渔业科学进展  2025, Vol. 46 Issue (2): 64-75  DOI: 10.19663/j.issn2095-9869.20231117002
0

引用本文 

赵苗苗, 毕蓉, 李鸿妹, 宋欣荣, 黄圣荣, 冯秀婷, 张海龙, 李莉, 赵美训. 浒苔降解过程中颗粒有机碳、氮释放及相关微生物种群丰度变化研究[J]. 渔业科学进展, 2025, 46(2): 64-75. DOI: 10.19663/j.issn2095-9869.20231117002.
ZHAO Miaomiao, BI Rong, LI Hongmei, SONG Xinrong, HUANG Shengrong, FENG Xiuting, ZHANG Hailong, LI Li, ZHAO Meixun. Release Dynamics of Particulate Organic Carbon and Nitrogen and the Related Microbial Abundance Variation during Degradation of Ulva prolifera[J]. Progress in Fishery Sciences, 2025, 46(2): 64-75. DOI: 10.19663/j.issn2095-9869.20231117002.

基金项目

崂山实验室科技创新项目(LSKJ202204005)资助

作者简介

赵苗苗,Email: zhaomiaomiao0210@163.com

通讯作者

毕蓉,教授,Email: rongbi@ouc.edu.cn

文章历史

收稿日期:2023-11-17
收修改稿日期:2024-01-17
浒苔降解过程中颗粒有机碳、氮释放及相关微生物种群丰度变化研究
赵苗苗 1,2, 毕蓉 1,2, 李鸿妹 3, 宋欣荣 1, 黄圣荣 3,4, 冯秀婷 3, 张海龙 1,5, 李莉 1,2, 赵美训 1,5     
1. 中国海洋大学 深海圈层与地球系统前沿科学中心 海洋化学理论与工程技术教育部重点实验室 山东 青岛 266100;
2. 青岛海洋科技中心海洋生态与环境科学功能实验室 山东 青岛 266237;
3. 中国科学院青岛生物能源与过程研究所 中国科学院生物燃料重点实验室 山东省能源生物遗传资源重点实验室 山东 青岛 266101;
4. 中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 山东 青岛 266100;
5. 崂山实验室 山东 青岛 266237
摘要:我国黄海海域已连续18年暴发浒苔(Ulva prolifera)绿潮,数百万吨浒苔在绿潮消亡阶段沉降入海并向海水中释放大量有机质。目前,对于量化浒苔降解过程中颗粒有机碳(particulate organic carbon, POC)、颗粒有机氮(particulate organic nitrogen, PON)的释放及其微生物调控机制的相关研究亟待开展。本研究选择浒苔为对象,设置2种降解密度(1 g/L、5 g/L),研究90 d降解过程中的POC和PON浓度、POC︰PON及微生物丰度的变化特征,并探究微生物丰度与POC、PON浓度及其比值的相关关系。结果显示,90 d降解过程中POC浓度[1 g/L与5 g/L处理组峰值分别为(90.17±24.77)和(219.99±45.11) μmol/L]、PON浓度[1 g/L与5 g/L处理组峰值分别为(16.15±0.71)和(23.20±7.16) μmol/L]变化显著。POC、PON浓度随时间变化规律不同:前60 d,POC和PON浓度均先上升后下降;第60~90天,POC浓度持续下降约49%,而PON浓度上升约430%。浒苔降解初期POC︰PON升高,表明此时氮的释放滞后于碳;随后,POC︰PON下降,与微生物对氮的固定以及呼吸作用消耗碳有关。微生物丰度与POC、PON浓度显著相关,表明微生物对浒苔降解过程中POC、PON释放具有重要作用。降解密度对POC、PON浓度有显著影响,5 g/L处理组POC、PON浓度约为1 g/L处理组的2~3倍,且5 g/L处理组达到峰值所需时间较长。本研究厘清了浒苔降解过程中POC、PON的释放特征,明确了微生物丰度变化与POC、PON含量及二者比值变化的关系,为深入探究浒苔降解过程中微生物对POC、PON释放的调控机制以及POC、PON降解机制提供了研究基础。
关键词浒苔降解    降解密度    微生物丰度    颗粒有机碳    颗粒有机氮    
Release Dynamics of Particulate Organic Carbon and Nitrogen and the Related Microbial Abundance Variation during Degradation of Ulva prolifera
ZHAO Miaomiao 1,2, BI Rong 1,2, LI Hongmei 3, SONG Xinrong 1, HUANG Shengrong 3,4, FENG Xiuting 3, ZHANG Hailong 1,5, LI Li 1,2, ZHAO Meixun 1,5     
1. Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China;
2. Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China;
3. Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
4. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China;
5. Laoshan Laboratory, Qingdao 266237, China
Abstract: Green tides, dominated by Ulva prolifera, have occurred each summer in the Yellow Sea of China from 2007 to 2023 and are characterized by a huge biomass, long duration, and extensive influence areas. During the post-bloom period, millions of tons of U. prolifera settle to the sea floor and release carbon, nitrogen, and phosphorus into the surrounding waters, notably impacting coastal environments. Organic matter released from macroalgae are important contributors to biogeochemical cycles in marine ecosystems. Particulate organic carbon (POC) is an important fraction of the marine organic carbon pool and is crucial in the marine carbon cycle by regulating dissolved organic carbon (DOC); sediment organic carbon; and inorganic carbon via deposition, degradation, and mineralization. Additionally, the ratio of POC and particulate organic nitrogen (PON) affects the sea-air CO2 flux and the efficiency of carbon sequestration. Till date, POC and PON released during the degradation of U. prolifera remain poorly quantified and microbial regulations of POC and PON release remain unclear. We investigated the changes in POC and PON concentrations and their molar ratios, and microbial abundance under different degradation densities (1 g/L and 5 g/L) during a 90-d laboratory degradation of U. prolifera. Under dark conditions, 50 g and 250 g (fresh weight) of U. prolifera were added to polyethylene