渔业科学进展  2024, Vol. 45 Issue (4): 15-23  DOI: 10.19663/j.issn2095-9869.20230322003
0

引用本文 

瞿诗雨, 卢昇, 陈松林, 刘洋, 周茜, 王磊, 徐文腾, 宋煜. 豹纹鳃棘鲈抗哈维氏弧菌遗传参数分析[J]. 渔业科学进展, 2024, 45(4): 15-23. DOI: 10.19663/j.issn2095-9869.20230322003.
QU Shiyu, LU Sheng, CHEN Songlin, LIU Yang, ZHOU Qian, WANG Lei, XU Wenteng, SONG Yu. Estimation of Genetic Parameters of Survival Against Vibrio harveyi in Leopard Coral Grouper (Plectropomus leopardus)[J]. Progress in Fishery Sciences, 2024, 45(4): 15-23. DOI: 10.19663/j.issn2095-9869.20230322003.

基金项目

中国水产科学研究院黄海水产研究所基本科研业务费(20603022021001)、国家重点研发计划(2022YFD2400502)、南方海洋科学与工程广东实验室(湛江)基金(ZJW-2019-06)、山东省重点研发计划(2023ZLYS02; 2021LZGC028)、青岛市市南区科技计划项目(2022-2-028-ZH)、中国水产科学研究院基本科研业务费(2020TD20)和山东省泰山学者攀登计划项目共同资助

作者简介

瞿诗雨,E-mail: qushiyu9802@163.com

通讯作者

陈松林,中国工程院院士,E-mail: chensl@ysfri.ac.cn

文章历史

收稿日期:2023-03-22
收修改稿日期:2023-05-23
豹纹鳃棘鲈抗哈维氏弧菌遗传参数分析
瞿诗雨 1,2, 卢昇 2,3, 陈松林 2,3, 刘洋 2,3, 周茜 2,3, 王磊 2,3, 徐文腾 2,3, 宋煜 2,3     
1. 上海海洋大学水产与生命学院 上海 201306;
2. 海水养殖生物育种与可持续产出全国重点实验室 中国水产科学研究院黄海水产研究所 山东 青岛 266071;
3. 山东省海洋渔业生物技术与遗传育种重点实验室 山东 青岛 266071
摘要:哈维氏弧菌(Vibrio harveyi)是引起豹纹鳃棘鲈(Plectropomus leopardus)患“烂身病”的主要致病菌,每年6―8月发病率极高,严重影响了该品种养殖业的可持续发展。因此,培育抗病良种是豹纹鳃棘鲈养殖业的迫切需求。为评估豹纹鳃棘鲈抗哈维氏弧菌遗传参数,本研究基于高密度单核苷酸多态性位点构建的基因组亲缘关系矩阵,使用4种模型(BLM、BTM、LLM和LTM)拟合了2种抗病表型(测试日性状,TDS;二元死亡存活性状,TS),并用约束最大似然法(REML)估算方差组分。经分析,豹纹鳃棘鲈抗哈维氏弧菌遗传力为0.182~0.486,属中高遗传力性状,加性遗传方差为0.071~0.262。其中,利用线性模型(BLM和LLM)估算的遗传力分别为0.382和0.476,利用阈值模型(BTM和LTM)估算的遗传力分别为0.182和0.207。表明可以通过遗传选育提高豹纹鳃棘鲈抗弧菌能力。对不同模型估算的基因组估算育种值(GEBV)进行相关性分析,不同模型拟合同种抗病表型时,GEBV之间相关系数>0.9,属于高强度正相关关系,表明使用同种表型定义时,阈值或线性模型对GEBV排名影响很小。对不同模型估算的GEBV与不同表型进行相关性分析的结果显示,纵向模型(LLM和LTM)估算的GEBV与表型TS之间的相关系数高于横截面模型(BLM和BTM),说明表型TDS可能比表型TS更适合作为抗病表型。此外,在线性模型中,使用表型TDS和表型TS估算的GEBV之间的相关系数<0.85,说明采用2种表型定义下估计的豹纹鳃棘鲈抗哈维弧菌GEBV排名不一致。但基于表型TDS估算的GEBV与表型TS之间的相关系数较强(0.824),表明使用表型TDS和纵向模型(LLM)估算豹纹鳃棘鲈抗哈维氏弧菌遗传参数更有优势。本研究补充了豹纹鳃棘鲈抗哈维氏弧菌遗传参数研究,为豹纹鳃棘鲈抗哈维氏弧菌良种选育提供了参考。
关键词遗传参数    遗传力    豹纹鳃棘鲈    哈维氏弧菌    
Estimation of Genetic Parameters of Survival Against Vibrio harveyi in Leopard Coral Grouper (Plectropomus leopardus)
QU Shiyu 1,2, LU Sheng 2,3, CHEN Songlin 2,3, LIU Yang 2,3, ZHOU Qian 2,3, WANG Lei 2,3, XU Wenteng 2,3, SONG Yu 2,3     
1. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
2. State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
3. Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao 266071, China
Abstract: The leopard coral grouper (Plectropomus leopardus) belongs to the family Epinephelinae, and genus Plectropomus. Vibrio harveyi is the main pathogen that causes "rot disease" in leopard coral grouper, which is a major threat to the sustainable development of its aquaculture industry. The disease is highly prevalent from June to August and severely affects aquaculture. Therefore, developing disease-resistant strains is a necessity. However, currently, artificial breeding techniques for leopard coral groupers cannot establish a family lineage through one-on-one artificial insemination, making traditional breeding methods that depend on a clear pedigree difficult. Considering the successful breeding of disease-resistant fish species with or without a pedigree, genome selection breeding technology are vital for cultivating disease-resistant leopard coral groupers.In genetic selection, the genetic parameters of target traits are important reference factors for specifying breeding programs. To evaluate the genetic parameters of leopard coral grouper resistance to V. harveyi, we constructed a genome-relatedness matrix based on high-density single-nucleotide polymorphisms using four models (binary linear model [BLM], binary threshold model [BTM], longitudinal linear model [LLM], and linear threshold model [LTM]) to fit two disease-resistant phenotypes (test-day trait, TDS; Bivariate survival trait, TS), and used restricted maximum likelihood [REML] to estimate variance components. Our findings illustrated that the genetic heritability of leopard coral grouper resistance to V. harveyi ranged from 0.182 to 0.486, which belongs to the medium-to-high genetic heritability range. The additive genetic variance ranged from 0.071 to 0.262. The genetic heritability estimated by the linear model was 0.382 and 0.476, whereas that estimated by the threshold model was 0.182 and 0.207, respectively. These results suggest that leopard coral groupers resistance to V. harveyi can be improved through genetic breeding.Herein, the linear models (BLM and LLM) obtained higher genetic heritability estimates and more accurate genomic estimated breeding value (GEBV) predictions than the threshold models (BTM and LTM). However, despite the model used, the correlation coefficient between the GEBV rankings under the same phenotype definition > 0.9, indicating that their impact on the GEBV ranking was not significant. Compared to the cross-sectional models (BLM and BTM), numerous leopard coral grouper GEBVs were rearranged in the LLM results. There was a strong correlation between the LTM and phenotype (TS), indicating that LLM has an excellent prediction effect. Therefore, when breeding leopard coral groupers for V. harveyi-resistant traits, a LLM should be considered.The study observed that using longitudinal models (LLM and LTM) to estimate genetic heritability produced higher results than the cross-sectional models (BLM and BTM), which may be due to the death time explaining different components of fish disease resistance. In longitudinal models, the genetic component influenced by the time of death is effectively harnessed. However, in cross-sectional models, this effect is inadvertently subsumed within the residuals. Consistent with the genetic heritability findings, the longitudinal models produced more precise GEBVs compared to cross-sectional models. Our results suggest that TDS might offer a more accurate measure for assessing the resistance of leopard coral groupers to V. harveyi than the TS.Compared with the threshold models, linear models performed better in GEBV prediction, and higher genetic heritability estimates were obtained. Although, most previous studies on disease resistance traits have reported inconsistent genetic heritability estimates between threshold and linear models, some studies support these conclusions. This result may be due to differences in information processing between the different models, which leads to different results. In this study, the additive genetic variance obtained using threshold models (BTM and LTM) was 0.222–0.262, and additive genetic variance obtained using linear models (LLM and BLM) was 0.071–0.086. It is expected that the additive genetic variance obtained using threshold models was higher than that obtained using linear models. Furthermore, the residual variance resulting from fitting linear models was notably low. We posit that when threshold traits are erroneously treated as normally distributed data and linear models are employed for analysis, the residual variance may be underestimated. This underestimation is likely due to the model's underfitting, which consequently leads to an inflated heritability estimate for the linear model.This study aimed to estimate the genetic parameters of leopard coral grouper resistance to V. harveyi using infection test data of leopard coral groupers injected with V. harveyi and to construct an individual genotype relationship matrix based on single-nucleotide polymorphisms. The genetic heritability of leopard coral grouper resistance to V. harveyi was estimated to be between 0.182 and 0.486 by comparing different models and phenotype definitions. The linear (0.382 and 0.476) and threshold models (0.182 and 0.207) were used to estimate genetic heritability. The estimated genetic heritability was within the medium genetic heritability range. Our findings were used to improve the target traits of leopard coral groupers, specifically their resistance to V. harveyi. This study supplements the genetic parameter estimation of leopard coral grouper resistance to V. harveyi and provides a reference for selecting V. harveyi-resistant leopard coral groupers for breeding.
Key words: Genetic parameter    Heritability    Plectropomus leopardus    Vibrio harveyi    

