渔业科学进展  2024, Vol. 45 Issue (5): 13-29  DOI: 10.19663/j.issn2095-9869.20231129001

引用本文 

徐文腾, 孙雪雪. 组蛋白及变体在染色质重塑中的功能:以水生动物精子发生为例[J]. 渔业科学进展, 2024, 45(5): 13-29. DOI: 10.19663/j.issn2095-9869.20231129001.
XU Wenteng, SUN Xuexue. Function of Histones and Variants in Chromatin Remodeling: A Case Study of Spermatogenesis in Aquatic Animals[J]. Progress in Fishery Sciences, 2024, 45(5): 13-29. DOI: 10.19663/j.issn2095-9869.20231129001.

基金项目

国家重点研发计划(2022YFD2400405)和国家自然科学基金(32072955)共同资助

通讯作者

徐文腾,副研究员,Email: xuwt@ysfri.ac.cn

文章历史

收稿日期:2023-11-29
收修改稿日期:2024-03-12
组蛋白及变体在染色质重塑中的功能:以水生动物精子发生为例
徐文腾 1,2, 孙雪雪 1,2     
1. 广东海洋大学水产学院 广东省水产动物病害防控与健康养殖重点实验室 广东 湛江 524088;
2. 中国水产科学研究院黄海水产研究所 海水养殖生物育种与可持续产出全国重点实验室 青岛海洋科技中心海洋渔业科学与食物产出过程功能实验室 山东 青岛 266071
摘要:两性生殖中,精子作为携带父本信息的载体,是物种延续的关键因素。精子发生经历精原细胞、初级和次级精母细胞、圆形精子、成熟精子阶段。在圆形精子形成成熟精子过程中,染色质进行重塑,细胞形态发生剧烈变化,其中,组蛋白修饰和组蛋白变体在这些过程中发挥了重要作用:如甲基化主要与基因表达的激活或抑制有关;乙酰化激活转录活性并参与组蛋白沉积和DNA修复;磷酸化促进转录后修饰或参与DNA双链断裂修复;泛素化调节不同细胞途径中各式各样的蛋白质底物。组蛋白变体在调节染色体结构中发挥重要功能:如组蛋白H1变体在分化过程中具有抑制转录的作用;组蛋白H2A和H2B变体在精子染色质包装过程中发挥特有功能;H3.3是H3最重要的变体,在细胞周期的各时期都有表达;组蛋白H4则是进化最慢的组蛋白之一,目前还没有发现其组蛋白变体。本文围绕组蛋白翻译后修饰,梳理了甲基化、乙酰化、磷酸化、泛素化等方面的最新进展和组蛋白变体在染色质重塑过程中的功能研究进展,随后针对各类组蛋白变体及其功能进行了总结,最后以半滑舌鳎(Cynoglossus semilaevis)为例简要介绍这些研究对水生动物精子发生的启示。
关键词组蛋白    翻译后修饰    染色质重塑    精子发生    
Function of Histones and Variants in Chromatin Remodeling: A Case Study of Spermatogenesis in Aquatic Animals
XU Wenteng 1,2, SUN Xuexue 1,2     
1. College of Fisheries, Guangdong Ocean University; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China;
2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266071, China
Abstract: Epigenetics refers to heritable changes that do not affect DNA sequences. Compared to genetic changes, epigenetic changes affect gene expression and protein products in cells, and these changes are reversible and dependent on the environment. There are three major types of epigenetic changes: DNA methylation, histone post-translational modifications (PTMs) increase the functional diversity of the proteome through the covalent addition of functional groups or proteins, proteolytic cleavage of regulatory subunits, or degradation of whole proteins), and non-coding Ribonucleic Acid.. This study focused on post-translational histone modifications.There are five main histone types: H1/H5, H2A, H2B, H3, and H4. Genes encoding histones do not contain introns and are among the most conserved proteins in eukaryotes. Histones are basic structural proteins comprising eukaryotic chromosomes. Generally, two molecules, H2A, H2B, H3, and H4 form a histone octamer that combines with DNA to form a structural unit called a nucleosome. This nucleosome appears every 200 bp and is connected by H1 histones to form chromatin.Histone modification refers to the addition of functional groups to histone tails, most commonly lysines. This process regulates gene expression by altering chromatin structure through condensation and depolymerization. Additionally, histone modification creates binding sites for various proteins. Histone modifications reported in animals include methylation, acetylation, phosphorylation, ubiquitination, SUMOylation (which is a small ubiquitin-related modifier involved in post-translational modification of proteins), ADP-ribosylation (which is a small ubiquitin-related modifier involved in post-translational modification of proteins), and short-chain lysine acylation.Many studies have shown that chromatin remodeling is a key step in spermatogenesis, involving the transformation of histones to protamines. Briefly, protamine replacement requires (Ⅰ) histone PTMs to promote the opening of histone-based chromatin structures, especially histone hyperacetylation and incorporation into histone variants; (Ⅱ) binding of bromine domain proteins to acetyl residues and remodeling of chromatin; (Ⅲ) formation and repair of DNA strand breaks in chromatin remodeling; and (Ⅳ) incorporation of protamine. Herein, we focused on Process (Ⅰ).In bisexual reproduction, sperm, as a paternal information carrier, is a key factor in a species continuation. Spermatogenesis includes various stages, including spermatogonia, primary and secondary spermatocytes, round sperms, and mature sperms. During round sperm transformation into mature sperm, chromatin remodeling occurs and cell morphology undergoes dramatic changes, in which histone PTMs and variants are essential. Histone PTMs patterns affect gene expression over a wide range, such as methylation, which is mainly related to gene expression activation or inhibition; acetylation, which activates transcriptional activity and participates in histone deposition and DNA repair; phosphorylation, which promotes post-transcriptional modification or participates in DNA double-strand break repair; and ubiquitin, which regulates various protein substrates in different cellular pathways. Histone variants have special functions in regulating chromosome structure. For example, histone H1 variants inhibit transcription during differentiation, histone H2A and H2B variants play a unique role in sperm chromatin packaging, H3.3 is the most important variant of H3, which is expressed in all stages of the cell cycle and participates in chromosome formation outside the S phase, Histone H4 is one of the slowest evolving proteins, and no histone variant has ever been found. Focusing on post-translational histone modifications, this study reviews the latest progress in methylation, acetylation, phosphorylation, and ubiquitination. Subsequently, the histone variants and their functions in chromatin remodeling are summarized. Finally, using Cynoglossus semilaevis as an example, this study briefly introduces the implications of these studies on spermatogenesis in aquatic animals. Elucidating the effect of PTMs on spermatogenesis will aid in exploring the regulatory mechanism of specific sperm (W-type) absence, which expands the fundamental theory of reproductive biology and provides novel solutions to monosex fry cultivation in aquaculture.
Key words: Histone    Post-translational modification    Chromatin remodeling    Spermatogenesis    
1 组蛋白翻译后修饰及相关酶 1.1 组蛋白概述