carboys containing 50 L filtered seawater to conduct 1 g/L and 5 g/L degradation experiments. Triplicate replicates were performed for each treatment. Samples for analyzing POC, PON, and microbial abundance were collected on days 0, 4, 6, 8, 14, 21, 28, 60, and 90. The results showed that the degradation period of U. prolifera was divided into the leaching stage (0–14 d), during which soluble materials were lost, and the microbial degradation stage (14–90 d), during which the debris was digested by bacterial or fungal extracellular enzymes. The POC, the maximal values: (90.17±24.77) μmol/L and (219.99±45.11) μmol/L under 1 g/L and 5 g/L, respectively, and PON, the maximal values: (16.15±0.71) μmol/L and (23.20±7.16) μmol/L under 1 g/L and 5 g/L, respectively, concentrations changed significantly during degradation, however, showed different trends. Specifically, the POC and PON concentrations first increased and then decreased during days 0–60; however, POC continued to decrease (approximately 49%) and PON increased (approximately 430%) during days 60–90. The decrease in POC concentrations can be explained by the conversion of POC to DOC by macroalgae-associated microbes and subsequently, DOC was mineralized into dissolved inorganic carbon. The enrichment of nitrogen due to bacterial colonization of particle surfaces may largely explain the increase in PON concentrations. POC: PON first increased and then decreased, indicating that PON showed a lagged release compared to POC when U. prolifera began to degrade, and the subsequent decline of POC: PON can be attributed to nitrogen fixation by microbial and carbon consumption via respiration. Microbial abundance increased during days 0–28, the maximal values: (9.81±3.81)×105 and (26.24±6.98)×105 cells/mL under 1 g/L and 5 g/L, respectively, indicating that the released organic matter was utilized and transformed into microbial biomass. The microbial abundance then decreased during days 28–90. This change may be explained by the decrease in organic matter contents and bioavailability, and the contents of organic matter were deficient for microbial growth, leading to the decrease in microbial abundance. Microbial abundance showed significant correlations with the POC and PON concentrations, indicating the critical roles of microbes in the release of POC and PON during the degradation of U. prolifera. No significant correlations were observed between the microbial abundance and POC: PON. Microbial regulations of POC and PON release during the degradation of U. prolifera are complex and further studies on microbial community structure may help to explore the role of microbes in the release of POC and PON. Degradation density significantly impacted POC and PON concentrations. At the high degradation-density treatment, we observed slow changes in POC and PON concentrations and 2–3 times higher maximal concentrations of the two compared to those at lower degradation-density conditions. We observed that the higher the degradation density, the longer the leaching phase of organic matter. However, POC and PON concentrations did not change proportionally with degradation density. This result may be attributed to the changes in other factors such as pH, dissolved oxygen, and initial nutrient concentrations. The changes in POC and PON concentrations at the end of degradation suggested that more extensive studies are necessary to elucidate the long-term relationship between U. prolifera degradation and microbial communities. Our study provides an important basis for clarifying the changes in POC and PON and their correlations with microbial abundance during the degradation of U. prolifera. This helps to generate a better understanding of the regulation and mechanisms of microbes on U. prolifera degradation.
Key words: Ulva prolifera degradation    Degradation density    Microbial abundance    Particulate organic carbon    Particulate organic nitrogen    