豹纹鳃棘鲈(Plectropomus leopardus),又称东星斑,属石斑鱼科(Epinephelidae)、鳃棘鲈属(Plectropomus),是一种广泛分布在西太平洋的暖水性岛礁鱼类。因其肉质细腻、味道鲜美,有很高的食用价值和经济价值。近年来,豹纹鳃棘鲈的热度不断攀升,仅凭野生捕捞难以满足消费市场日益增长的需求,亟需大力发展人工养殖。目前,有关豹纹鳃棘鲈生物学特性(王锐等, 2011a; Scott et al, 2017)、苗种繁育(王锐等, 2011b)、人工养殖(王锐等, 2011b; 孙志景等, 2013; Sun et al, 2015; 孙玉明等, 2021)和饵料培育(Yu et al, 2018; Xia et al, 2020; 杨树浩等, 2021; Zhu et al, 2022)等方面已有较多研究,为豹纹鳃棘鲈的规模化人工养殖奠定了良好的基础。随着豹纹鳃棘鲈人工养殖规模逐渐扩大,弧菌病、鱼蛭病和淀粉卵鞭虫病等病害问题相继出现,造成了极大的经济损失(刘金叶等, 2019)。其中,由哈维氏弧菌(Vibrio harveyi)引起的“烂身病”造成了巨大的经济损失(辜良斌等, 2015; 王磊等, 2023),成为了困扰养殖户的一大难题。因此,培育抗病苗种对豹纹鳃棘鲈养殖业的可持续发展至关重要。

