渔业科学进展  2024, Vol. 45 Issue (5): 155-164  DOI: 10.19663/j.issn2095-9869.20230602001

引用本文 

和怡婧, 李旭鹏, 栾生, 孔杰, 曹宝祥, 罗坤, 谭建, 曹家旺, 陈宝龙, 代平, 邢群, 刘绵宇, 强光峰, 刘杨, 隋娟, 孟宪红. 凡纳对虾核心育种群生长和抗WSSV性状的遗传参数估计[J]. 渔业科学进展, 2024, 45(5): 155-164. DOI: 10.19663/j.issn2095-9869.20230602001.
HE Yijing, LI Xupeng, LUAN Sheng, KONG Jie, CAO Baoxiang, LUO Kun, TAN Jian, CAO Jiawang, CHEN Baolong, DAI Ping, XING Qun, LIU Mianyu, QIANG Guangfeng, LIU Yang, SUI Juan, MENG Xianhong. Evaluation of Genetic Parameters for Growth and Survival Traits of Penaeus vannamei During White Spot Syndrome Virus Infection[J]. Progress in Fishery Sciences, 2024, 45(5): 155-164. DOI: 10.19663/j.issn2095-9869.20230602001.

基金项目

国家虾蟹产业技术体系(CARS-48)、国家自然科学基金(32172960)和中国水产科学研究院科技创新团队项目(2020TD26)共同资助

作者简介

和怡婧,Email: 984865581@qq.com

通讯作者

孟宪红,研究员,Email: mengxianhong@ysfri.ac.cn
隋娟,副研究员,Email: suijuan@ysfri.ac.cn

文章历史

收稿日期:2023-06-02
收修改稿日期:2023-07-08
凡纳对虾核心育种群生长和抗WSSV性状的遗传参数估计
和怡婧 1,3, 李旭鹏 1,2, 栾生 1,2, 孔杰 1,2, 曹宝祥 1, 罗坤 1, 谭建 1, 曹家旺 1, 陈宝龙 1, 代平 1,2, 邢群 4, 刘绵宇 1, 强光峰 1, 刘杨 1, 隋娟 1,2, 孟宪红 1,2     
1. 海水养殖生物育种与可持续产出全国重点实验室 中国水产科学研究院黄海水产研究所 山东 青岛 266071;
2. 青岛海洋科技中心海洋渔业科学与食物产出过程功能实验室 山东 青岛 266237;
3. 上海海洋大学水产科学国家级实验教学示范中心 上海 201306;
4. 邦普种业科技有限公司 山东 潍坊 261312
摘要:为开展凡纳对虾(Penaeus vannamei)生长和白斑综合征病毒(white spot syndrome virus, WSSV)抗性复合选育,本研究以凡纳对虾59个核心育种群家系1 770尾77~94日龄的个体为实验材料,利用两性状动物模型、公母畜阈值模型,评估在WSSV感染情况下凡纳对虾体长、抗WSSV存活时间和家系WSSV半致死存活率的遗传力和遗传相关。结果显示,凡纳对虾体长、抗WSSV存活时间和家系WSSV半致死存活率遗传力估计值分别为0.17±0.05、0.18±0.05和0.14±0.05,均属于中等遗传力水平,且均与0差异极显著(P < 0.01)。凡纳对虾体长与抗WSSV存活时间性状的遗传相关系数为0.15±0.20,与家系WSSV半致死存活率性状的遗传相关系数为0.25±0.22,上述遗传相关与0差异不显著(P > 0.05);抗WSSV存活时间性状与家系WSSV半致死存活率性状的遗传相关系数为0.96±0.03,遗传相关与1差异不显著(P > 0.05),为高度正相关。结果表明,在该育种群体中,凡纳对虾生长与WSSV抗性可根据育种需要,通过赋值制定综合选择指数,进行多性状复合选育。此外,为优化每代育种的操作过程,可选用家系WSSV半致死存活率作为WSSV抗性的指标性状。本研究为开展凡纳对虾生长和WSSV抗性优良品种的选育提供了基础数据和理论支撑。
关键词凡纳对虾    遗传参数    生长    存活    WSSV    
Evaluation of Genetic Parameters for Growth and Survival Traits of Penaeus vannamei During White Spot Syndrome Virus Infection
HE Yijing 1,3, LI Xupeng 1,2, LUAN Sheng 1,2, KONG Jie 1,2, CAO Baoxiang 1, LUO Kun 1, TAN Jian 1, CAO Jiawang 1, CHEN Baolong 1, DAI Ping 1,2, XING Qun 4, LIU Mianyu 1, QIANG Guangfeng 1, LIU Yang 1, SUI Juan 1,2, MENG Xianhong 1,2     
1. State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
2. Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China;
3. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China;
4. BLUP Aquabreed Co, Ltd. Weifang 261312, China
Abstract: Penaeus vannamei, also known as white foot shrimp, is globally one of the three high-yield shrimp farming varieties. The wild species is found along the Pacific coast of South America. Since 1988, China has introduced P. vannamei. Due to its strong environmental adaptability, high feed conversion rate, fast growth rate, and high tolerance to ammonia nitrogen and nitrite, it has been widely promoted in aquaculture. By 2021, the aquaculture output of P. vannamei in China reached 1.977 million tons, accounting for approximately 37% of the world's total production, and has extremely high economic value.Growth traits are among the most important economic factors in the production of P. vannamei. With the intensive development of shrimp farming and degradation of germplasm, the white spot syndrome virus (WSSV) is a serious disease faced by the global shrimp industry. The infection can cause symptoms such as reduced food intake, enlarged liver and pancreas, pale red body color, and white spots on the head and chest armor in shrimp, resulting in widespread death.At present, China has cultivated 12 new varieties of P. vannamei, which to some extent alleviates its dependence on imports for high-quality P. vannamei. However, the excellent traits of domestic shrimp species are singular, and cultivating new varieties of P. vannamei with fast growth and strong disease resistance is an urgent demand in the market. Genetic parameter evaluation is the fundamental work of selection breeding. Heritability reflects the genetic variation in traits in the breeding population, which is of great significance in the development of a selection index, prediction of selection response, comparison of selection methods, selection breeding planning, and other breeding processes. There are different degrees of genetic correlation among various quantitative traits of shrimp, and genetic correlation coefficients are important for selecting target traits. The estimation of genetic correlation can be used to develop a comprehensive selection index and breeding program of multiple traits, which can improve the selection efficiency and breed better varieties with multiple traits. The higher the genetic correlation between traits, the better the effect of indirect selection. The estimation of genetic parameters is greatly affected by the test population, breeding management, analysis methods, and other factors. To ensure the accuracy of multi-trait composite breeding for growth and WSSV resistance, accurate evaluation of growth and WSSV resistance needs to be carried out for specific breeding populations. There are two commonly used target traits for measuring WSSV resistance in P. vannamei: individual survival time after infection and half-lethal survival rate (SS50) of families. In practice, measuring the half-lethal survival rate of families is more convenient. However, the correlation between these two traits has not yet been reported.To promote the growth and WSSV resistance of P. vannamei, 59 families (1, 770 individuals) were tested for WSSV infection. We recorded the survival time and individual body length of shrimp after infection and analyzed the mean, standard deviation, maximum and minimum values, and coefficient of variation of half-lethal survival rate and test traits for each line. The heritability and genetic correlation coefficients of growth, survival time, and half-lethal survival rate were calculated. Variance components and genetic parameters for growth and survival traits were estimated using a two-trait animal model and a sire-dam threshold model. The genetic parameters of body length were corrected by including age as a covariate. The genetic parameters of WSSV survival time were corrected by including body length as a covariate. The estimated heritability of body length was medium (0.17±0.05), and the estimated heritabilities of survival time and half-lethal survival rate were medium (0.18±0.05 and 0.14±0.05). Further, the estimated heritabilities of the three traits were significantly different from zero (P < 0.01). The genetic correlation between body length and survival time and that of body length and half-lethal survival rate were low (0.15±0.20 and 0.25±0.22). There were no significant differences between the genetic correlations and zero (P > 0.05). The genetic correlation between survival time and half-lethal survival rate was high (0.96±0.03). There was no significant difference between the genetic correlation and one (P > 0.05). The results showed that a comprehensive selection index of growth and WSSV resistance of P. vannamei can be established to carry out multi-trait composite breeding. In this breeding population, the growth and WSSV resistance of P. vannamei can be combined with multiple traits according to the breeding requirements, and the comprehensive selection index can be formulated by assigning values. In addition, to optimize the breeding of each generation, the half-lethal survival rate of WSSV can be used as an indicator of WSSV resistance. This study provides basic data and theoretical support for breeding varieties of P. vannamei with excellent growth and WSSV resistance.
Key words: Penaeus vannamei    Genetic parameters    Growth    Survival    White spot syndrome virus    