20世纪70年代以来,绿潮已成为世界性生态灾害(Smetacek et al, 2013)。自2007年起,我国黄海海域已经连续18年暴发绿潮灾害,其具有规模巨大、持续时间长、影响范围广等特点(于仁成等, 2018)。浒苔(Ulva prolifera)是黄海绿潮的肇事藻种(Zhao et al, 2013)。绿潮暴发期间,浒苔生物量可达数百万吨(Liu et al, 2015; Zhang et al, 2019),小部分浒苔被打捞起来(王宗灵等, 2018),而大部分浒苔则在绿潮末期沉降并腐烂分解。浒苔沉降分解时会向海洋环境中释放碳、氮、磷、硫等元素(Zhou et al, 2015),从而对水体及沉积物环境产生重要影响(张晓雯等, 2022; 刘妮等, 2024)。浒苔漂浮及沉积区域覆盖范围广(刘金林等, 2020),其中山东半岛海域(36~36.5° N, 122~124° E)是其主要沉降海域(Geng et al, 2019; Zhao et al, 2022),而其他海域沉降量较小。因此,浒苔沉降生物量具有明显的空间分布差异。

颗粒有机碳(particulate organic carbon, POC)是海洋有机碳库的重要组成部分,通过沉积、降解、矿化等方式调节沉积物有机碳、溶解有机碳(dissolved organic carbon, DOC)和溶解无机碳(dissolved inorganic carbon, DIC),在海洋碳循环中起着关键作用(Meng et al, 2021; Zhang et al, 2023)。POC与颗粒有机氮(particulate organic nitrogen, PON)的比值会对海–气CO2通量和海洋固碳效率产生实质性影响(Oschlies et al, 2008; Schneider et al, 2004)。大型藻类净初级生产力的43%以POC和DOC的形式输出至邻近海域(Filbee-Dexter et al, 2014; Krause-Jensen et al, 2016)。现场调查发现,浒苔暴发期近岸水体中的DOC浓度是非暴发期的1.3~1.9倍(Zhang et al, 2017)。浒苔消亡期,青岛近岸海域表层POC浓度出现高值,POC与PON的比值也出现了异常的高值(王雪景等, 2018; 张婷等, 2011)。实验室降解研究发现,浒苔短期降解过程中DOC、溶解有机氮、POC浓度均呈先上升后下降的趋势(耿倩倩等, 2020; Xiong et al, 2023)。水生植物的分解过程可能受到生物量(Debusk et al, 1984; Wu et al, 2017a)、微生物(Shi et al, 2017)以及化学成分与形态结构(Gessner, 2000; 尼志杰等, 2022)等因素的影响。不同降解密度条件下,低降解密度处理组DOC的释放时间更短,在降解末期形成的惰性DOC相对较少(陈晶, 2020)。另有研究发现,细菌存在条件下,浒苔降解过程中有色溶解有机质的释放有所增加(Zhang et al, 2017)。综上,以往的研究主要聚焦浒苔降解过程中溶解有机质的释放过程,并初步研究了浒苔POC的释放规律,但关于浒苔降解过程中POC与PON的同步研究未见报道。

本研究设计不同降解密度(1 g/L、5 g/L)的浒苔降解实验,研究3个月降解过程中POC、PON浓度及其比值的变化,并与微生物丰度进行相关性分析。研究结果可为厘清浒苔沉降分解对近海生态系统的影响以及绿潮治理提供科学依据。

1 材料与方法 1.1 实验材料

本实验所用浒苔于2022年6月采自日照海域,由中国科学院青岛生物能源与过程研究所海洋碳汇与能源微生物研究组提供。浒苔运回实验室后,先进行挑拣,后用灭菌海水冲洗3次去除叶片上粘附的颗粒物(Zhang et al, 2017)。为模拟衰亡期浒苔的状态,将采集到的浒苔存放于–80 ℃超低温冰箱备用(García-Robledo et al, 2008),并在实验开始前使用高温高压灭菌后的人工海水对浒苔进行黑暗培养72 h使其灭活。–80 ℃保存可保持藻体细胞结构和功能的稳定性,抑制微生物的生长和繁殖,防止浒苔样品在预处理期间因微生物活动导致其大分子物质组分变化。