遗传选育是选育抗病良种的重要手段。传统抗病选育通常采用群体选育、家系选育、杂交等技术手段培育抗病苗种(徐康等, 2014; 廖静等, 2020; 王海宁等, 2020)。例如,采用杂交技术培育的抗嗜水气单胞菌(Aeromonas hydrophila)的松浦镜鲤(Cyprinus carpio Songpu mirror)(GS-01-001-2008),基于家系选育培育的抗无乳链球菌(Streptococcus agalactiae)的吉富罗非鱼(Oreochromis niloticus)新品种“中威1号” (GS-01-003-2014),以及利用群体选育和分子标记辅助选择技术培育的抗疱疹病毒Ⅲ型(CyHV-3)的镜鲤新品种“龙科11号”(GS-01-001-2022)。由于鱼类抗病表型获取的特殊性,传统选育技术往往难以精准、直接地选择抗病亲本。Meuwissen等(2001)提出了基因组选择的概念,为培育鱼类优良种质提供了有效的技术支撑。目前,我国在家系选育的基础上,配合基因组选择技术培育出了多个抗病高产鱼类新品种,如抗迟缓爱德华菌(Edwardsiella tarda)的牙鲆(Paralichthys oliyaceus)新品种“鲆优2号” (GS-02-005-2016)、抗无乳链球菌的罗非鱼新品种“壮罗1号”(GS-01-004-2018)和抗哈维氏弧菌的半滑舌鳎(Cynoglossus semilaevis)新品种“鳎优1号” (GS-01-005-2021)。此外,在无法建立家系的鱼类中,基因组选择技术也有良好的选择效果。例如,Zhao等(2021)利用基因组选择技术筛选出了抗刺激隐核虫(Cryptocaryon irritans)的大黄鱼(Larimichthys crocea)品系,抗虫系在96 h的感染存活率(59.2%)显著高于对照组(9.9%)。受豹纹鳃棘鲈人工繁育技术的限制,目前无法通过一对一人工授精的方式建立家系。因此,基因组选择可能是未来培育豹纹鳃棘鲈抗病苗种的关键技术。目前,Lu等(2023)初步建立了豹纹鳃棘鲈抗哈维氏弧菌基因组选择平台,为培育抗病苗种奠定了基础。

遗传力是良种选育中的重要参数,可直接表明目标性状中由遗传因素决定的比例,为制定选育方案提供理论参考(李吉涛等, 2013)。通常,遗传力估算需要基于完整的系谱记录。如卢昇等(2018)通过基于22个半滑舌鳎家系人工感染实验结果,估算了半滑舌鳎抗哈维氏弧菌的遗传力为0.17~0.36;王炳谦等(2013)建立了60个全同胞家系,估算虹鳟(Oncorhynchus mykiss)抗传染性造血器官坏死病毒(infectious haematopoietic necrosis virus, IHNV)的遗传力为0.34;郑卫卫等(2016)基于46个牙鲆F4代家系,估算了牙鲆抗迟缓爱德华氏菌遗传力为0.18。得益于分子生物技术不断发展,目前,也可利用分子遗传标记对无法建立家系或无系谱群体开展遗传参数评估(Mousseau et al, 1998; Yang et al, 2011)。随着测序成本的降低,有学者利用单核苷酸多态性(single nucleotide polymorphism, SNP)评估了多种养殖鱼类抗病性状的遗传力。如Griot等(2021)报道了欧洲海鲈(Dicentrachus labrax)抗哈维氏弧菌的遗传力分别为0.11 (线性模型)和0.20 (阈值模型)。Liyanage等(2022)利用70k SNP估算牙鲆抗病毒性出血败血症(viral hemorrhagic septicemia, VHSV)的遗传力为0.18。目前,除了Lu等(2023)利用死亡/存活二项性状和阈值模型估算了豹纹鳃棘鲈抗哈维氏弧菌遗传力(0.16~ 0.24)外,尚未见其他相关报道。

由于采用不同模型拟合多种表型时,遗传力的估算结果差异很大(Nielsen et al, 2010; Bangera et al, 2014)。为进一步评估豹纹鳃棘鲈抗哈维氏弧菌的遗传参数,本研究基于Lu等(2023)所述的798尾具有抗病表型和基因型的豹纹鳃棘鲈,使用1 211 259个高质量SNP构建基因组亲缘关系矩阵,利用4种模型拟合2种抗病表型,通过软件ASReml-R 4.0估算方差组分和育种值,以期为豹纹鳃棘鲈抗哈维氏弧菌良种选育提供理论参考。

1 材料与方法 1.1 实验材料

本研究所用豹纹鳃棘鲈取自山东莱州明波水产有限公司和海南永贺生物技术有限公司,共800尾。经哈维氏弧菌人工感染实验和全基因组重测序,成功获得了798尾具有表型和基因型的豹纹鳃棘鲈幼鱼,用于构建基因组亲缘关系矩阵(G矩阵)的SNP数目为1 211 259。此外,用于本研究的豹纹鳃棘鲈样品的群体结构、感染实验结果和SNP检测、质控流程详见Lu等(2023)所述。

1.2 性状定义

本研究采用以下2种方式定义豹纹鳃棘鲈抗哈维氏弧菌的表型:

TS:二元存活性状,受试个体在感染实验结束前死亡记为0,存活记为1。

TDS:测试日性状,记录所有受试个体在实验期间每天的死亡、存活状态,直至实验结束。例如:某一个体在感染后第3天死亡,其抗病表型记为[1 1 0];假设实验共进行了6 d,存活个体的表型记为[1 1 1 1 1 1]。

1.3 模型 1.3.1 二项线性模型(binary linear model, BLM)
$ \begin{array}{*{20}{c}} {{y_{ij}} = u + {f_i} + {a_j} + {e_{ij}}} \end{array} $ (1)

模型BLM用于拟合表型TS。式中,${y_{ij}}$代表第j条鱼在固定效应为i时的死亡存活状态,0代表死亡,1代表存活;$u$为总体均值;${f_i}$代表固定效应,其中包括受试鱼采样地点和感染时的体重;${a_j}$代表第j个体的加性遗传信息;${e_{ij}}$代表残差。

1.3.2 二项阈值模型(binary threshold model, BTM)
$ \begin{array}{*{20}{c}} {Pr({y_{ij}}) = \Phi (u + {f_i} + {a_j})} \end{array} $ (2)