凡纳对虾(Penaeus vannamei)又称南美白对虾,主要分布于南美洲太平洋沿岸水域,自1988年引入我国(王兴强等, 2004),其具有较强的环境适应性,饲料蛋白质含量需求低,生长快,抗逆性强,对氨氮、亚硝酸盐等具有较高的耐受性(黄永春等, 2013),因而得到大规模推广养殖。到2021年,我国凡纳对虾养殖产量达197.7万t (农业农村部渔业渔政管理局, 2022),约占世界总产量的37%,具有极高的经济价值。生长性状是凡纳对虾选育最受关注的经济性状之一。因凡纳对虾养殖集约化发展及种质退化等原因,病害时常发生,其中,白斑综合征病毒(white spot syndrome virus, WSSV)可引起对虾摄食量减少、肝胰腺肿大、体色变淡变红、头胸甲出现白色斑点等症状(张吕平等, 2000),导致对虾大面积死亡,是全球对虾产业面临的最严重的疾病之一。目前,我国已培育出12个凡纳对虾新品种(孔杰等, 2020; 陈薇等, 2022; 罗茵, 2022),在一定程度上缓解了我国凡纳对虾优质苗种依赖进口的局面。然而,国内种虾优良性状单一,选育兼具生长快、抗病性强的凡纳对虾新品种是市场的迫切需求。