实验所用海水采自青岛近岸海域(36.08° N, 120.46° E)。首先用20 μm孔径已灭菌筛绢对海水进行预过滤,再用3 μm孔径的聚碳酸酯膜进行过滤,以除去原生动物、浮游植物以及较大的颗粒(Rochelle-Newall et al, 2004; Tessarolli et al, 2018; Kragh et al, 2018)。过滤后的海水中保留新鲜微生物群落,可较好地模拟自然环境中的浒苔降解过程。

1.2 实验设计

分别称取50 g、250 g浒苔于高密度聚乙烯桶(酸洗后用Milli-Q水反复涮洗3次)中,添加50 L过滤后的海水,设置降解密度为1 g/L、5 g/L的降解实验。同时,设置不加浒苔的、相同处理的海水为对照组。每个处理组设置3个平行。2种降解密度依据现场观测结果和以往的研究设置。有研究表明,黄海漂浮绿潮浒苔密度最大可达约1 g/L(浒苔绿潮厚度以0.1 m计) (刘湘庆, 2014)。以往的室内模拟实验发现,浒苔衰亡过程中5 g/L降解密度条件下颗粒态氮浓度分别为0.5 g/L和0.05 g/L降解密度条件下的4.5倍和13.9倍,5 g/L降解密度条件下可以观察到颗粒有机质的明显变化(冯丽娜等, 2020)。因此,本研究设置1 g/L、5 g/L两种降解密度进行实验,其中,1 g/L处理组更接近现场环境中浒苔的密度,5 g/L处理组是为了明显观察POC、PON等参数的变化,以便总结浒苔降解过程中POC、PON等参数的变化规律。降解实验过程中,桶口做较松散的覆盖,以保证与大气的接触(Chen et al, 2020)。

刘牧时(2021)研究表明,浒苔生物量不同,其降解周期也不相同,5 g/L处理组浒苔所需时间最长,需要80 d左右。因此,本研究设置浒苔降解时间为90 d,以观察浒苔降解的完整过程。于第0、4、6、8、14、28、60、90天取样,取样前充分摇动高密度聚乙烯桶。取水样1.8 mL,加入戊二醛固定(最终浓度为0.5%),液氮中冷冻,最后储存于–80 ℃超低温冰箱,用于分析微生物丰度。取100 mL水样,用GF/F膜(预先于450 ℃高温灼烧5 h)过滤后储存于–20 ℃,用于分析POC和PON。

1.3 样品分析

使用流式细胞仪(BD FACS Aria Ⅱ)对微生物丰度进行检测(Marie et al, 1999)。样品置于37 ℃的水浴锅中解冻,向990 μL样品中加入10 μL无菌100× SYBR GreenⅠ荧光染料,在室温下黑暗静置染色15 min。在测样前,加入标准荧光小球作为内参。微生物丰度按照下式计算:

$ \text {微生物丰度}=\left(1\;000 \times N \times V_{\text {total }}\right) /\left(V \times t \times V_{\text {sample}}\right) $

式中,N为机读的细胞数,V为仪器测定时使用的流速,t为分析时间,Vsample为样品体积,Vtotal为样品体积加上缓冲液、固定剂、细胞染料等的总体积。

使用元素分析仪(Thermo Flash EA 2000)对POC、PON含量进行测定。将用于POC、PON分析的滤膜冷冻干燥,使用6 mol/L HCl去除无机碳,55 ℃烘干后将样品包入锡纸中进行测定(Komada et al, 2008; Sharp, 1974)。POC和PON的测定利用空白样、标准样品及重复样进行质量控制,测量精确度分别为±0.02% (wt%, n = 6)和±0.002% (wt%, n = 6)。以往对于海带(Saccharina japonica)的实验室降解研究表明,对照组海水POC浓度仅为海带降解处理组的4%左右且变化不明显(Feng et al, 2022)。本研究关注浒苔降解过程中POC和PON的变化情况,对于对照组POC和PON的浓度以及POC∶PON的变化不做讨论。