模型BTM用于拟合表型TS。式中,Φ(·)为累积标准正态分布函数,其他参数定义同模型BLM。

1.3.3 纵向阈值模型(longitudinal threshold model, LTM) (Ødegård et al, 2006)
$ \begin{array}{*{20}{c}} {Pr({y_{ijt}} = 1) = \Phi \left({\mathop \sum \limits_{p = 0}^5 {\beta _p}Z{{(t)}_p} + u + {f_i} + {a_j}} \right)} \end{array} $ (3)

模型LTM用于拟合表型TDS。式中,${\beta _p}$代表p阶回归系数;$Z{(t)_p}$代表第t天的p阶正交多项式;${y_{ijt}}$为个体j在固定效应为i时,第t天的死亡或存活状态;其他参数定义同模型BLM。

1.3.4 纵向线性模型(longitudinal linear mode, LLM)
$ \begin{array}{*{20}{c}} {{y_{ijt}} = \mathop \sum \limits_{p = 0}^5 {\beta _p}Z{{(t)}_p} + u + {f_i} + {a_j} + {e_{ij}}} \end{array} $ (4)

模型LLM用于拟合表型TDS,各参数定义同模型LTM。

1.4 遗传力评估

本研究采用REML法估算方差组分,使用VanRaden(2008)的方法构建基因组亲缘关系矩阵(G矩阵)。遗传力计算公式为:

$ {h}^{2}\text{}={\text{ σ}}_{a}^{2}\text{}/({\text{σ}}_{a}^{2}+{\text{σ}}_{e}^{2}) $ (5)

式中,${\text{σ}}_a^2$为加性遗传方差,${\text{σ}}_e^2$为残差方差。在模型BTM和LTM中,残差方差固定为1。方差组分和遗传力估算均使用ASReml-R 4.0 (Butler et al, 2009)分析。

1.5 模型比较

由于本研究使用了4种模型(BLM、BTM、LTM和LLM)拟合2种抗病表型(TS和TDS),因此,无法通过遗传力或收敛时的似然值比较模型的预测能力(Nielsen et al, 2010; Bangera et al, 2014)。为比较各模型的预测能力,本研究通过2种方式比较不同模型的预测能力:计算不同模型预测的基因组估算育种值(genome estimated breeding value, GEBV)之间或不同模型预测的GEBV与表型TS之间的Pearson和Spearman相关系数。

2 结果与分析 2.1 豹纹鳃棘鲈抗哈维氏弧菌遗传参数

4种模拟拟合的2种表型估算得到的遗传力结果见表 1。在线性模型(BLM和LLM)中,豹纹鳃棘鲈抗哈维氏弧菌的遗传力分别为0.382(TS)和0.476(TDS),属于中高水平遗传力。在阈值模型(BTM和LTM)中,遗传力低于线性模型,分别为0.182(TS)和0.207(TDS),属于中低水平遗传力。

表 1 不同模型和表型定义下遗传力与方差组分 Tab.1 Heritability and variance components under different model and phenotypic definitions
2.2 模型比较

不同模型预测的GEBV之间的相关系数结果见表 2。同一性状定义下,不同模型估算的GEBV之间的相关系数很高,均>0.9;在阈值模型拟合下,使用不同性状定义估算的GEBV之间相关系数为0.925,但在使用线性模型拟合时,相关性系数<0.9。对LLM与BTM估算的GEBV进行相关性分析时,观测到相关系数<0.75。计算不同模型估算的GEBV与表型TS之间的Pearson和Spearman相关系数,结果显示(表 3),模型BLM与表型的Pearson相关系数为0.901;模型LLM稍低,为0.824,但表型TS与模型BLM和LLM的Spearman相关系数一致,分别为0.829 (BLM)与0.824 (LLM)。使用阈值模型(BTM和LTM)获取的GEBVs相对于线性模型(BLM和LLM)获取的GEBVs与表型TS的相关性较低。

表 2 不同模型估算的GEBV之间的Pearson (下三角)和Spearman (上三角)相关系数 Tab.2 Pearson (lower triangle) and Spearman (upper triangle) correlation coefficient between GEBV estimated from different models
表 3 不同模型估算GEBV与表型TS之间的Pearson和Spearman相关系数 Tab.3 Pearson and Spearman correlation coefficient between GEBV estimated by different models and binary trait definition (TS)
3 讨论 3.1 SNPs在遗传参数评估中的应用

在水产育种中,除了利用系谱估算遗传参数外,也可利用遗传标记推断亲缘关系或构建分子系谱开展相关研究。早期多使用微卫星标记开展鱼类目标性状的遗传参数评估(Bentzen et al, 2001; 王军等, 2018)。相对于微卫星标记,SNP作为第3代分子标记,具有密度高、分布广、易分型等特点(Altshuler et al, 2001)。近年来,SNP逐渐取代微卫星标记,成为识别个体间亲缘关系的主要分子标记(Anderson et al, 2006; Phillips et al, 2007; Rohrer et al, 2007)。在多个水产养殖品种的实际生产中,使用SNP信息相对于系谱信息获得了更准确的育种值和更多的遗传信息,例如,Tsai等(2016)在大西洋鲑(Salmo salar)上对海虱(Lepeophtheirus salmonis)的抗性性状评估中使用SNPs获取的遗传力(0.33)相对于基于系谱的遗传力(0.22)获取了更多的遗传信息,很多水产养殖品种的研究结果都支持这个观点(Bangera et al, 2017; Sukhavachana et al, 2020; Joshi et al, 2021; Chaivichoo et al, 2023)。在这些研究中,对遗传方差组分的估算往往使用REML法或贝叶斯方法,其中,REML法计算量低且更适合于多基因影响的性状的评估(Zhou et al, 2013)。根据Lu等(2023)全基因组关联分析(GWAS)结果,豹纹鳃棘鲈抗哈维氏弧菌受微效多基因控制。因此,本研究利用REML法评估豹纹鳃棘鲈抗哈维氏弧菌遗传参数是可行的。