遗传参数评估是选择育种的基础工作。遗传力反映了该性状在育种群体中的遗传变异丰富度,在制定选择指数、预测选择反应、比较选择方法、选择育种规划等育种过程中具有重要的意义(Falcinner et al, 2000)。目前,已有很多关于凡纳对虾生长与抗WSSV性状遗传参数计算的研究,孙坤(2021)利用8个微卫星位点,以69个家系母本和子代为研究对象,进行系谱重构和分子亲缘相关度的计算,利用物理系谱、重构系谱以及分子亲缘相关度估计3月龄凡纳对虾体长的遗传力范围为0.119~0.132,体重的遗传力范围为0.172~0.182,抗WSSV存活时间的遗传力范围为0.098~0.135;冯亚萍(2017)估计4月龄凡纳对虾“壬海1号”在WSSV感染下的体重遗传力为0.104,抗WSSV存活时间遗传力为0.145;Caballero等(2015)估计凡纳对虾WSSV感染下体重遗传力为0.09~0.11,WSSV感染后存活率遗传力为0.06。遗传相关反映了不同性状间的遗传关系,是多性状复合育种中另一个重要的遗传参数。Gitterle等(2005)估计凡纳对虾2个家系体重与抗WSSV存活率之间的遗传相关系数为–0.55和–0.64,为中度负相关;孙坤(2021)估计凡纳对虾生长和WSSV感染后存活时间的遗传相关为–0.198~ –0.019;冯亚萍(2017)估计凡纳对虾体重与WSSV感染后存活时间的遗传相关为0.69,为中度正相关。

遗传参数估计受测试群体、养殖管理、分析方法等因素影响较大。为保证生长和WSSV抗性多性状复合选育的准确性,需要针对特定育种群体开展生长和WSSV抗性的准确评估。此外,衡量凡纳对虾WSSV抗性有2个常用目标性状:个体感染后存活时间和家系WSSV半致死存活率(survival rate at half lethal time, SS50)。家系WSSV的SS50指测试个体死亡数达到测试个体总数50%时,每个家系的存活率(家系半致死存活率=家系存活个体数/家系个体总数×100%)。实际操作中,家系WSSV的SS50的测量更简便,然而,这2个参数的相关性如何目前尚未见报道。为开展凡纳对虾生长和WSSV抗性的多性状复合选育,进一步优化育种过程,本研究以个体体长、抗WSSV存活时间、家系WSSV半致死存活率作为目标性状,利用两性状动物模型、公母畜阈值模型开展凡纳对虾核心育种群3月龄个体生长和WSSV抗性的遗传力、遗传相关等参数的精准遗传评估,以期为选育生长快且WSSV抗性强的凡纳对虾良种提供理论依据,同时为性状间相关性研究提供基础数据。

1 材料与方法 1.1 实验材料

实验材料来自邦普种业科技有限公司(山东,潍坊) 2022年4月构建的77~94日龄凡纳对虾G5代高抗核心育种群体(父本24个,母本52个),包括59个全同胞家系(含47个半同胞家系),经WSSV、虾肝肠胞虫(EHP)、急性肝胰腺坏死病(AHPND)、传染性皮下及造血组织坏死病毒(IHHNV)、十足目虹彩病毒Ⅰ(DIV1)病原检测,全部为阴性。每个家系随机选取40尾暂养,共计2 360尾,运至中国水产科学研究院黄海水产研究所遗传育种中心进行生长和WSSV抗性测试。随机抽样100尾,测量个体平均体长为4.22 cm,由于实验以体长为生长性状开展研究,未测量体重信息。

1.2 测试方法

暂养:感染测试前进行暂养,于养殖池内放置大小相同的200 L塑料桶59个,每桶加入150 L海水,控制水温25 ℃,每桶放置1个家系,暂养4 d。暂养期间,每日称量体重12%的饲料分3次进行投喂,投喂时间点为每日08:00、14:00和20:00。

制备毒饵:参考孟宪红等(2013)(专利号:ZL201210107377.8)制备成106拷贝/mg的毒饵备用。

生长及WSSV抗性测试:感染测试前一天停止喂料,排空肠道。次日10:00开始感染实验。每个家系从暂养个体中随机取30尾,共计1 770尾测试个体。参考孟宪红等(2013)(专利号:ZL201210107377.8)中投喂毒饵的方法,对每尾虾投喂10 mg毒饵,投喂结束后,每个家系个体分3组平行,每组10尾虾,置于70 cm×40 cm×40 cm的亚克力盒子内。亚克力盒子分别放置于3个环境条件一致的水槽内,饲养期间每天定时投喂饲料、换水,保证养殖条件一致。每个家系另取5尾个体作为对照组放置于另一车间,养殖条件和实验组一致。感染测试期间对照组未出现死亡。实验组投喂毒饵后,每2 h观察一次,捞出死亡的幼虾,利用探针法定量试剂盒检测组织WSSV含量,确定死亡个体死亡原因为WSSV感染。记录个体家系号、个体死亡时间及死亡时体长(眼柄末端至尾节末端长度)。死亡高峰期过后,连续3 d没有死亡个体时,停止实验。

1.3 统计分析 1.3.1 表型分析

利用Excel 2010软件进行样品测试信息的整理汇总,包括个体编号、家系编号、个体感染后存活时间和死亡时个体体长,统计各家系WSSV半致死存活率及测试性状的平均值、标准差、最大值、最小值和变异系数等。