1.4 数据分析

利用线性回归分析整个降解过程中POC浓度、PON浓度、POC∶PON与微生物丰度的相关关系。为检验降解时间对上述相关性的影响,将实验数据分为0~14 d(浸出阶段)、21~90 d(微生物降解阶段) 2组(Zhang et al, 2017),分别对2组实验数据进行线性回归分析。同样,为检验降解密度的影响,分别对1 g/L、5 g/L处理组的实验数据进行线性回归分析。

按降解时间分组得到的数据(8组)不符合正态分布,因此使用克鲁斯卡尔沃利斯检验(Kruskal-Wallis test)分析降解时间对POC浓度、PON浓度、POC∶PON以及微生物丰度的影响。由于1 g/L、5 g/L处理组的数据不满足正态分布,使用曼-惠特尼U检验(Mann-Whitney U test)分析降解密度对POC浓度、PON浓度、POC∶PON以及微生物丰度的影响。

上述统计分析均使用IBM SPSS 26软件进行。本研究中所有统计分析的显著性水平为P < 0.05。

2 结果 2.1 浒苔降解过程中POC浓度的变化

浒苔降解过程中,POC浓度对降解时间与降解密度的变化均有显著性响应(P≤0.017) (表 1)。浒苔降解过程中,POC浓度总体呈先上升后下降的趋势(图 1a)。具体而言,1 g/L处理组初始POC浓度(第0天)为(40.02±10.26) μmol/L (平均值±标准差),第14天时达到峰值[(90.17±24.77) μmol/L],随后开始下降。5 g/L处理组初始POC浓度为(82.76±4.88) μmol/L,第28天达到峰值[(219.99±45.11) μmol/L]。将2个处理组对比可见,5 g/L处理组的POC浓度总体均高于1 g/L,可高出3倍左右。与5 g/L处理组相比,1 g/L处理组POC浓度达到峰值所需时间更短,其变化更平缓。

表 1 降解时间和降解密度对POC浓度、PON浓度、POC∶PON及微生物丰度影响的非参数检验 Tab.1 Nonparametric tests on the effects of degradation time and degradation density on the concentrations of POC and PON, POC: PON and microbial abundance
图 1 90 d浒苔降解过程中POC浓度(a)、PON浓度(b)、POC∶PON(c)和60 d降解时间内POC∶PON(d)的变化(平均值±标准差) Fig.1 Concentrations of particulate organic carbon (POC) (a) and particulate organic nitrogen (PON) (b), and the ratio of particulate organic carbon to particulate organic nitrogen (POC : PON) during 90-day degradation (c) and 60-day degradation (d) (Mean±SD) 为便于查看POC∶PON的变化趋势,将图c中虚线框部分进行放大,如图d所示。 In order to view the change trend of POC: PON, the dotted line box in panel c is enlarged, as shown in panel d.
2.2 浒苔降解过程中PON浓度的变化

浒苔降解过程中,PON浓度对降解时间与降解密度的变化也均有显著性响应(P≤0.001)(表 1)。在整个降解过程中,PON浓度呈双峰变化趋势,即:第0~ 60天,先上升后下降,第60~90天又呈上升趋势(图 1b)。具体来说,1 g/L处理组初始PON浓度(第0天)为(3.51±0.91) μmol/L,第14天上升至(8.39±1.82) μmol/L,之后呈下降趋势,第60天下降至最低值[(3.30± 0.41) μmol/L],第90天时,PON浓度重新上升至最高值(16.15±0.71) μmol/L。5 g/L处理组的初始PON浓度为(8.64±0.47) μmol/L,第28天上升至(22.02± 2.59) μmol/L,随后开始下降,第60天PON浓度为(6.18±5.96) μmol/L,第90天PON浓度上升至最高值[(23.20±7.16) μmol/L]。对比2个处理组可以发现,5 g/L处理组的PON浓度均高于1 g/L (高出2倍左右)。与5 g/L处理组相比,1 g/L处理组PON浓度达到峰值的速度更快,变化更为平缓。

2.3 浒苔降解过程中POC∶PON的变化

浒苔降解过程中,POC∶PON对降解时间的变化有显著响应(P=0.001),而对降解密度的变化无显著响应(表 1)。在整个降解过程中,水体POC∶PON总体呈先上升后下降的趋势(图 1c)。POC∶PON初始值分别为11.435±0.437(1 g/L处理组)和9.576±0.079 (5 g/L处理组)。第0~6天,POC∶PON呈上升趋势,第6天可达12.675±1.327 (1 g/L处理组)和11.461±1.949 (5 g/L处理组)。第6~60天,POC∶PON变化不大,第90天时POC∶PON下降至最低值[1.291±0.150 (1 g/L处理组)和3.024±1.020(5 g/L处理组)]。总体而言,2个处理组的POC∶PON数值相差不大。