3.2 遗传参数评估与模型比较

为了进一步评估豹纹鳃棘鲈抗哈维氏弧菌遗传参数,本研究利用BLM、BTM、LLM和LTM四种模型拟合了TS和TDS两种抗病表型。其中,使用阈值模型(BTM和LTM)估算的遗传力分别为0.182和0.207,使用线性模型(BLM和LLM)估算的遗传力分别为0.382和0.476。上述结果表明,可以通过遗传选育提高豹纹鳃棘鲈抗哈维氏弧菌能力。Lu等(2023)利用TS性状和阈值模型(同BTM模型)估算了豹纹鳃棘鲈抗哈维氏弧菌遗传力为(0.18±0.05)。本研究中,BTM模型的大部分参数与Lu等(2023)中的参数基本一致,不同的是,Lu等(2023)使用基于体重的注射剂量作为固定效应,而本研究使用体重作为固定效应,两项研究利用BTM模型估算的遗传力是一致的。结果符合预期,将体重或基于体重的注射剂量通过R语言中scale函数标准化后,可视为高度线性相关的数据变量(数据集中在二者之间,Pearson相关系数为0.992),由于感染实验注射菌液时的人为操作带来的误差导致二者之间未呈现理论上的完全相关关系(Pearson相关系数为1),但可以推断使用体重或基于体重的注射剂量作为模型中的固定效应计算时,几乎不会对模型拟合产生影响。另外,据Ødegård等(2011)统计,多种鱼类抗细菌病遗传力为0~0.62。此外,Vela-Avitua等(2022)使用系谱和基因组信息估算了欧洲海鲈抗神经坏死病毒(nervous necrosis virus, NNV)的遗传力分别为0.18和0.25。结合本研究遗传力的估算结果,认为本研究估算的遗传力处于合理范围,估算结果可靠。

同一表型定义下,虽然线性模型(BLM和LLM)相比阈值模型(BTM和LTM)获得了更高的遗传力(表 1),但同一表型定义下的GEBV之间的相关性系数均>0.9 (表 2),表明选择线性模型或阈值模型对GEBV排名的影响不大(Li et al, 2019; Hu et al, 2020)。但LLM模型估算的GEBV与横截面模型(BLM和BTM)估算的GEBV之间的相关系数较低(表 2),表明在基于TDS表型定义下使用线性模型拟合中观察到大量豹纹鳃棘鲈的GEBV重新排列,Gitterle等(2006)在凡纳滨对虾(Litopenaeus vannamei)对抗白斑综合征病毒(WSSV)的研究中也发现了这一现象。此外,LLM模型估算的GEBV与表型TS之间的Pearson相关系数(0.824)与Spearman相关系数(0.824)均高于BTM模型(Pearson:0.712;Spearman:0.709),并且LLM模型估算的GEBV与表型TS之间的Spearman相关系数(0.824)与BLM模型与表型TS之间的Spearman相关系数(0.829)接近。因此,在实际选育中,可以考虑利用LLM模型计算豹纹鳃棘鲈抗哈维氏弧菌GEBV。

本研究利用TS和TSD两种方式定义了豹纹鳃棘鲈抗哈维氏弧菌表型,结果显示,无论使用阈值模型(BTM和LTM)还是线性模型(BLM和LLM),基于表型TDS估算的遗传力(0.207和0.476)均高于基于表型TS (0.182和0.382)。出现该现象的原因是由于死亡时间与死亡存活性状(TS)可能由不同的数量性状位点(quantitative trait loci, QTL)决定(Ødegård et al, 2011),表型TDS有效利用了数据中死亡时间的信息,而在表型TS中这部分信息被计入残差(Ødegård et al, 2007)。虽然不同表型和模型定义对遗传力的估算会产生较大的差异(Nielsen et al, 2010; Bangera et al, 2014),但在本研究中,对不同模型估算的GEBV与表型(TS)进行相关性分析后发现,LTM模型估算的GEBV相对于BTM模型估算的GEBV与表型(TS)之间的相关性更高,且LLM模型预测的GEBV相对BLM模型与表型(TS)的Spearman相关系数非常接近(表 3)。这说明使用纵向模型相对于横截面模型可以获取更准确的GEBV估算(表 3)。与此类似,Sun等(2022)在大菱鲆(Scophthalmus maximus)对迟缓爱德华氏菌的抗性研究中也支持上述结论。类似的结果也在以前的研究中有所报道(Yáñez et al, 2013; Gitterle et al, 2006)。

相比阈值模型(BTM和LTM),本研究中的2个线性模型(BLM和LLM)不仅获得了更高的遗传力(表 1),所估算的GEBV与2种表型的相关系数也更高(表 3)。上述结果虽然有悖于大部分已报道的鱼类抗病性状遗传参数分析的结果(Ødegård et al, 20062007; Liang et al, 2017; Xiong et al, 2017; Sukhavachana et al, 2019),但仍有少部分研究结果与本研究类似(Li et al, 2019; 卢昇等, 2018; Liu et al, 2016),是由于不同的模型在信息处理方面的差异会导致不同的估算结果(Ødegård et al, 2011)。在本研究中,阈值模型(BTM和LTM)获取的加性遗传方差为0.222和0.262,线性模型(LLM和BLM)获取的加性遗传方差为0.071和0.086。使用阈值模型获取的加性遗传方差高于线性模型,该结果符合预期,对于阈值性状采用阈值模型相对于线性模型是更合适的策略(表 1)。因此,结合上述结果,本研究认为将阈值性状视为正态分布数据,使用线性模型拟合时,由于模型欠拟合,残差方差被低估,从而使线性模型的遗传力估计偏高。