组蛋白有5个主要家族:H1/H5、H2A、H2B、H3和H4 (Bhasin et al, 2006),其基因不含内含子(Birnstiel et al, 1985; Liu et al, 1989),是真核生物中最保守的蛋白质之一(Nelson et al, 2005)。组蛋白是组成真核生物染色体的基本结构蛋白,由两分子的H2A、H2B、H3和H4形成一个组蛋白八聚体,它们与DNA结合形成称为核小体的结构单元,这种核小体结构在真核生物基因组中,每200个碱基对就出现一次(Matsumura et al, 1970; Youngson, 1990),是染色质的主要蛋白质成分,核小体之间再由H1组蛋白连接形成染色质。

表观遗传学可以被描述为不改变DNA序列的可遗传改变,与遗传变化(影响DNA突变介导的蛋白质结构)相比,表观遗传变化影响基因表达,从而影响细胞内蛋白质产物的数量。表观遗传变化是可逆的,并且与细胞所处环境的反应有关(Handy et al, 2011; Meyer et al, 2017; Maamar et al, 2018; Xavier et al, 2019; Allis et al, 2016)。动物细胞中表现出3组表观遗传变化:DNA甲基化、组蛋白翻译后修饰和非编码RNA (ncRNA),本文将重点关注组蛋白修饰这一过程。

组蛋白修饰是通过在核心组蛋白的尾部存在的氨基酸(最常见的是赖氨酸)上添加一个官能团形成的(Peixoto et al, 2020)。组蛋白修饰的主要作用是通过染色质凝聚和解聚来控制基因表达(Zhang et al, 2001),也可以为各种蛋白质提供结合部位(Patel et al, 2013)。在动物中已报道的组蛋白修饰有甲基化、乙酰化、磷酸化、泛素化、SUMO化、ADP核糖化和短链赖氨酸酰化等(Peixoto et al, 2020; Jha et al, 2017; Sabari et al, 2017)。

1.2 组蛋白甲基化

组蛋白甲基化是甲基转移到赖氨酸(K)的ε-氨基或精氨酸(R)残基的ω-胍基上的修饰,主要位于组蛋白H3或H4的N端。其中,赖氨酸残基能被单甲基化、二甲基化或三甲基化,而精氨酸残基只能被单甲基化或二甲基化(Chioccarelli et al, 2020)。甲基化不会改变组蛋白修饰的电荷势,主要与基因表达的激活或抑制有关(Zhang et al, 2001)。常见组蛋白甲基化修饰位点与功能见表 1 (Cell Signaling网站)。组蛋白甲基转移酶(HMTs)是组蛋白甲基化的催化剂,负责赖氨酸甲基化的HMT称为组蛋白赖氨酸甲基转移酶(HKMT),负责精氨酸残基甲基化的HMT称为精氨酸甲基转移酶(PRMT)(Godmann et al, 2007)。大多数赖氨酸甲基转移酶的催化结构域含有SET结构域(Marmorstein, 2003; Yang et al, 2018)。然而,存在一种独特的赖氨酸甲基转移酶DOT1L(类似端粒沉默的干扰因子),其缺乏固定的结构域,只催化核心组蛋白H3 (H3K79me)赖氨酸79残基的甲基化(Yang et al, 2018)。HMT将其底物甲基化到特定水平,同时氨基酸变化也可以改变甲基化活性。例如,粗糙脉孢菌(Neurospora crassa)组蛋白H3K9甲基转移酶突变(F281Y)后,从三甲基酶转变为单甲基酶,在人类(Homo sapiens) DIM5同源组蛋白N-赖氨酸甲基转移酶2基因(G9a)突变后(F1205Y),从去甲基酶转变为单甲基酶(Collins et al, 2005)。在斑马鱼(Danio rerio)中,prmt5 (精氨酸甲基转移酶5)缺失后,将影响斑马鱼性腺细胞的正常迁移,最终导致性腺细胞凋亡。研究表明,prmt5在脊椎动物性腺发育过程中扮演着十分重要的角色(Zhu et al, 2019)。研究人员系统地检测了组蛋白修饰H3K4me3、H3K27ac、H3K27me3和H3K36me3在斑马鱼精子、卵子、4细胞时期、256细胞时期和穹顶期胚胎基因组内的分布特性。结果表明,精子基因组增强子上的“去记忆化(dememorization)”在受精之前就已经开始发生(Wu et al, 2018)。组蛋白去甲基化是由组蛋白去甲基酶(HDMTs)执行的(Yang et al, 2018)。已报道的部分组蛋白甲基转移酶类和组蛋白去甲基酶类见表 2 (Godmann et al, 2007; Marmorstein et al, 2003; Yang et al, 2018; Collins et al, 2005; Zhai et al, 2017)。

表 1 常见甲基化修饰位点和功能(Cell Signaling网站) Tab.1 Common methylation modification sites and functions (Cell Signaling website)
表 2 组蛋白甲基转移酶类和组蛋白去甲基酶类 Tab.2 Histone methyltransferases and histone demethylases
1.3 组蛋白乙酰化

组蛋白乙酰化是发现最早的影响转录调控的组蛋白修饰之一,也是目前研究最多的。组蛋白乙酰化是在组蛋白乙酰转移酶(HATs)的作用下,在核心组蛋白(H2A、H2B、H3和H4) N-末端赖氨酸侧链的ε-氨基上加入乙酰基。乙酰化中和了赖氨酸残基的正电荷电势,削弱了DNA和组蛋白之间的相互作用力,导致染色质松动并激活转录活性。此外,溴结构域蛋白与乙酰基残基结合并使染色质重塑,从而参与组蛋白沉积和DNA修复(Legube et al, 2003)。常见组蛋白乙酰化修饰位点和功能见表 3 (Cell Signaling网站)。组蛋白乙酰转移酶HAT分为A型或B型。A型酶位于细胞核中,含有溴结构域,能够结合已经嵌入染色质结构中的乙酰化组蛋白。B型乙酰转移酶位于细胞质中,只能修饰新合成的组蛋白。因此,B型酶主要乙酰化细胞质中新合成的组蛋白,并且更保守(Thiagarajan et al, 2016)。组蛋白脱乙酰酶(HDAC)负责组蛋白的去乙酰化过程,根据功能和序列相似性,HDAC蛋白可分为四大类。Ⅰ类、ⅡA类和ⅡB类被视为“经典”HDAC,其活性可被曲古抑菌素A(TSA)抑制,而Ⅲ类是NAD+依赖性蛋白家族,不受TSA影响。Ⅳ类仅与其他类存在序列相似性,被视为非典型类。与HAT相比,HDAC的位点特异性较低,通常会相互产生大型复合物和额外的蛋白质(Milazzo et al, 2020)。研究表明,斑马鱼的生殖质聚集和PGC特化需要Sinhcaf介导的组蛋白去乙酰化的调控作用(Tao et al, 2022)。研究人员母源敲降斑马鱼3个关键组蛋白乙酰转移酶,这种敲降导致了胚胎乙酰化的降低并引起基因组激活的异常以及胚胎死亡(Zhang et al, 2018)。