1.3.2 遗传力估计

建立线性混合模型,采用平均信息约束极大似然法(average information restricted maximum likelihood, AIREML)估计凡纳对虾测试个体体长、抗WSSV感染后存活时间的方差组分和遗传参数(栾生等, 2012)。家系WSSV半致死存活率是一个非连续性状,用广义线性混合模型(generalized linear mixed model, GLMM)估计其方差组分(Yin et al, 2005)。根据Wald F statistics检验(Wald, 1943),在体长的遗传参数计算中,加入日龄作为协变量进行矫正。在抗WSSV存活时间遗传参数计算中,加入体长作为协变量进行矫正。

利用ASReml 4.0估计凡纳对虾体长和WSSV感染后存活时间的方差组分,育种分析模型为两性状个体动物模型:

$ {Y_{1i}} = {\mu _1} + {a_{1i}} + {\text{Ag}}{{\text{e}}_{1i}} + {e_{1i}}_{} $ (1)
$ {Y_{2i}} = {\mu _2} + {a_{2i}} + {\text{B}}{{\text{L}}_{2i}} + {e_{2i}} $ (2)

式中,$ {Y_{1i}} $表示收获体长的表型观测值,$ {Y_{2i}} $表示抗WSSV存活时间表型观测值,$ {\mu _1} $$ {\mu _2} $分别表示两性状的总体均值,$ {a_{1i}} $$ {a_{2i}} $表示第i尾虾的加性遗传效应,Age1i表示日龄(协变量),BL2i为第i尾虾的体长(协变量),$ {e_{1i}} $$ {e_{2i}} $表示第i尾虾两性状的随机残差。

体长和WSSV感染后存活时间性状的遗传力计算公式为:

$ {h^2} = \frac{{\sigma _a^2}}{{\sigma _a^2 + \sigma _e^2}} $ (3)

表型方差等于加性遗传方差和残差方差之和,计算公式为:

$ \sigma _p^2 = \sigma _a^2 + \sigma _e^2 $ (4)

式中,$ {h^2} $表示遗传力,$ \sigma _a^2 $表示加性遗传方差,$ \sigma _e^2 $表示残差方差,$ \sigma _p^2 $表示表型方差。

估计家系WSSV半致死存活率遗传参数时,统计死亡个体数达到总数一半时的个体存活状态,将死亡个体记录为0,存活个体记录为1。采用公母畜模型估计凡纳对虾家系WSSV半致死存活率遗传参数,分析模型如下:

$ \Pr (y{}_{ijk} = 1) = \Pr ({l_{ijk}}{\text{ > }}0) = \Phi (\mu + {s_i} + {d_j} + {e_{ijk}}) $ (5)

式中,$ \Pr $表示个体存活的概率;$ {y_{ijk}} $表示第$ i $尾虾的存活状态(1为存活,0为死亡);$ {l_{ijk}} $表示潜在变量,如果$ {l_{ijk}}{\text{ > }}0 $,那么$ {y_{ijk}} = 1 $,如果$ {l_{ijk}} \leqslant 0 $,那么$ {y_{ijk}} = 0 $$ \mu $为总体均值,$ {s_i} $表示第$ i $个父本的加性遗传效应,$ {d_j} $表示第$ j $个母本的加性遗传效应,$ {e_{ijk}} $表示第k尾对虾的随机残差。

利用公母畜阈值模型估算家系WSSV半致死存活率的遗传力,计算公式为:

$ {h^2} = \frac{{4\sigma _{sd}^2}}{{2\sigma _{sd}^2 + \sigma _e^2}} $ (6)

表型方差计算公式为:

$ \sigma _p^2 = 2\sigma _{{\text{sd}}}^2 + \sigma _e^2 $ (7)

式中,$ {h^2} $表示遗传力,$ \sigma _{{\text{sd}}}^2 $表示公母畜方差均值,$ \sigma _e^2 $表示残差方差,$ \sigma _p^2 $表示表型方差。

1.3.3 遗传相关估计

建立两性状个体动物模型,采用AIREML法估算体长、抗WSSV存活时间两性状的遗传相关;建立阈值模型与连续性状个体动物模型估算体长与家系WSSV半致死存活率、抗WSSV存活时间与家系WSSV半致死存活率的遗传相关。

遗传相关系数计算公式为:

$ {r_g} = \frac{{\text{cov} ({\alpha _1}, {\alpha _2})}}{{{\sigma _{\alpha 1}}{\sigma _{\alpha 2}}}} $ (8)

式中,$ {r_g} $表示遗传相关系数,$ \text{cov} ({\alpha _1}, {\alpha _2}) $表示体长和存活时间的协方差,$ {\sigma _{\alpha 1}} $$ {\sigma _{\alpha 2}} $表示体长和存活时间的加性遗传标准差。

Z-score检验各个性状遗传力、遗传相关参数估计值是否显著。

$ Z = \frac{{{X_i} - {X_j}}}{{\sqrt {\sigma _i^2 + \sigma _j^2} }} $ (9)

式中,$ {X_i} $$ {X_j} $分别表示遗传力和遗传相关估计值,$ \sigma _{\text{i}}^2 $$ \sigma _j^2 $分别表示相应遗传力,相关系数的标准误。检验遗传力是否与0有显著差异时,$ {X_j} $$ {\sigma _j} $均定义为0;检验相关系数是否与1有显著差异时,$ {X_j} $$ {\sigma _j} $分别定义为1和0。