4 结论

本研究使用798尾具有基因型和抗病表型的豹纹鳃棘鲈幼鱼,利用1.21 M个高质量SNP位点构建基因组亲缘关系矩阵,采用BLM、BTM、LLM和LTM四种模型拟合了TS和TDS两种抗病表型。结果显示,豹纹鳃棘鲈抗哈维氏弧菌遗传力为0.182~0.486,属于中高水平遗传力。其中,利用线性模型(BLM和LLM)估算的遗传力分别为0.382和0.476,利用阈值模型(BTM和LTM)估算的遗传力分别为0.182和0.207,上述结果表明,可通过遗传选育提高豹纹鳃棘鲈抗弧菌能力。此外,纵向模型(LLM和LTM)比横截面模型(BLM和BTM)能够剖分更多的遗传信息,因此,可优先考虑使用纵向模型估算抗病性状遗传力。本研究补充了豹纹鳃棘鲈抗哈维氏弧菌遗传参数相关内容,为选育抗哈维氏弧菌的豹纹鳃棘鲈苗种提供了参考。

参考文献
ALTSHULER D, POLLARA V J, COWLES C R, et al. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature, 2000, 407(6803): 513-516 DOI:10.1038/35035083
ANDERSON E C, GARZA J C. The power of single-nucleotide polymorphisms for large-scale parentage inference. Genetics, 2006, 172(4): 2567-2582 DOI:10.1534/genetics.105.048074
BANGERA R, CORREA K, LHORENTE J P, et al. Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar). BMC Genomics, 2017, 18: 121 DOI:10.1186/s12864-017-3487-y
BANGERA R, ØDEGÅRD J, MIKKELSEN H, et al. Genetic analysis of francisellosis field outbreak in Atlantic cod (Gadus morhua L.) using an ordinal threshold model. Aquaculture, 2014, 420/421: S50-S56 DOI:10.1016/j.aquaculture.2013.08.029
BENTZEN P, OLSE J B, MCLEA J E, et al. Kinship analysis of Pacific salmon: Insights into mating, homing, and timing of reproduction. Journal of Heredity, 2001, 92(2): 127-136 DOI:10.1093/jhered/92.2.127
BUTLER D, CULLIS B, GILMOUR A, et al. ASReml-R reference manual version 4. The State of Queensland, Department of Primary Industries and Fisheries: Brisbane, Qld, 2009
CHAIVICHOO P, SUKHAVACHANA S, KHUMTHONG R, et al. Genome-wide association study and genomic prediction of growth traits in bighead catfish (Clarias macrocephalus Gunther, 1864). Aquaculture, 2023, 562: 738748 DOI:10.1016/j.aquaculture.2022.738748
GITTERLE T, ØDEGÅRD J, GJERDE B, et al. Genetic parameters and accuracy of selection for resistance to White Spot Syndrome Virus (WSSV) in Penaeus (Litopenaeus) vannamei using different statistical models. Aquaculture, 2006, 251(2): 210-218
GRIOT R, ALLAL F, PHOCAS F, et al. Optimization of genomic selection to improve disease resistance in two marine fishes, the European sea bass (Dicentrarchus labrax) and the gilthead sea bream (Sparus aurata). Frontiers in Genetics, 2021, 12: 665920 DOI:10.3389/fgene.2021.665920
GU L B, XU L W, FENG J, et al. Identification and drug sensitivity test of pathogenic bacteria of tail ulceration of Plectropomus leopardus. South China Fisheries Science, 2015, 11(4): 71-80 [辜良斌, 徐力文, 冯娟, 等. 豹纹鳃棘鲈尾部溃烂症病原菌的鉴定与药敏试验. 南方水产科学, 2015, 11(4): 71-80 DOI:10.3969/j.issn.2095-0780.2015.04.011]
HU Y R, LI Y Z, LI Z M, et al. Novel insights into the selective breeding for disease resistance to vibriosis by using natural outbreak survival data in Chinese tongue sole (Cynoglossus semilaevis). Aquaculture, 2020, 529: 735670 DOI:10.1016/j.aquaculture.2020.735670
JOSHI R, SKAARUD A, ALVAREZ A T, et al. Bayesian genomic models boost prediction accuracy for survival to Streptococcus agalactiae infection in Nile tilapia (Oreochromus nilioticus). Genetics Selection Evolution, 2021, 53(1): 37 DOI:10.1186/s12711-021-00629-y
LI J T, LI J, LIU P, et al. Heritability of body length and weight for the ridge trail white prawn (Exopalaemon carinicauda). Oceanologia et Limnologia Sinica, 2013, 44(4): 968-972 [李吉涛, 李健, 刘萍, 等. 脊尾白虾(Exopalaemon carinicauda)体长和体重遗传力的估计. 海洋与湖沼, 2013, 44(4): 968-972]
LI Y Z, WANG L, YANG Y M, et al. Genetic analysis of disease resistance to Vibrio harveyi by challenge test in Chinese tongue sole (Cynoglossus semilaevis). Aquaculture, 2019, 503: 430-435 DOI:10.1016/j.aquaculture.2019.01.011
LIANG B B, JIANG F J, ZHANG S J, et al. Genetic variation in Vibrio resistance in the clam Meretrix petechialis under the challenge of Vibrio parahaemolyticus. Aquaculture, 2017, 468: 458-463 DOI:10.1016/j.aquaculture.2016.10.037
LIAO J, FANG Q W, LI Y S, et al. Guangdong Zhanjiang Hengxing National Penaeus Prawn Breeding Farm, the first disease-resistant variety of Penaeus prawn "Zhongxing No.1". Marine Fisheries, 2020(7): 25 [廖静, 方琼玟, 李易珊, 等. 广东湛江恒兴国家级南美白对虾良种场首个南美白对虾抗病品种"中兴1号". 海洋与渔业, 2020(7): 25]
LIU F, LI Y Z, WANG X X, et al. Estimation of genetic parameters for disease-resistance traits in Cynoglossus semilaevis (Günther, 1873). Journal of Applied Ichthyology, 2016, 32(4): 643-651 DOI:10.1111/jai.13067
LIU J Y, WANG Y B, FU S Y, et al. Occurrence characteristics and control technology of common diseases in the commercial fish culture of Plectropomus leopardus in Hainan Province. Modern Agricultural Science and Technology, 2019(24): 203 [刘金叶, 王永波, 符书源, 等. 海南省豹纹鳃棘鲈商品鱼养殖常见病害发生特点及防治技术. 现代农业科技, 2019(24): 203 DOI:10.3969/j.issn.1007-5739.2019.24.111]
