ESTEVEZ C, et al. Use of FTA® filter paper for the molecular detection of Newcastle disease virus. Avian Pathology, 2006, 35(2): 93-98 DOI:10.1080/03079450600597410 |
PICARD-MEYER E, BARRAT J, CLIQUET F. Use of filter paper (FTA®) technology for sampling, recovery and molecular characterisation of rabies viruses. Journal of Virological Methods, 2007, 140(1/2): 174-182 |
QIU L, CHEN X, GUO X M, et al. A TaqMan probe based real-time PCR for the detection of Decapod iridescent virus 1. Journal of Invertebrate Pathology, 2020, 173: 107367 DOI:10.1016/j.jip.2020.107367 |
RAJENDRAM D, AYENZA R, HOLDER F M, et al. Long-term storage and safe retrieval of DNA from microorganisms for molecular analysis using FTA matrix cards. Journal of Microbiological Methods, 2006, 67(3): 582-592 DOI:10.1016/j.mimet.2006.05.010 |
SAKSMERPROME V, PUIPROM O, NOONIN C, et al. Detection of infectious hypodermal and haematopoietic necrosis virus (IHHNV) in farmed Australian Penaeus monodon by PCR analysis and DNA sequencing. Aquaculture, 2010, 298(3/4): 190-193 |
SHALABY A G, BAKRY N R, MOHAMED A A E, et al. Evaluating flinders technology associates card for transporting bacterial isolates and retrieval of bacterial DNA after various storage conditions. Veterinary World, 2020, 13(10): 2243-2251 DOI:10.14202/vetworld.2020.2243-2251 |
SMITH L M, BURGOYNE L A. Collecting, archiving and processing DNA from wildlife samples using FTA databasing paper. BMC Ecology, 2004, 4(1): 4 DOI:10.1186/1472-6785-4-4 |
SUDHAKARAN R, MEKATA T, KONO T, et al. A simple non-enzymatic method for the preparation of white spot syndrome virus (WSSV) DNA from the haemolymph of Marsupenaeus japonicus using FTA matrix cards. Journal of Fish Diseases, 2010, 32(7): 611-617 |
SUN Z F, HU C Q, REN C H, et al. Sensitive and rapid detection of infectious hypodermal and hematopoietic necrosis virus (IHHNV) in shrimps by loop-mediated isothermal amplification. Journal of Virological Methods, 2006, 131(1): 41-46 DOI:10.1016/j.jviromet.2005.07.011 |
TANG K F J, DURAND S V, WHITE B L, et al. Postlarvae and juveniles of a selected line of Penaeus stylirostris are resistant to infectious hypodermal and hematopoietic necrosis virus infection. Aquaculture, 2000, 190(3/4): 203-210 |
TANG K F J, LIGHTNER D V. Infectious hypodermal and hematopoietic necrosis virus (IHHNV)-related sequences in the genome of the black tiger prawn Penaeus monodon from Africa and Australia. Virus Research, 2006, 118(1/2): 185-191 |
TANG K F J, NAVARRO S A, LIGHTNER D V. PCR assay for discriminating between infectious hypodermal and hematopoietic necrosis virus (IHHNV) and virus-related sequences in the genome of Penaeus monodon. Diseases of Aquatic Organisms, 2007, 74(2): 165-170 DOI:10.3354/dao074165 |
TAO X L, YAO H B, HAO S J. Genetic polymorphisms of 15 STR loci in the Dongxiang population of Gansu. Journal of Forensic Medicine, 2014, 30(2): 135-136 [陶晓岚, 姚宏兵, 郝思静. 甘肃东乡族人群15个STR基因座遗传多态性. 法医学杂志, 2014, 30(2): 135-136] |
WANG W, LIU S, YAO L, et al. Development of a novel RT-qPCR detecting method of covert mortality Nodavirus (CMNV) for the national proficiency test in molecular detection. Viruses, 2022, 14(7): 1475 DOI:10.3390/v14071475 |
WANG X J, HUANG L, JU L, et al. 25 Y-STR genetic polymorphisms in the Han population in Weifang area. Chinese Journal of Forensic Medicine, 2012, 27(5): 400-402 [王新杰, 黄磊, 鞠兰, 等. 潍坊地区汉族人群25个Y-STR遗传多态性. 中国法医学杂志, 2012, 27(5): 400-402] |
World Organization for Animal Health (WOAH). Diagnostic manual for aquatic animal diseases Paris France: 2023. https://www.woah.org/fileadmin/Home/eng/Health_standards/aahm/current/2.2.04_IHHN.pdf
|
YANG B, SONG X L, HUANG J, et al. Evidence of existence of infectious hypodermal and hematopoietic necrosis virus in penaeid shrimp cultured in China. Veterinary Microbiology, 2007, 120(1/2): 63-70 |
ZHAO X C, JIANG B W, YE J. Development of PCR enhancer for direct amplification of samples on FTA cards. Forensic Science and Technology, 2012(3): 13-15 [赵兴春, 姜伯玮, 叶健. FTA卡直接扩增缓冲增强剂的研制. 刑事技术, 2012(3): 13-15] |