2 结果 2.1 协变量显著性分析

Wald F statistics检验表明,日龄对于凡纳对虾体长性状影响显著(P < 0.05),对WSSV感染后存活时间影响不显著(P > 0.05),因此,在体长性状的遗传参数计算中,加入日龄作为协变量进行矫正。体长对于抗WSSV存活时间影响显著(P < 0.05),对家系WSSV半致死存活率影响不显著(P > 0.05),因此,在抗WSSV存活时间遗传参数计算中,加入体长作为协变量进行矫正。似然比率检验(likelihood ratio test, LRT)表明,估计模型中加入共同环境效应后,其似然值与原模型无显著差异(P > 0.05)。此外,各家系在感染前后均为单独养殖状态,因此,在生长、抗WSSV存活时间、家系WSSV半致死存活率3个性状方差组分估计中,都未加入共同环境效应。

2.2 体长、抗WSSV存活时间和家系WSSV半致死存活率统计性描述 2.2.1 WSSV感染后死亡曲线

WSSV感染后的凡纳对虾死亡曲线见图 1。3月龄凡纳对虾在WSSV感染测试5 h后出现死亡,感染60 h达到死亡高峰,感染92 h达到半数死亡,之后被感染的凡纳对虾每日死亡量呈下降趋势。

图 1 凡纳对虾感染测试死亡曲线 Fig.1 Death curve of P. vannamei under infection test
2.2.2 个体水平描述性统计

测试对虾死亡时体长性状与抗WSSV性状的个体水平描述性统计结果见表 1。凡纳对虾体长均值为4.35 cm,最大体长7.00 cm,最小体长2.20 cm,变异系数16.6%,属于中等变异。抗WSSV平均存活时间为113.37 h,最大存活时间为424.00 h,最小存活时间为5.00 h,变异系数为104.66%,属于高等变异。

表 1 凡纳对虾测试群体体长、抗WSSV存活时间在个体水平的统计数据 Tab.1 The statistics data of body length, survival time for the base population in P. vannamei at the population level
2.2.3 家系水平

家系水平的体长、抗WSSV存活时间和家系WSSV半致死存活率描述性统计见表 3,箱线图或柱形图见图 2~图 4。由表 2可知,家系体长均值范围为3.40~4.86 cm,抗WSSV存活时间均值范围为53.00~181.69 h;家系体长变异系数范围为9.05%~22.15%,存活时间变异系数范围为50.58%~122.62%;家系WSSV半致死存活率范围为21.43%~ 80.77% (表 2图 4)。家系间生长性状与抗WSSV性状存在不同的离散程度。家系间体长变异系数为5.91%,存活时间变异系数为24.97%,家系WSSV半致死存活率变异系数为27.21% (图 2图 3)。

图 2 凡纳对虾家系体长箱线图 Fig.2 Box plot of body length of P. vannamei
图 3 凡纳对虾家系存活时间箱线图 Fig.3 Box plot of survival time under the WSSV of P. vannamei IQR:四分位距又称四分差,是描述统计学中的一种方法,以确定第3四分位数和第1四分位数的区别。 IQR (interquartile range): Interquartile range, also known as interquartile difference, is a method in descriptive statistics to determine the difference between the third fourth quantile and the first fourth quartile.
图 4 凡纳对虾59个家系WSSV半致死存活率 Fig.4 Survival rate at half lethal time of 59 P. vannamei families
表 2 凡纳对虾测试群体在家系水平的生长、抗WSSV存活时间、家系WSSV半致死存活率的统计数据 Tab.2 The statistics data of body length, survival time and survival rate for the base population in P. vannamei at the family level
2.3 凡纳对虾体长、抗WSSV存活时间与家系WSSV半致死存活率遗传力估计

凡纳对虾体长、抗WSSV存活时间与家系WSSV半致死存活率方差组分及遗传参数计算如表 3所示,体长遗传力估计值为0.17±0.05,为中等遗传力水平;抗WSSV存活时间和家系WSSV半致死存活率性状遗传力均为中等遗传力水平。

表 3 凡纳对虾体长、抗WSSV存活时间与家系WSSV半致死存活率方差组分与遗传力 Tab.3 Variance components, heritabilities of body length, survival time and SS50 for the base population in P. vannamei
2.4 凡纳对虾体长、抗WSSV性状的遗传相关估计

凡纳对虾体长、抗WSSV存活时间与家系WSSV半致死存活率间相关分析结果如表 4所示,体长与抗WSSV存活时间的遗传相关为0.15±0.20,为低度正相关,与0没有显著差异(P > 0.05);体长与家系WSSV半致死存活率遗传相关为0.25±0.22,与0没有显著差异(P > 0.05);表型相关分别为0.24±0.03和0.19±0.03,均为中低等正相关;抗WSSV存活时间与家系WSSV半致死存活率遗传相关为0.96±0.03,与1差异不显著(P > 0.05),为高度正相关,表型相关为0.85±0.01,与1差异极显著(P < 0.01),为高度正相关。

表 4 凡纳对虾生长、WSSV感染后存活时间、家系WSSV半致死存活率性状表型相关和遗传相关 Tab.4 Correlation analysis based on phenotypic and genetic for body length, survival time and SS50 in P. vannamei
3 讨论 3.1 凡纳对虾生长性状遗传力分析