表 3 常见组蛋白乙酰化修饰位点和功能(Cell Signaling网站) Tab.3 Common histone acetylation modification sites and functions(Cell Signaling website)
1.4 组蛋白磷酸化

组蛋白磷酸化是氨基酸侧链的羟基加入磷酸基团,主要发生在组蛋白N端的丝氨酸、苏氨酸和酪氨酸上。磷酸化为组蛋白引入了额外的负电荷电势,改变了染色质的结构。磷酸基团的存在增加了转录因子和酶与DNA结合的能力,促进转录后修饰(PTMs)或参与DNA双链断裂(DSB)修复。所有组蛋白均可被磷酸化并且磷酸化位点多变,如在细胞分裂期间,H1的1~3个丝氨酸可发生磷酸化,而在有丝分裂时期,H1有3~6个丝氨酸或苏氨酸发生磷酸化,其他4个核心组蛋白的磷酸化可以发生在N末端区域的丝氨酸残基上(Chioccarelli et al, 2020),常见组蛋白磷酸化修饰位点与功能见表 4 (Cell Signaling网站)。鱼类研究揭示了组蛋白磷酸化与精子发生、精子成熟和受精过程密切相关。虹鳟(Oncorhynchus mykiss)转铁蛋白已从精浆中分离出来,并在所有检测到的丝氨酸、苏氨酸和酪氨酸残基处均被磷酸化。此外,不同的磷酸化谱可以触发不同的精子激活机制,这表明蛋白质磷酸化在各种鱼类中具有关键的调节作用。睾丸精子磷酸化的研究不仅有助于阐明性腺分化的生物学基础,而且为鉴定水产鱼类性别控制调节的生物标志物提供了新的视角。磷酸化作为经典的组蛋白修饰在精子发生中广为报道,磷酸蛋白质组学技术被用于确定雄性不育或生殖缺陷的潜在机制。如在半滑舌鳎(Cynoglossus semilaevis)中发现RAN结合蛋白(RanBP2)存在4个磷酸化位点,并作为中心分子与多个细胞周期蛋白(Cdc5l和Cdc40)相互作用(Li et al, 2023)。在中华绒螯蟹(Eriocheir sinensis)中发现H4组蛋白磷酸化与雄蟹的繁殖能力密切相关,可作为精子成熟度的表观遗传标记(Zhang et al, 2020)。

表 4 常见组蛋白磷酸化修饰位点与功能(Cell Signaling网站) Tab.4 Common histone phosphorylation modification sites and functions(Cell Signaling website)
1.5 组蛋白泛素化

泛素是一种由76个氨基酸组成的小蛋白,组蛋白泛素化是指将泛素加入侧链赖氨酸残基的ε-氨基上,常见泛素化修饰位点与功能见表 5 (Cell Signaling网站)。泛素化过程是由3种酶共同作用的级联反应,包括泛素激活酶(E1)、泛素结合酶(E2)和泛素连接酶(E3) (Sun et al, 2021),泛素化被去泛素化酶(DUBS)去除。有研究表明,泛素结合酶E2在克氏原螯虾(Procambarus clarkii)和大黄鱼(Larimichthys crocea)等物种的配子发生和性腺发育过程等方面都有重要的调控作用(韩坤煌等, 2017; 钱照君等, 2016)。研究发现,在半滑舌鳎中,Ubc9基因作为一种E2结合酶基因,参与了胚胎发生和性别修饰(Hu et al, 2013)。中国对虾(Penaeus chinensis)在感染WSSV后通过泛素–蛋白酶体途径(ubiquitin-proteasome pathway, UPP)对某些特殊靶蛋白进行选择性降解,影响细胞的凋亡过程(李旭鹏等, 2018)。泛素羧基端水解酶5基因(UCHL5) 与脊尾白虾(Exopalaemon carinicauda)卵巢发育有密切关系(高威等, 2022)。泛素化包括单一泛素化和多泛素化。单一泛素化主要通过改变染色质结构或为其他蛋白质复合体提供相互作用来控制基因的表达(Osley et al, 2006),而多泛素化参与了广泛的过程,包括蛋白–蛋白相互作用、蛋白降解等。泛素化能够调节不同细胞途径中各式各样的蛋白质底物。泛素化在鱼类性别分化和精子发生中发挥着重要作用。鳗鱼(Monopterus albus)中泛素羧基末端水解酶UCH-L1 (一种去泛素酶)在性腺转化和配子发生过程中高表达,并可能发挥重要的调节作用(Sun et al, 2008);虹鳟中组蛋白泛素化严格调控精子发生过程中鱼精蛋白的替代(Nickel et al, 1987);在塞内加尔鳎鱼(Solea senegalensis)中发现了400多个与精子发生相关的基因,其中包括多个泛素化相关基因(Forne et al, 2011);半滑舌鳎精子发生过程中,E3泛素连接酶基因neurl3Cs-rchy1在雄性性腺分化与精子发育中起着重要作用(Sun et al, 2021; Xu et al, 2016)。

表 5 常见泛素化修饰位点与功能(Cell Signaling网站) Tab.5 Common ubiquitin modification sites and functions (Cell Signaling website)
1.6 其他组蛋白修饰

除去以上提到的常见修饰,其他少见的修饰也存在于组蛋白尾部,如SUMO化(由类似泛素的小修饰物修饰)、巴豆化和丁酰化(S)等。然而,到目前为止,关于它们作用的文献资料很少(Cavalieri et al, 2021; Wang et al, 2019),因此,本文只进行简要描述。已有研究表明,SUMO化发生在丝氨酸残基上,其在缺陷的精子质基上也有发生。组蛋白巴豆化是调控精子质量(活力和形态)的标志,与染色质重构和结构性异染色质有关(Talamilo et al, 2021; Metzler-Guillemain et al, 2008; Kekalainen et al, 2022; Marchiani et al, 2014; Vigodner et al, 2020)。赖氨酸巴豆化(KCR)是组蛋白赖氨酸酰化修饰之一,巴豆化主要在组蛋白赖氨酸的ε-氨基中发挥关键作用。丁酰化与雄性生殖细胞减数分裂和减数分裂后细胞中活跃的基因转录有关(Dai et al, 2014),同时发现,其在小鼠(Mus musculus)中与精子核蛋白交换和精子头部形成密切相关(Meyer-Ficca et al, 20112015)。