LIYANAGE D S, LEE S, YANG H, et al. Genome-wide association study of VHSV-resistance trait in Paralichthys olivaceus. Fish and Shellfish Immunology, 2022, 124: 391-400 DOI:10.1016/j.fsi.2022.04.021
LU S, LI Z Y, CHEN S L, et al. Analysis of heritability and breeding value of resistance to Vibrio harveyi in Cynoglossus semibreves. Journal of Agricultural Biotechnology, 2018, 26(10): 1770-1777 [卢昇, 李泽宇, 陈松林, 等. 半滑舌鳎抗哈维氏弧菌病的遗传力和育种值分析. 农业生物技术学报, 2018, 26(10): 1770-1777]
LU S, LIU Y, QU S H, et al. Genomic prediction of survival against Vibrio harveyi in leopard coral grouper (Plectropomus leopardus) using GBLUP, weighted GBLUP, and BayesCπ. Aquaculture, 2023, 572: 739536 DOI:10.1016/j.aquaculture.2023.739536
MEUWISSEN T H, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157(4): 1819-1829 DOI:10.1093/genetics/157.4.1819
MOUSSEAU T A, RITLAND K, HEATH D D. A novel method for estimating heritability using molecular markers. Heredity, 1998, 80(2): 218-224 DOI:10.1046/j.1365-2540.1998.00269.x
NIELSEN H M, ODEGARD J, OLESEN I, et al. Genetic analysis of common carp (Cyprinus carpio) strains: Ⅰ: Genetic parameters and heterosis for growth traits and survival. Aquaculture, 2010, 304(1): 14-21
ØDEGÅRD J, BARANSKI M, GJERDE B, 等. Methodology for genetic evaluation of disease resistance in aquaculture species: Challenges and future prospects. Aquaculture Research, 2011, 42: 103-114
ØDEGÅRD J, OLESEN I, GJERDE B, 等. Evaluation of statistical models for genetic analysis of challenge-test data on ISA resistance in Atlantic salmon (Salmo salar): Prediction of progeny survival. Aquaculture, 2007, 266(1): 70-76
ØDEGÅRD J, OLESEN I, GJERDE B, 等. Evaluation of statistical models for genetic analysis of challenge test data on furunculosis resistance in Atlantic salmon (Salmo salar): Prediction of field survival. Aquaculture, 2006, 259(1): 116-123
PHILLIPS C, FANG R, BALLARD D, et al. Evaluation of the Genplex SNP typing system and a 49plex forensic marker panel. Forensic Science International-Genetics, 2007, 1(2): 180-185 DOI:10.1016/j.fsigen.2007.02.007
ROHRER G A, FREKING B A, NONNEMAN D. Single nucleotide polymorphisms for pig identification and parentage exclusion. Animal Genetics, 2007, 38(3): 253-258 DOI:10.1111/j.1365-2052.2007.01593.x
SCOTT M, HEUPEL M, TOBIN A, et al. A large predatory reef fish species moderates feeding and activity patterns in response to seasonal and latitudinal temperature variation. Scientific Reports, 2017, 7: 12966 DOI:10.1038/s41598-017-13277-4
SUKHAVACHANA S, POOMPUANG S, ONMING S, et al. Heritability estimates and selection response for resistance to Streptococcus agalactiae in red tilapia Oreochromis spp. Aquaculture, 2019, 502: 384-390 DOI:10.1016/j.aquaculture.2018.12.075
SUKHAVACHANA S, TONGYOO P, MASSAULT C, et al. Genome-wide association study and genomic prediction for resistance against Streptococcus agalactiae in hybrid red tilapia (Oreochromis spp.). Aquaculture, 2020, 525: 735297 DOI:10.1016/j.aquaculture.2020.735297
SUN S, LYU D, HU Y, et al. Estimating genetic parameters of resistance against Edwardsiella tarda in turbot (Scophthalmus maximus). Aquaculture Reports, 2022, 26: 101329 DOI:10.1016/j.aqrep.2022.101329
SUN Y M, LIU X K, WANG L Q, et al. Experiment in indoor running water culture of Plectropomus leopardus. Scientific Fish Farming, 2021(8): 61-62 [孙玉明, 刘晓坤, 王乐强, 等. 豹纹鳃棘鲈室内流水养殖试验. 科学养鱼, 2021(8): 61-62 DOI:10.3969/j.issn.1004-843X.2021.08.033]
SUN Z J, JIANG S G, YU Y G, et al. Effects of water temperature on survival, feeding, and growth of juvenile Plectropomus leopardus. Hebei Fisheries, 2013(5): 1–4, 12 [孙志景, 江曙光, 于燕光, 等. 水温对豹纹鳃棘鲈幼鱼存活、摄食及生长的影响. 河北渔业, 2013(5): 1–4, 12 DOI:10.3969/j.issn.1004-6755.2013.05.001]
SUN Z J, XIA S D, FENG S M, et al. Effects of water temperature on survival, growth, digestive enzyme activities, and body composition of the leopard coral grouper Plectropomus leopardus. Fisheries Science, 2015, 81(1): 107-112 DOI:10.1007/s12562-014-0832-9
TSAI H Y, HAMILTON A, TINCH A E, et al. Genomic prediction of host resistance to sea lice in farmed Atlantic salmon populations. Genetics Selection Evolution, 2016, 48(1): 47 DOI:10.1186/s12711-016-0226-9
VANRADEN P M. Efficient methods to compute genomic predictions. Journal of Dairy Science, 2008, 91(11): 4414-4423 DOI:10.3168/jds.2007-0980