本研究中,WSSV感染下生长性状的遗传力估计值为0.17±0.05,属于中等遗传力水平。已有的研究显示,在非WSSV感染条件下凡纳对虾生长性状遗传力较高,徐如卫等(2013)估计凡纳对虾体质量、体长的遗传力分别为0.460和0.303;刘均辉等(2016)估计零换水养殖模式下凡纳对虾收获体质量和体长的遗传力分别为0.49±0.08和0.43±0.07;郑静静等(2016)的研究中估计了60、105和150日龄凡纳对虾体重遗传力,分别为0.39±0.07、0.25±0.04和0.22± 0.05;而孙坤等(2022)冯亚萍(2017)、Caballerro等(2015)的研究显示,在WSSV感染下的生长性状遗传力分别为0.119~0.132、0.104和0.09~0.11,估计值都较低,与本研究估算的生长性状遗传力一致。感染WSSV至实验结束共424 h,虽然在模型中利用日龄进行校正,感染仍在一定程度上影响了凡纳对虾的生长性状,降低了群体内个体生长性状的差异,导致生长性状遗传力估计值降低。其次,导致生长遗传力水平偏低的原因可能是实验群体的遗传基础一致性较好,经过4代选育后群体基因纯合度升高(Rezk et al, 2009)。此外,测试个体由于前期高密度养殖,高抗品系普遍长速缓慢等导致测试时体长偏低,对生长遗传力估计也产生一定影响。孙坤等(2022)的研究分别利用物理系谱、重构系谱及分子亲缘相关度估算3月龄凡纳对虾的体长、体质量性状的遗传力,结果显示,相比于利用分子亲缘相关度对体长、体质量评估的遗传力,基于物理系谱评估的遗传力被低估。要提高各性状遗传力的估算准确度,可进一步结合分子信息展开评估。

3.2 凡纳对虾抗WSSV性状遗传力分析

抗WSSV性状中,个体存活时间为连续性状,家系WSSV半致死存活率是阈值性状,受到多基因控制,并且受到非遗传因素的影响,遗传力相对较低。本研究以多性状动物模型估计凡纳对虾抗WSSV存活时间遗传力为0.18±0.05,阈值模型估计家系WSSV半致死存活率遗传力为0.14±0.05,均为中等遗传力水平,表明以上述2个性状为选育目标性状对凡纳对虾抗WSSV性状进行遗传改良,具有一定可行性。

本实验抗WSSV遗传参数计算结果与多数抗病存活性状遗传力估算结果基本一致。冯亚萍(2017)采用个体动物模型评估了4月龄凡纳对虾抗WSSV存活时间的遗传力为0.145±0.073,属于中等遗传力水平;Caballero等(2015)通过阈值模型估计了凡纳对虾抗WSSV存活率遗传力为0.06±0.03,为低遗传力水平;Ren等(2020)的研究评估了凡纳对虾基础群体的存活率的遗传力为0.01±0.02;Zhang等(2017)评估了凡纳对虾在不同年龄存活性状的遗传参数,遗传力在0.01±0.01和0.06±0.01之间。孔杰等(2020)在对虾育种现状分析中显示,对疾病抗性的遗传参数计算中,对虾感染WSSV后存活时间或存活率,多表现为低遗传力水平。

由于存活性状的特殊性,常规的线性分析模型对其遗传参数的估计不够准确,可以结合GLMM方法和公母畜阈值模型进行分析(Ødegard et al, 2006)。本研究用公母畜阈值模型估算家系WSSV半致死存活率遗传力与凡纳对虾抗WSSV存活时间遗传力计算结果无显著差异(P > 0.05),家系WSSV半致死存活率的实验成本相对较低,花费时间更少,在一定条件下可以用阈值性状代替连续性状进行遗传参数的估算。对于凡纳对虾抗病性状的选育,需要连续多代开展,采用高强度选择的方式来提高抗WSSV性状的遗传进展。

3.3 凡纳对虾生长与抗WSSV性状相关性分析

由于生物的数量性状由微效多基因控制,基因间存在连锁和交互作用,生物的各个数量性状间存在不同程度的遗传相关,遗传相关系数是制定目标性状的重要依据(李之乡等, 2018)。对遗传相关性进行估算,可以以此制定综合选择指数,制定多性状的育种方案,提高选择效率,选育多性状良种。性状间的遗传相关性越高,间接选择的效果越好(李思发等, 2006)。