2 组蛋白在染色质重塑和精子发生中的功能 2.1 精子发生过程中染色质重塑的动态及调控

精子发生过程中存在独特的染色质重塑过程,超过90%的核心组蛋白被精巢特异性组蛋白变体取代,然后是过渡蛋白(TPS),最后是鱼精蛋白(PRM) (Balhorn et al, 1989; Russell et al, 1990)。富含赖氨酸和半胱氨酸残基的鱼精蛋白不同于核心组蛋白,它们可以将精子基因组包装成一种独特的环状染色质结构(Luger et al, 1997)。精子染色质形成含有约50~ 100 kb DNA的环状,导致染色质结构比基于核小体的染色质浓缩5~10倍(Balhorn et al, 1989; Poccia et al, 1986)。这种结构对于DNA进入比间期体细胞核小7倍的细胞核中是至关重要的,并保护父本的基因组免受物理和化学损害。较为特殊的一个物种为斑马鱼,其精子染色体不存在鱼精蛋白–组蛋白交换过程,早期胚胎发育过程中也没有广泛的DNA去甲基化过程(Zhang et al, 2018)。

大量研究表明,广泛存在的染色质重塑是精子发生的关键步骤(Balhorn et al, 1989; Russell et al, 1990; Royo et al, 2016; Yoshida et al, 2018)。但由于这一过程本身极其复杂,且目前尚无体外实验系统对其进行研究,组蛋白向鱼精蛋白转化的分子和调控机制尚需进一步阐明。此外,染色质重构体被认为是在精子发生过程中加速染色质广泛重塑所必需的,但它们在重塑过程中的作用尚不清楚(Yamaguchi et al, 2018)。

简而言之,鱼精蛋白取代组蛋白的过程需要(Ⅰ)组蛋白翻译后修饰(PTMs)促进基于组蛋白的染色质结构的打开,特别是组蛋白超乙酰化并掺入组蛋白变体;(Ⅱ)溴结构域蛋白与乙酰基残基结合并使染色质重塑;(Ⅲ)DNA链断裂的形成和修复;以及(Ⅳ)鱼精蛋白的掺入(Rousseaux et al, 2008; Hud et al, 1993; Ward et al, 1991; Braun et al, 2001; Balhorn et al, 1977; Gatewood et al, 1990; Erkek et al, 2013; Ihara et al, 2014; Carone et al, 2014; Samans et al, 2014)。本文重点关注(Ⅰ)这一过程。

2.2 组蛋白变体取代核心组蛋白调控精子发生

组蛋白变体是指连接组蛋白H1和H5及其变体,以及核心组蛋白H2A、H2B、H3和H4的变体。相比之下,组蛋白变体更容易被甲基化、乙酰化、磷酸化、SUMO化和泛素化修饰(Champroux et al, 2018; Boussouar et al, 2008)。组蛋白变体可以改变核小体和染色质结构调控基因转录。组蛋白变体不仅在S期表达,也在其他各个细胞周期表达,但其整体表达水平比较低。这些组蛋白变体具有独特的生物物理特性,一些可调节核小体结构,而另一些可与基因组的特定区域结合(Kamakaka et al, 2005)。组蛋白变体基因结构也不同于核心组蛋白基因的结构,它们含有内含子,通常合成RNA需要合成一个polyA尾巴(Old et al, 1984)。作为精子发生的重要调控手段,染色质重塑主要是通过整合精巢特异性组蛋白变体的翻译后修饰(PTMs)来发生的(Royo et al, 2016; Yoshida et al, 2018)。在特定的生殖细胞类型中检测到不同的H1/H5、H2A、H2B和H3组蛋白变体,或者精巢特异表达组蛋白变体(Greiner et al, 2004; Drabent et al, 1996; Yan et al, 2003)。然而,目前尚未检测到精巢特异的H4变体。本文主要关注H1及其变体,以及H2A、H2B和H3变体。

2.2.1 H1及其变体

在5类组蛋白中,组蛋白H1的多样性最大。在哺乳动物中,已鉴定出11种H1变体,包括7种体细胞H1变体(H1.0、H1.1、H1.2、H1.3、H1.4、H1.5和H1x)和4种生殖细胞特异性H1变体(H1T、H1T2、H1LS1和H1oo)。其中,H1T、H1T2和HILS1是睾丸特异表达的H1变体。H1.1~ H1.5是体细胞中普遍表达的H1的主要类型,但它们的表达在不同的组织和细胞类型中受到严格调控。与体细胞H1相比,H1T对DNA的结合亲和力较低,对染色质的浓缩程度较小(Pan et al, 2016)。组蛋白H1T仅存在于粗线期精母细胞和早期圆形精子细胞中,占大鼠(Rattus norvegicus) H1总量的55% (Lennox et al, 1984; Doenecke et al, 1997)。缺乏H1.1或H1T的小鼠具有生育能力,并显示出正常的精子发生。与H1T不同之处是,H1T2高度富集了精氨酸残基和S/TPXK/R位点(Martianov et al, 2005)。H1T2存在于早期精子细胞的细胞核中,在圆形和细长的精子细胞中具有特殊的极性定位,且与精子细胞核顶端的染色质有关。小鼠体内H1T2的缺失严重损害了染色质凝聚和圆形精子细胞的形态转化。这些结果表明,H1T2是正常精子发生所必需的,并在染色质凝聚和确定细长精子细胞的细胞极性方面发挥关键作用。H1T2已被发现与鱼精蛋白相互作用,它的消除导致鱼精蛋白含量的减少,这表明H1T2在组蛋白到鱼精蛋白的转变中起着功能作用。H1T2和组蛋白甲基转移酶Ezh2相互作用并共存于圆形精子细胞的顶端,这可能表明在精子细胞伸长过程中,H1T2通过调节组蛋白H3K27的甲基化调控染色质重塑从而发挥作用(Tanaka et al, 2005)。H1T2和HILS1是关系最远、保守程度最低的H1变体。H1T2和HILS1的表达仅限于精子细胞。HILS1在早期和伸长的精子细胞中表达,其核定位在很大程度上与过渡蛋白和鱼精蛋白的定位重叠。HILS1比H1T2具有更高的DNA结合亲和力,这可能是晚期精子细胞染色质凝聚增加的原因(Yan et al, 2003; Tanaka et al, 2005)。