VELA-AVITUA S, THORLAND I, BAKOPOULOS V, et al. Genetic basis for resistance against viral nervous necrosis: GWAS and potential of genomic prediction explored in farmed European sea bass (Dicentrarchus labrax). Frontiers in Genetics, 2022, 13: 804584 DOI:10.3389/fgene.2022.804584
WANG B Q, JIANG Z S, HU G, et al. Estimation of genetic parameters of resistance to infectious hematopoietic organ necrosis (IHN) in rainbow trout (Oncorhynchus mykiss) and screening of disease-resistant families. Journal of Northeast Agricultural University, 2013, 44(9): 120-126 [王炳谦, 姜再胜, 户国, 等. 虹鳟(Oncorhynchus mykiss)传染性造血器官坏死病(IHN)抗病力遗传参数估计及其抗病家系筛选. 东北农业大学学报, 2013, 44(9): 120-126 DOI:10.3969/j.issn.1005-9369.2013.09.022]
WANG H L, JIANG X D, WU X Q, et al. Evaluation of culture performance and immune performance of the fourth generation of early and late maturing Eriocheir sinensis at the crab stage. Journal of Fisheries Of China, 2020, 44(5): 816-826 [王海宁, 姜晓东, 吴旭干, 等. 中华绒螯蟹二龄早熟和晚熟品系选育第四代在扣蟹阶段养殖性能和免疫性能的评价. 水产学报, 2020, 44(5): 816-826]
WANG J, WANG Q Y, KONG J, et al. Genetic diversity analysis of artificial and wild populations of Penaeus chinensis using SSR markers. Progress in Fishery Sciences, 2018, 39(2): 104-111 [王军, 王清印, 孔杰, 等. 中国明对虾人工选育群体与野生群体遗传多样性的SSR分析. 渔业科学进展, 2018, 39(2): 104-111]
WANG L, ZHANG T S, LIU Y, et al. Identification of the main pathogen of Plectropomus leopardus ulceration by high-throughput sequencing. Journal of Agricultural Biotechnology, 2023, 31(3): 617-628 [王磊, 张天时, 刘洋, 等. 高通量测序分析鉴定豹纹鳃棘鲈溃烂病主要致病菌. 农业生物技术学报, 2023, 31(3): 617-628]
WANG R, QI Z L, ZHANG X W, et al. Biological characteristics and artificial culture technology of Plectropomus leopardus. China Fisheries, 2011a(4): 33-34 [王锐, 齐遵利, 张秀文, 等. 豹纹鳃棘鲈的生物学特性和人工养殖技术. 中国水产, 2011a(4): 33-34]
WANG R, QI Z L, ZHANG X W, et al. Breeding technology of Plectropomus leopardus breeding. Scientific Fish Farming, 2011b(4): 39-40 [王锐, 齐遵利, 张秀文, 等. 豹纹鳃棘鲈苗种繁育技术. 科学养鱼, 2011b(4): 39-40]
XIA S D, SUN J H, LI M, et al. Influence of dietary protein level on growth performance, digestibility and activity of immunity-related enzymes of leopard coral grouper, Plectropomus leopardus (Lacepede, 1802). Aquaculture Nutrition, 2020, 26(2): 242-247 DOI:10.1111/anu.12985
XIONG X M, CHEN Y L, LIU L F, et al. Estimation of genetic parameters for resistance to Aeromonas hydrophila in blunt snout bream (Megalobrama amblycephala). Aquaculture, 2017, 479: 768-773 DOI:10.1016/j.aquaculture.2017.07.011
XU K, DUAN W, XIAO J, et al. Application and research progress of biological methods in genetic breeding of fish. Science China Life Sciences, 2014, 44(12): 1272-1288 [徐康, 段巍, 肖军, 等. 鱼类遗传育种中生物学方法的应用及研究进展. 中国科学: 生命科学, 2014, 44(12): 1272-1288]
YAÑEZ J M, BANGERA R, LHORENTE J P, et al. Quantitative genetic variation of resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar). Aquaculture, 2013, 414/415: 155-159 DOI:10.1016/j.aquaculture.2013.08.009
YANG J A, LEE S H, GODDARD M E, et al. GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 2011, 88(1): 76-82 DOI:10.1016/j.ajhg.2010.11.011
YANG S H, SUN K H, HONG Y C, et al. Application of zero starch open feed in the cultivation of Plectropomus leopardus. Current Fisheries, 2021, 46(10): 68-70 [杨树浩, 孙凯辉, 洪宇聪, 等. 零淀粉开口饲料在豹纹鳃棘鲈育苗中的应用研究. 当代水产, 2021, 46(10): 68-70]
YU W, WEN G, LIN H, et al. Effects of dietary Spirulina platensis on growth performance, hematological and serum biochemical parameters, hepatic antioxidant status, immune responses and disease resistance of coral trout Plectropomus leopardus (Lacepede, 1802). Fish and Shellfish Immunology, 2018, 74: 649-655 DOI:10.1016/j.fsi.2018.01.024
ZHAO J, BAI H Q, KE Q Z, et al. Genomic selection for parasitic ciliate Cryptocaryon irritans resistance in large yellow croaker. Aquaculture, 2021, 531: 735786 DOI:10.1016/j.aquaculture.2020.735786
ZHENG W W, CHEN S L, LI Z Y, et al. Analyzing of heritability and breeding value of disease resistance for Edwardsiella tarda in Japanese flounder (Paralichthys olivaceus). Journal of Agriculture Biotechnology, 2016, 24(8): 1181-1189 [郑卫卫, 陈松林, 李泽宇, 等. 牙鲆抗迟缓爱德华氏菌性状的遗传力和育种值分析. 农业生物技学报, 2016, 24(8): 1181-1189]
ZHOU X, CARBONETTO P, STEPHENS M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genetics, 2013, 9(2): e1003264 DOI:10.1371/journal.pgen.1003264
ZHU X, HAO R, ZHANG J, et al. Dietary astaxanthin improves the antioxidant capacity, immunity and disease resistance of coral trout (Plectropomus leopardus). Fish and Shellfish Immunology, 2022, 122: 38-47 DOI:10.1016/j.fsi.2022.01.037