凡纳对虾生长与抗WSSV性状是重要的经济性状,国内外对于凡纳对虾生长与抗WSSV性状的遗传参数估算略有差异,实验群体、实验环境、对虾生长阶段的差异、计算方法、统计方法的差异等均会影响遗传参数的计算。研究表明,凡纳对虾生长与抗病性状之间的遗传相关为负。Brad等(2002)在凡纳对虾生长与抗桃拉病毒(TSV)复合选择中发现,凡纳对虾生长性状与抗TSV性状存在负相关,相关系数为–0.46;栾生等(2013)估算2个测试场凡纳对虾基础群体体重和存活率性状的表型和遗传相关系数分别为–0.007和–0.008,低度线性负相关。孙坤(2021)估算得凡纳对虾生长和抗WSSV性状之间的遗传相关为–0.198~ –0.019,表型相关–0.443~ –0.115,均为中低度负相关。也有研究表明,凡纳对虾生长与抗病存活性状之间的遗传相关为正,冯亚萍(2017)估算凡纳对虾体重与WSSV感染后存活时间的遗传相关系数为0.69,为中度正相关;郑锦卿等(2010)估计凡纳对虾生长性状和抗病评价系数(RDI)的遗传相关为0.176~ 0.259。本研究显示,凡纳对虾体长与抗WSSV存活时间的遗传相关为0.15±0.20,标准误较大,可能与家系内个体数量较少有关;凡纳对虾体长与抗WSSV存活时间和家系WSSV半致死存活率性状遗传相关与0没有显著差异(P > 0.05),制定选择指数时,可对生长性状与2个抗性性状进行赋值同时选育。抗WSSV存活时间性状与家系WSSV半致死存活率性状的遗传相关系数为0.96,属高度正相关,提示2个性状都可以较好地反映核心育种群体的WSSV抗性。实际选育时,如实验设施、人力等因素受限,可优选家系WSSV半致死存活率作为核心育种群体的WSSV抗性指标,优化每代选育过程。