2.2.2 H2A和H2B变体

H2A和H2B的一些变体已经在结构和功能分析中进行了研究,与典型的核心组蛋白相比,它们的稳定性较差。在核小体中,精巢H2A和H2B变体在与体细胞核心组蛋白相互作用时将导致核小体的不稳定。组蛋白H2A及其变体的差异主要表现在C端尾部的序列差异和其长度(Costanzi et al, 1998)。已经在哺乳动物中发现了多种睾丸特异的H2A和H2B组蛋白变体,包括TH2A、TH2B、H2AL1、H2AL2、H2AL3和H2A.B等(Wolffe et al, 1997; Bucci et al, 1982)。H2AL2在减数分裂后的伸长精子细胞中特异表达,此时,TPS也开始积累,这表明其对精子基因组组装和雄性生育是必需的,同时,H2AL2对于过渡蛋白在核小体上的装载和有效的PRM组装也起着关键作用(Govin et al, 2007; Barral et al, 2017)。H2A.B在粗线期精母细胞到圆形精子细胞中都会被表达,且H2A.B参与组蛋白–鱼精蛋白替换是通过调节H2AL2和TP1染色质的掺入和解聚。H2A.B在精子发生、转录起始、RNA剪切等过程中具有重要功能。H2A.B易形成开放的核小体结构,并破坏染色质结构,导致染色质松散。但这种开放的核小体极不稳定,难以获得高精度结构(Zhou et al, 2021; Soboleva et al, 2012)。TH2A和TH2B是2种精巢特异的H2变体,这2个基因位置相邻,共享一个启动子,表明它们可能共同发挥作用(De Lucia et al, 1994)。TH2A和TH2B可能具有调节染色质开放或总组蛋白水平的功能,以促进精子形成期间的组蛋白替代(Montellier et al, 2013)。通过生化实验,研究人员认为,TH2A和TH2B可以形成结构不稳定的核小体(Wolffe et al, 1997)。TH2A和TH2B基因敲除会导致精子发生过程中组蛋白替换缺陷(Li et al, 2005)。H2A.Z是组蛋白H2A的变体,在基因转录、DNA复制、基因组稳定性维持等过程中发挥重要作用。H2A.Z通过精确定位于基因组的特定位点来改变染色质结构并实现其功能。SWR1催化的H2A.Z替换反应可以将H2A.Z核小体精准地定位到正确的染色质区域,又称“核小体编辑”。研究发现,在酵母中SWR1的重要亚基Swc2具备特异识别并感知底物H2A核小体的能力,进而揭示了SWR1催化H2A.Z替换H2A的过程中维持反应单向性的分子机理(Dai et al, 2021)。

2.2.3 H3变体

H3具有多个变体,如H3.1、H3.2、H3.3、H3T、H3.X、H3.Y、CENP-A和H3.5 (Shinagawa et al, 2015; Padavattan et al, 2015)。H3.1和H3.2复制组蛋白在S期高表达,H3.3非复制性组蛋白在S期达不到峰值。H3.3有助于形成开放的染色质构型,是染色质重组和组蛋白–鱼精蛋白替代所必需的(Yuen et al, 2014)。编码组蛋白H3.3的基因在整个细胞周期都持续表达,并能使组蛋白变体H3.3能以一种不依赖DNA复制的方式整合进入染色质,且组蛋白变体H3.3在转录、基因组稳定性和有丝分裂等过程中发挥着重要作用(Bucci et al, 1982; Sullivan et al, 1994; Xu et al, 2014)。H3.3的干扰会导致雄性不育(Ray-Gallet et al, 2011; Tagami et al, 2004; Ahmad et al, 2002; Goldberg et al, 2010),其生殖细胞的染色质重组存在缺陷,正常的鱼精蛋白掺入也失败(Yan et al, 2003; Hodl et al, 2009)。H3T可能在组蛋白与鱼精蛋白的替代过程中发挥着开启染色质的作用,含H3T的核小体具备更为开放的构象(Tachiwana et al, 2010)。H3.5在人类睾丸中高度表达,与其他睾丸特异性组蛋白不同,H3.5主要在未成熟生殖细胞中表达,而睾丸特异性组蛋白通常在减数分裂过程中组蛋白向鱼精蛋白转化过程中表达。H3.5可能在DNA合成中发挥作用,但不参与细胞凋亡,其表达受促性腺激素调控,表明这种表观遗传调控在正常的精子发生过程中是重要的(Shiraishi et al, 2018)。体外研究揭示,H3.5具备降低核心组蛋白H4疏水作用的能力(Padavattan et al, 2017; Huynh et al, 2016)。

因此,精巢特异的组蛋白变体可能具有核小体不稳定的共同特征。综上所述,体细胞核心组蛋白被具有开放结构的组蛋白变体取代并形成不稳定的核小体,为各种组蛋白修饰以及随后的染色质重塑和DNA重组奠定了基础,其修饰的异常也往往与其密切相关。

3 组蛋白修饰对水生动物精子发生的启示:以半滑舌鳎为例

水生动物尤其是许多鱼类中存在性别生长二态性,因此,在重要养殖鱼类中运用性别控制技术,培育单性苗种具有重要的经济意义。半滑舌鳎是东北亚地区的特色养殖鱼类,属于我国海水鱼体系的九大品种之一,作为雌雄生长差异最显著的鱼类之一,1龄雌鱼体重可达雄鱼的2~4倍。半滑舌鳎具有独特的精子发生现象,其伪雄鱼(基因型为ZW,但表型为雄鱼的个体)W型精子缺失,只能产生Z型精子,而Z精子由于携带父本表观遗传信息,产生的后代更容易变为伪雄鱼。显著的雌雄生长差异、特定类型配子缺失使得半滑舌鳎成为研究鱼类精子发生,继而开发新型性控技术的理想模型。

我们前期在雄鱼和伪雄鱼精巢中筛选出一系列基因,在转录本上存在差异,但蛋白序列的差异极小。而通过比较精巢磷酸化和泛素化蛋白,发现多个蛋白存在磷酸化和泛素化差异。更有趣的是,雄鱼和伪雄鱼精巢中,存在差异磷酸化和泛素化的组蛋白分别有9个和12个,但这些蛋白在翻译水平却无差异。由于半滑舌鳎精巢特异组蛋白变体国内外研究较少,表 6梳理了半滑舌鳎组蛋白及其变体(UniPort网站)。半滑舌鳎独特的精子发生现象是否暗示在“基因-mRNA-蛋白”这个经典中心法则之外,还存在翻译后修饰等其他的调控机制,导致了伪雄鱼精子发生异常?半滑舌鳎的多个组蛋白都行使怎样的功能?这些问题都需要进一步的深入探索,以此为切入点,研究翻译后修饰在精子发生的调控机制,将有助于探明特定类型精子缺失的内在因素,将不仅拓展翻译后修饰对精子发生调控机制的认知,也可为养殖鱼类高雌苗种培育提供新的解决方案。

表 6 半滑舌鳎组蛋白及其变体(UniPort网站) Tab.6 Histone and its variants of Chinese tongue sole (UniPort website)
参考文献
AHMAD K, HENIKOFF S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Molecular Cell, 2002, 9(6): 1191-1200 DOI:10.1016/S1097-2765(02)00542-7
ALLIS C D, JENUWEIN T. The molecular hallmarks of epigenetic control. Nature Reviews Genetics, 2016, 17(8): 487-500 DOI:10.1038/nrg.2016.59
BALHORN R, GLEDHILL B L, WYROBEK A J. Mouse sperm chromatin proteins: Quantitative isolation and partial characterization. Biochemistry, 1977, 16(18): 4074-4080 DOI:10.1021/bi00637a021
BALHORN R. Mammalian protamines: Structure and molecular interactions in molecular biology of chromosome function. Springer New York, 1989, 366-395
BARRAL S, MOROZUMI Y, TANAKA H, et al. Histone variant H2A. L. 2 guides transition protein-dependent protamine assembly in male germ cells. Molecular Cell, 2017, 66(1): 89-101 DOI:10.1016/j.molcel.2017.02.025
BHASIN M, REINHERZ E L, RECHE P A. Recognition and classification of histones using support vector machine. Journal of Computational Biology, 2006, 13(1): 102-112 DOI:10.1089/cmb.2006.13.102
BIRNSTIEL M L, BUSSLINGER M, STRUB K. Transcription termination and 3' processing: The end is in site!. Cell, 1985, 41(2): 349-359 DOI:10.1016/S0092-8674(85)80007-6
BOUSSOUAR F, ROUSSEAUX S, KHOCHBIN S. A new insight into male genome reprogramming by histone variants and histone code. Cell Cycle, 2008, 7(22): 3499-3502 DOI:10.4161/cc.7.22.6975
BRAUN R E. Packaging paternal chromosomes with protamine. Nature Genetics, 2001, 28(1): 10-12
BUCCI L R, BROCK W A, MEISTRICH M L. Distribution and synthesis of histone 1 subfractions during spermatogenesis in the rat. Experimental Cell Research, 1982, 140(1): 111-118 DOI:10.1016/0014-4827(82)90162-8
CARONE B R, HUNG J H, HAINER S J, et al. High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm. Developmental Cell, 2014, 30(1): 11-22 DOI:10.1016/j.devcel.2014.05.024
CAVALIERI V. The expanding constellation of histone post-translational modifications in the epigenetic landscape. Genes (Basel), 2021, 12(10): 1596 DOI:10.3390/genes12101596
CHAMPROUX A, COCQUET J, HENRY-BERGER J, et al. A decade of exploring the mammalian sperm epigenome: Paternal epigenetic and transgenerational inheritance. Frontiers in Cell and Developmental Biology, 2018, 15(6): 50
CHIOCCARELLI T, PIERANTONI R, MANFREVOLA F, et al. Histone post-translational modifications and CircRNAs in mouse and human spermatozoa: Potential epigenetic marks to assess human sperm quality. Journal of Clinical Medicine, 2020, 9(3): 640 DOI:10.3390/jcm9030640
COLLINS R E, TACHIBANA M, TAMARU H, et al. In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases. Journal of Biological Chemistry, 2005, 280(7): 5563-5570 DOI:10.1074/jbc.M410483200
COSTANZI C, PEHRSON J R. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature, 1998, 393(6685): 599-601 DOI:10.1038/31275
DAI L, PENG C, MONTELLIER E, et al. Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nature Chemical Biology, 2014, 10(5): 365-370 DOI:10.1038/nchembio.1497
DAI L, XIAO X, PAN L, et al. Recognition of the inherently unstable H2A nucleosome by Swc2 is a major determinant for unidirectional H2A. Z exchange. Cell Reports, 2021, 35(8): 109183 DOI:10.1016/j.celrep.2021.109183
DE LUCIA F, FARAONE-MENNELLA M R, DERME M, et al. Histone-induced condensation of rat testis chromatin: Testis-specific H1t versus somatic H1 variants. Biochemical and Biophysical Research Communications, 1994, 198(1): 32-39 DOI:10.1006/bbrc.1994.1005
DOENECKE D, ALBIG W, BODE C, et al. Histones: Genetic diversity and tissue-specific gene expression. Histochemistry and Cell Biology, 1997, 107(1): 1-10 DOI:10.1007/s004180050083
DRABENT B, BODE C, BRAMLAGE B, et al. Expression of the mouse testicular histone gene H1t during spermatogenesis. Histochemistry and Cell Biology, 1996, 106(2): 247-251 DOI:10.1007/BF02484408
ERKEK S, HISANO M, LIANG C Y, et al. Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nature Structural & Molecular Biology, 2013, 20(7): 868-875
FORNE I, CASTELLANA B, MARIN-JUEZ R, et al. Transcriptional and proteomic profiling of flatfish (Solea senegalensis) spermatogenesis. Proteomics, 2011, 11(11): 2195-2211 DOI:10.1002/pmic.201000296
GAO W, DAI Q, ZHANG P, et al. Cloning of UCHL5 gene and its function in ovarian development in the spine-tailed white shrimp. Progress in Fishery Sciences, 2022, 43(1): 163-171 [高威, 戴琴, 张攀, 等. 脊尾白虾UCHL5的基因克隆及其在卵巢发育中的功能研究. 渔业科学进展, 2022, 43(1): 163-171]
GATEWOOD J M, COOK G R, BALHORN R, et al. Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. Journal of Biological Chemistry, 1990, 265(33): 20662-20666 DOI:10.1016/S0021-9258(17)30554-9
GODMANN M, AUGER V, FERRARONI A V, et al. Dynamic regulation of histone H3 methylation at lysine 4 in mammalian spermatogenesis. Biology of Reproduction, 2007, 77(5): 754-764 DOI:10.1095/biolreprod.107.062265
GOLDBERG A D, BANASZYNSKI L A, NOH K M, et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell, 2010, 140(5): 678-691 DOI:10.1016/j.cell.2010.01.003
GOVIN J, ESCOFFIER E, ROUSSEAUX S, et al. Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. Journal of Cell Biology, 2007, 176(3): 283-294 DOI:10.1083/jcb.200604141
GREINER M, CAESAR S, SCHLENSTEDT G. The histones H2A/H2B and H3/H4 are imported into the yeast nucleus by different mechanisms. European Journal of Cell Biology, 2004, 83(10): 511-520 DOI:10.1078/0171-9335-00418
HAN K H, ZHOU P, ZOU Z H, et al. Cloning and expression profiles of Lc-UBE2D4 gene from large yellow croaker Larimichthys crocea. Biotechnology Bulletin, 2017, 33(11): 166-173 [韩坤煌, 周鹏, 邹志华, 等. 大黄鱼Lc-UBE2D4基因的克隆及其表达分析. 生物技术通报, 2017, 33(11): 166-173]
HANDY D E, CASTRO R, LOSCALZO J. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation, 2011, 123(19): 2145-2156 DOI:10.1161/CIRCULATIONAHA.110.956839
HODL M, BASLER K. Transcription in the absence of histone H3.3. Current Biology, 2009, 19(14): 1221-1226 DOI:10.1016/j.cub.2009.05.048
HU Q, CHEN S. Cloning, genomic structure and expression analysis of ubc9 in the course of development in the half-smooth tongue sole (Cynoglossus semilaevis). Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 2013, 165(3): 181-188