参考文献
BRAD J A, STEVE M A, JEFFREY M L, et al. Selective breeding of Pacific white shrimp (Litopenaeus vannamei) for growth and resistance to taura syndrome virus. Aquaculture, 2002, 204(3/4): 447-460
Bureau of Fisheries, Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. China fishery statistical yearbook 2022. Beijing: China Agriculture Press, 2022 [农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2022中国渔业统计年鉴. 北京: 中国农业出版社, 2022]
CABALLERO-ZAMORA A, MONTALDO H H, CAMPOS-MONTES G R, et al. Genetic parameters for body weight and survival in the Pacific white shrimp Penaeus (Litopenaeus) vannamei affected by a white spot syndrome virus (WSSV) natural outbreak. Aquaculture, 2015, 447: 102-107 DOI:10.1016/j.aquaculture.2014.08.028
CHEN W, HUANG J, TUO Y. Two new varieties, "Haixingnong 3" and "Haimao 1", have been included in the list. Nan Fang Daily, 2022-08-05(A05) [陈薇, 黄进, 陀艳. "海兴农3号" "海茂1号"两个新品种入列. 南方日报, 2022-08-05(A05)]
FALCINNER D S, MACKAY T F C. Introduction to quantitative genetics, 4th ed. Beijing: China Agricutural Science and Technology Press, 2000
FENG Y P. Estimation of genetic parameters for white spot syndrome virus (WSSV) resistance traits in Litopenaeus vannmei and comparison of resistance to WSSV between Litopenaeus vannamei and Fenneropenaeus chinensis. Master´s Thesis of Shanghai Ocean University, 2017 [冯亚萍. 凡纳滨对虾抗WSSV性状遗传参数评估及与中国明对虾抗WSSV性状差异研究. 上海海洋大学硕士研究生学位论文, 2017]
GITTERLE T, SALTE R, CJERDE B, et al. Genetic (co) variation in resistance to white spot syndrome virus (WSSV) and harvest weight in Penaeus (Litopenaeus) vannamei. Aquaculture, 2005, 246(1/2/3/4): 139-149
HUANG Y C, AI H S, PAN Z C, et al. Establishment and WSSV resistant characteristics of selective breeding families for resistance to the white spot syndrome virus of Litopenaeus vannamei. Journal of Fisheries of China, 2013, 37(3): 359-366 [黄永春, 艾华水, 潘忠诚, 等. 凡纳滨对虾抗WSSV选育家系的建立及其抗病特性. 水产学报, 2013, 37(3): 359-366]
KONG J, LUAN S, TAN J, et al. Progress of study on penaeid shrimp selective breeding. Periodical of Ocean University of China (Natural Science), 2020, 50(9): 81-97 [孔杰, 栾生, 谭建, 等. 对虾选择育种研究进展. 中国海洋大学学报(自然科学版), 2020, 50(9): 81-97]
LI S F, WANG C H, LIU Z G, et al. Analysis of heterosis and genetic correlation of growth traits in three variants of red common carp. Journal of Fisheries of China, 2006, 30(2): 175-180 [李思发, 王成辉, 刘志国, 等. 三种红鲤生长性状的杂种优势与遗传相关分析. 水产学报, 2006, 30(2): 175-180]
LI Z X, WANG W J, HU Y L, et al. Estimation of genetic parameters for four-month old turbot (Scophthalmus maximus) resistance to ammonium. Periodical of Ocean University of China, 2018, 48(3): 48-54 [李之乡, 王伟继, 胡玉龙, 等. 4月龄大菱鲆苗种耐氨氮性状的遗传参数评估. 中国海洋大学学报(自然科学版), 2018, 48(3): 48-54]
LIU J H, LUAN S, LUO K, et al. Genetic parameters for growth and survival traits in the Pacific white shrimp (Litopenaeus vannamei) cultured using the zero water exchange system. Journal of Fisheries of China, 2016, 40(4): 595-602 [刘均辉, 栾生, 罗坤, 等. 零换水工厂化养殖模式下凡纳滨对虾生长和存活性状遗传参数估计. 水产学报, 2016, 40(4): 595-602]
LUAN S, BIAN W J, DENG W, et al. Genetic parameters for growth and survival of the base population in channel catfish (Ictalures punctatus). Journal of Fisheries of China, 2012, 36(9): 1313-1321 [栾生, 边文冀, 邓伟, 等. 斑点叉尾基础群体生长和存活性状遗传参数估计. 水产学报, 2012, 36(9): 1313-1321]
LUAN S, LUO K, RUAN X H, et al. Genetic parameters and genotype by environment interaction for body weight and survival of Pacific white shrimp Litopenaeus vannamei. Oceanologia et Limnologia Sinica, 2013, 44(2): 445-452 [栾生, 罗坤, 阮晓红, 等. 凡纳滨对虾(Litopenaeus vannamei)体重、存活性状的遗传参数和基因型与环境互作效应. 海洋与湖沼, 2013, 44(2): 445-452]
LUO Y. Significant breakthroughs have been made in the cultivation of Guangdong South American white shrimp varieties. Marine Fisheries, 2022(5): 2 [罗茵. 广东南美白对虾品种培育取得重大突破. 海洋与渔业, 2022(5): 2]
MENG X H, ZHANG T S, KONG J, et al. Equivalent and quantitative test method of white spot syndrome virus resistance of prawns. ZL201210107377.8. 2013-12-25 [孟宪红, 张天时, 孔杰, 等. 对虾抗白斑综合症病毒能力的等量、定量测试方法. ZL201210107377.8. 2013-12-25]
ØDEGÅRD J, INGRID O, BJARNE G, et al. Evaluation of statistical models for genetic analysis of challenge test data on furunculosis resistance in Atlantic salmon (Salmo salar): Prediction of field survival. Aquaculture, 2006, 259(1): 116-123
REN S, PRENTIS P, MATHER P B, et al. Genetic parameters for growth and survival traits in a base population of Pacific white shrimp (Litopenaeus vannamei) developed from domesticated strains in China. Aquaculture, 2020, 523: 735148
REZK M A, PONZONI R W, KHAW H L, et al. Selective breeding for increased body weight in a synthetic breed of Egyptian Nile tilapia, Oreochromis niloticus: Response to selection and genetic parameters. Aquaculture, 2009, 293(3/4): 187-194
SUN K, LI X P, SUI J, et al. Evaluation of genetic parameters of body length, body weight and WSSV resistance of Litopenaeus vannamei based on microsatellite markers. Journal of Fisheries of China, 2022, 46(4): 583-593 [孙坤, 李旭鹏, 隋娟, 等. 基于微卫星标记评估凡纳滨对虾收获体长、体质量以及抗WSSV性状的遗传参数. 水产学报, 2022, 46(4): 583-593]
SUN K. Genetic parameter evaluation and genome wide association analysis of important economic traits in Litopenaeus vannamei. Master´s Thesis of Shanghai Ocean University, 2021 [孙坤. 凡纳滨对虾重要经济性状的遗传评估及全基因组关联分析. 上海海洋大学硕士研究生学位论文, 2021]
WALD A. Tests of statistical hypotheses concerning several parameters when the number of observations is large. Transactions of the American Mathematical Society, 1943, 54(3): 426-482
WANG X Q, MA S, DONG S L. Studies on the biology and culture ecology of Litopenaeus vannamei: A review. Transactions of Oceanology and Limnology, 2004(4): 94-100 [王兴强, 马甡, 董双林. 凡纳滨对虾生物学及养殖生态学研究进展. 海洋湖沼通报, 2004(4): 94-100]
XU R W, QIAN Z Y, LIU X L, et al. Genetic parameter estimation for growth traits of Pacific white shrimp (Litopenaeus vannamei). Journal of Fisheries of China, 2013, 37(5): 672-678 [徐如卫, 钱昭英, 刘小林, 等. 凡纳滨对虾生长性状遗传参数的估计. 水产学报, 2013, 37(5): 672-678]
ZHANG J, CAO F, LIU J, et al. Genetic parameters for growth and survival traits in Litopenaeus vannamei at different ages. Aquaculture International, 2017, 25(5): 1901-1911
ZHANG L P, HU C Q, WU Z H. Blood pathological study on Penaeus monodon experimentally infected by WSBW. Tropic Oceanology, 2000(3): 1–7, 97 [张吕平, 胡超群, 吴灶和. 实验感染白斑杆状病毒(WSBV)的斑节对虾血液病理学研究. 热带海洋, 2000(3): 1–7, 97]
ZHENG J J, LIU J Y, LIU J H, et al. Gnetic parameterization and breeding value on body weight of Litopenaeus vannamei in different growth stages. Oceanologia et Limnologia Sinica, 2016, 47(5): 1005-1012 [郑静静, 刘建勇, 刘加慧, 等. 凡纳滨对虾(Litopenaeus vannamei)不同生长阶段体重的遗传参数和育种值估计. 海洋与湖沼, 2016, 47(5): 1005-1012]
ZHENG J Q. Estimation of genetic parameters and breeding values for growth and disease resistance traits of Litopenaeus vannamei. Master´s Thesis of Sun Yat-Sen University, 2010 [郑锦卿. 凡纳滨对虾的生长性状和抗病性状的遗传参数和育种值估计. 中山大学硕士研究生学位论文, 2010]
YIN Z, QIN Z. Estimation of heritability for threshold traits in livestock using GLMM method. Journal of China Agricultural University, 2005, 10(6): 33-36