HUD N V, ALLEN M J, DOWNING K H, et al. Identification of the elemental packing unit of DNA in mammalian sperm cells by atomic force microscopy. Biochemical and Biophysical Research Communications, 1993, 193(3): 1347-1354 DOI:10.1006/bbrc.1993.1773
HUYNH L M, SHINAGAWA T, ISHII S. Two histone variants TH2A and TH2B enhance human induced pluripotent stem cell generation. Stem Cells and Development, 2016, 25(3): 251-258 DOI:10.1089/scd.2015.0264
IHARA M, MEYER-FICCA M L, LEU N A, et al. Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression. PLoS Genetics, 2014, 10(5): 1004317 DOI:10.1371/journal.pgen.1004317
JHA K N, TRIPURANI S K, JOHNSON G R. TSSK6 is required for γH2AX formation and the histone-to-protamine transition during spermiogenesis. Journal of Cell Science, 2017, 130(10): 1835-1844 DOI:10.1242/jcs.202721
KAMAKAKA R T, BIGGINS S. Histone variants: deviants?. Genes & Development, 2005, 19(3): 295-310
KEKALAINEN J, HILTUNEN J, JOKINIEMI A, et al. Female-induced selective modification of sperm protein SUMOylation-potential mechanistic insights into the non-random fertilization in humans. Journal of Evolutionary Biology, 2022, 35(2): 254-264 DOI:10.1111/jeb.13980
LEGUBE G, TROUCHE D. Regulating histone acetyltransferases and deacetylases. EMBO Reports, 2003, 4(10): 944-947 DOI:10.1038/sj.embor.embor941
LENNOX R W, COHEN L H. The alterations in H1 histone complement during mouse spermatogenesis and their significance for H1 subtype function. Developmental Biology, 1984, 103(1): 80-84 DOI:10.1016/0012-1606(84)90009-5
LI A, MAFFEY A H, ABBOTT W D, et al. Characterization of nucleosomes consisting of the human testis/sperm-specific histone H2B variant (hTSH2B). Biochemistry, 2005, 44(7): 2529-2535 DOI:10.1021/bi048061n
LI X P, KONG J, MENG X H, et al. Effects of WSSV infection on bantam and its candidate target genes in Penaeus chinensis. Progress in Fishery Sciences, 2018, 39(6): 106-113 [李旭鹏, 孔杰, 孟宪红, 等. WSSV感染对中国明对虾bantam及其候选靶基因的影响. 渔业科学进展, 2018, 39(6): 106-113]
LI X, LI L, CUI Z, et al. Phosphoproteomics reveal new candidates in abnormal spermatogenesis of pseudomales in Cynoglossus semilaevis. International Journal of Molecular Sciences, 2023, 24(14): 11430
LIU T J, LEVINE B J, SKOULTCHI A I, et al. The efficiency of 3'-end formation contributes to the relative levels of different histone mRNAs. Molecular and Cellular Biology, 1989, 9(8): 3499-3508
LUGER K, MADER A W, RICHMOND R K, et al. Crystal structure of the nucleosome core particle at 2.8A resolution. Nature, 1997, 389(6648): 251-260
MAAMAR M B, SADLER-RIGGLEMAN I, BECK D, et al. Epigenetic transgenerational inheritance of altered sperm histone retention sites. Scientific Reports, 2018, 8(1): 5308
MARCHIANI S, TAMBURRINO L, RICCI B, et al. SUMO1 in human sperm: New targets, role in motility and morphology and relationship with DNA damage. Reproduction, 2014, 148(5): 453-467
MARMORSTEIN R. Structure of SET domain proteins: A new twist on histone methylation. Trends in Biochemical Sciences, 2003, 28(2): 59-62
MARTIANOV I, BRANCORSINI S, CATENA R, et al. Polar nuclear localization of H1T2, a histone H1 variant, required for spermatid elongation and DNA condensation during spermiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(8): 2808-2813
MATSUMURA T, HUTT M P, VON KAULLA K N. Urinary procoagulant excretion and its relation to kidney function. Nephron, 1970, 7(2): 165-177
METZLER-GUILLEMAIN C, DEPETRIS D, LUCIANI J J, et al. In human pachytene spermatocytes, SUMO protein is restricted to the constitutive heterochromatin. Chromosome Research, 2008, 16(5): 761-782
MEYER R G, KETCHUM C C, MEYER-FICCA M L. Heritable sperm chromatin epigenetics: A break to remember. Biology of Reproduction, 2017, 97(6): 784-797
MEYER-FICCA M L, IHARA M, BADER J J, et al. Spermatid head elongation with normal nuclear shaping requires ADP-ribosyltransferase PARP11 (ARTD11) in mice. Biology of Reproduction, 2015, 92(3): 80
MEYER-FICCA M L, IHARA M, LONCHAR J D, et al. Poly(ADP-ribose) metabolism is essential for proper nucleoprotein exchange during mouse spermiogenesis. Biology of Reproduction, 2011, 84(2): 218-228
MILAZZO G, MERCATELLI D, DI MUZIO G, et al. Histone deacetylases (HDACs): Evolution, specificity, role in transcriptional complexes, and pharmacological actionability. Genes (Basel), 2020, 11(5): 556
MONTELLIER E, BOUSSOUAR F, ROUSSEAUX S, et al. Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes & Development, 2013, 27(15): 1680-1692
NELSON D L, COX M M, et al. Lehninger principles of biochemistry. W. H. Freeman, San Francisco, 2005
NICKEL B E, ROTH S Y, COOK R G, et al. Changes in the histone H2A variant H2A. Z and polyubiquitinated histone species in developing trout testis. Biochemistry, 1987, 26(14): 4417-4421
OLD R W, WOODLAND H R. Histone genes: Not so simple after all. Cell, 1984, 38(3): 624-626
OSLEY M A, FLEMING A B, KAO C F. Histone ubiquitylation and the regulation of transcription. Results and Problems in Cell Differentiation, 2006, 41: 47-75
PADAVATTAN S, SHINAGAWA T, HASEGAWA K, et al. Structural and functional analyses of nucleosome complexes with mouse histone variants TH2a and TH2b, involved in reprogramming. Biochemical and Biophysical Research Communications, 2015, 464(3): 929-935
PADAVATTAN S, THIRUSELVAM V, SHINAGAWA T, et al. Structural analyses of the nucleosome complexes with human testis-specific histone variants, hTh2a and hTh2b. Biophysical Chemistry, 2017, 221: 41-48
PAN C, FAN Y. Role of H1 linker histones in mammalian development and stem cell differentiation. Biochimica et Biophysica Acta, 2016, 1859(3): 496-509
PATEL D J, WANG Z. Readout of epigenetic modifications. Annual Review of Biochemistry, 2013, 82: 81-118
PEIXOTO P, CARTRON P F, SERANDOUR A A, et al. From 1957 to nowadays: A brief history of epigenetics. International Journal of Molecular Sciences, 2020, 21(20): 7571
POCCIA D. Remodeling of nucleoproteins during gametogenesis, fertilization, and early development. International Review of Cytology, 1986, 105: 1-65
QIAN Z J, ZHU T L, JIANG H C, et al. Molecular cloning and expression analysis of ubiquitin-conjugating enzyme E2r in Procambarus clarkii. Journal of Shanghai Ocean University, 2016, 25(5): 641-651 [钱照君, 祝天谅, 姜虎成, 等. 克氏原螯虾泛素结合酶E2r基因的克隆及表达分析. 上海海洋大学学报, 2016, 25(5): 641-651]
RAY-GALLET D, WOOLFE A, VASSIAS I, et al. Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Molecular Cell, 2011, 44(6): 928-941
ROUSSEAUX S, REYNOIRD N, ESCOFFIER E, et al. Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reproductive BioMedicine Online, 2008, 16(4): 492-503
ROYO H, STADLER M B, PETERS AHFM. Alternative computational analysis shows no evidence for nucleosome enrichment at repetitive sequences in mammalian spermatozoa. Developmental Cell, 2016, 37(1): 98-104
RUSSEL L, ETTLIN R, HIKIM A, et al. Histologial and histopathological evaluation of the testis. Environmental Protection Agency, Washington, D. C., 1990
SABARI B R, ZHANG D, ALLIS C D, et al. Metabolic regulation of gene expression through histone acylations. Nature Reviews Molecular Cell Biology, 2017, 18(2): 90-101
SAMANS B, YANG Y, KREBS S, et al. Uniformity of nucleosome preservation pattern in Mammalian sperm and its connection to repetitive DNA elements. Developmental Cell, 2014, 30(1): 23-35
SHINAGAWA T, HUYNH L M, TAKAGI T, et al. Disruption of Th2a and Th2b genes causes defects in spermatogenesis. Development, 2015, 142(7): 1287-1292
SHIRAISHI K, SHINDO A, HARADA A, et al. Roles of histone H3.5 in human spermatogenesis and spermatogenic disorders. Andrology, 2018, 6(1): 158-165
SOBOLEVA T, NEKRASOV M, PAHWA A, et al. A unique H2A histone variant occupies the transcriptional start site of active genes. Nature Structural & Molecular Biology, 2012, 19: 25-30
SULLIVAN K F, HECHENBERGER M, MASRI K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. Journal of Cell Biology, 1994, 127(3): 581-592
SUN J, SHANG X, TIAN Y, et al. Ubiquitin C-terminal hydrolase-L1 (Uch-L1) correlates with gonadal transformation in the rice field eel. FEBS Journal, 2008, 275(2): 242-249
SUN Y, ZHU Y, CHENG P, et al. A Z-Linked E3 ubiquitin ligase Cs-rchy1 is involved in gametogenesis in Chinese tongue sole, Cynoglossus semilaevis. Animals (Basel), 2021, 11(11): 3265
TACHIWANA H, KAGAWA W, OSAKABE A, et al. Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(23): 10454-10459
TAGAMI H, RAY-GALLET D, ALMOUZNI G, et al. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell, 2004, 116(1): 51-61
TALAMILLO A, BARROSO-GOMILA O, GIORDANO I, et al. The role of SUMOylation during development. Biochemical Society Transactions, 2020, 48(2): 463-478
TANAKA H, IGUCHI N, ISOTANI A, et al. HANP1/H1T2, a novel histone H1-like protein involved in nuclear formation and sperm fertility. Molecular and Cellular Biology, 2005, 25(16): 7107-7119
TAO B, HU H, CHEN J, et al. Sinhcaf-dependent histone deacetylation is essential for primordial germ cell specification. EMBO Reports, 2022, 23(6): 54387
THIAGARAJAN D, VEDANTHAM S, ANANTHAKRISHNAN R, et al. Mechanisms of transcription factor acetylation and consequences in hearts. Biochimica et Biophysica Acta, 2016, 1862(12): 2221-2231
VIGODNER M, LUCAS B, KEMENY S, et al. Identification of sumoylated targets in proliferating mouse spermatogonia and human testicular seminomas. Asian Journal of Andrology, 2020, 22(6): 569-577
WANG T, GAO H, LI W, et al. Essential role of histone replacement and modifications in male fertility. Frontiers in Genetics, 2019, 10: 962
WARD W S, COFFEY D S. DNA packaging and organization in mammalian spermatozoa: Comparison with somatic cells. Biology of Reproduction, 1991, 44(4): 569-574
WOLFFE A P, KHOCHBIN S, DIMITROV S. What do linker histones do in chromatin?. Bioessays, 1997, 19(3): 249-255
WU X, SHEN W, ZHANG B, et al. The genetic program of oocytes can be modified in vivo in the zebrafish ovary. Journal of Molecular Cell Biology, 2018, 10(6): 479-493
XAVIER M J, ROMAN S D, AITKEN R J, et al. Transgenerational inheritance: How impacts to the epigenetic and genetic information of parents affect offspring health. Human Reproduction Update, 2019, 25(5): 518-540
XU W, LI H, DONG Z, et al. Ubiquitin ligase gene neurl3 plays a role in spermatogenesis of half-smooth tongue sole (Cynoglossus semilaevis) by regulating testis protein ubiquitination. Gene, 2016, 592(1): 215-220
XU Y M, DU J Y, LAU A T. Posttranslational modifications of human histone H3: An update. Proteomics, 2014, 14(17/18): 2047-2060
YAMAGUCHI K, HADA M, FUKUDA Y, et al. Re-evaluating the localization of sperm-retained histones revealed the modification-dependent accumulation in specific genome regions. Cell Reports, 2018, 23(13): 3920-3932
YAN W, MA L, BURNS K H, MATZUK M M. HILS1 is a spermatid-specific linker histone H1-like protein implicated in chromatin remodeling during mammalian spermiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(18): 10546-10551
YANG Q, YANG Y, ZHOU N, et al. Epigenetics in ovarian cancer: Premise, properties, and perspectives. Molecular Cancer, 2018, 17(1): 109
YOSHIDA K, MURATANI M, ARAKI H, et al. Mapping of histone-binding sites in histone replacement-completed spermatozoa. Nature Communications, 2018, 9(1): 3885
YOUNGSON R M. Collins dictionary of human biology. Harper Collins, Glasgow, 1990
YUEN B T, BUSH K M, BARRILLEAUX B L, et al. Histone H3.3 regulates dynamic chromatin states during spermatogenesis. Development, 2014, 141(18): 3483-3494
ZHAI Q, WANG L, ZHAO P, et al. Role of citrullination modification catalyzed by peptidylarginine deiminase 4 in gene transcriptional regulation. Acta Biochimica et Biophysica Sinica (Shanghai), 2017, 49(7): 567-572
ZHANG B, WU X, ZHANG W, et al. Widespread enhancer dememorization and promoter priming during parental-to-zygotic transition. Molecular Cell, 2018, 72(4): 673-686
ZHANG Y, REINBERG D. Transcription regulation by histone methylation: Interplay between different covalent modifications of the core histone tails. Genes and Development, 2001, 15(18): 2343-2360
ZHANG Z, MU S, CHEN T, et al. H4S1ph, an alternative epigenetic marker for sperm maturity. Andrologia, 2020, 52(1): 13352
ZHOU M, DAI L, LI C, et al. Structural basis of nucleosome dynamics modulation by histone variants H2A. B and H2A. Z. 2.2. EMBO Journal, 2021, 40(1): 105907
ZHU J, ZHANG D, LIU X, et al. Zebrafish prmt5 arginine methyltransferase is essential for germ cell development. Development, 2019, 146(20): 179572