2.4 浒苔降解过程中微生物丰度的变化

浒苔降解过程中微生物丰度对降解时间与降解密度的变化均具有显著响应(P≤0.008)(表 1),微生物丰度总体呈先上升后下降的趋势(图 2)。1 g/L处理组初始微生物丰度为(5.21±1.31)×105 cells/mL,第14天时达到峰值(9.81±3.81)×105 cells/mL,随后微生物丰度开始下降,第90天微生物丰度为(2.76±0.16)×105 cells/mL。5 g/L处理组初始微生物丰度为(5.17±1.25)×105 cells/mL,第28天达到峰值,为(26.24±6.98)×105 cells/mL,随后微生物丰度开始下降,第60天下降至最低值[(4.38± 2.30)×105 cells/mL],第90天微生物丰度与第60天接近。对比2个处理组可以发现,5 g/L处理组的微生物丰度总体均高于1 g/L (高出2倍左右)。与1 g/L处理组相比,5 g/L处理组微生物丰度达到峰值所需的时间更长。对照组微生物丰度呈现轻微下降,由实验初始丰度(2.46±0.18)×105 cells/mL降至实验结束时的丰度(0.35±0.13)×105 cells/mL。

图 2 90 d浒苔降解过程中微生物丰度变化(平均值±标准差) Fig.2 Variation of microbial abundance during 90-day degradation (Mean±SD)
2.5 微生物丰度与POC浓度、PON浓度、POC∶PON的相关性分析

总体而言,浒苔降解过程中的微生物丰度与POC和PON浓度呈极显著正相关(图 3ab),而与POC∶PON无显著相关性(图 3c)。进一步分析表明,降解时间不会改变微生物丰度与POC浓度、PON浓度、POC∶PON之间的相关关系,但会影响线性回归方程的斜率。0~14 d微生物丰度与POC和PON浓度的线性回归方程斜率(10.13、0.88)大于21~90 d微生物丰度与POC、PON浓度的线性回归方程斜率(7.61、0.62) (图 3ab),表明当POC、PON浓度变化相同的值,0~14 d微生物丰度变化量大于21~90 d的变化量。降解密度不会影响微生物丰度与POC浓度、POC∶PON之间的相关关系(图 4ac),但对微生物丰度与PON浓度之间的相关关系有影响(图 4b),即1 g/L处理组微生物丰度与PON浓度无显著相关关系,5 g/L处理组微生物丰度与PON浓度有显著相关关系。

图 3 不同降解时间段微生物丰度与POC浓度(a)、PON浓度(b)和POC∶PON(c)的相关关系 Fig.3 The correlations between microbial abundance and particulate organic carbon (POC) concentration (a), particulate organic nitrogen (PON) concentration (b), and POC : PON (c) at different degradation stages 回归线表示线性回归显著相关,无显著相关者未画出回归线,下同。 Regression lines represent significant correlations. The same below.
图 4 不同降解密度条件下微生物丰度与POC浓度(a)、PON浓度(b)和POC∶PON(c)的相关关系 Fig.4 The correlations between microbial abundance and particulate organic carbon (POC) concentration (a), particulate organic nitrogen (PON) concentration (b), and POC∶PON (c) under different degradation density
3 讨论 3.1 浒苔降解过程中POC、PON浓度变化特征

本研究发现,浒苔降解过程中POC、PON浓度均呈先上升后下降的趋势,且二者与微生物丰度之间均存在显著相关性(图 1ab图 3ab)。同样,殷春雨等(2017)研究发现,有细菌存在的条件下,水生植物的降解速度更快,体现了细菌在水生植物降解过程的重要作用。浒苔藻体含有丰富的碳水化合物、蛋白质以及氨基酸等有机质(冯国昌等, 2011; 李响等, 2019),其腐烂分解时向水体释放有机质(Chen et al, 2020; Xiong et al, 2023; Zhang et al, 2021)。微生物在大藻降解过程中发挥着重要作用,绿潮消亡过程影响了近海水体与沉积物中的细菌群落(Qu et al, 2020)。以往的研究表明,浒苔降解是藻源有机质与细菌相互作用的过程,因此,细菌的群落演替在一定程度上影响了浒苔藻体碳的归宿(陈晶, 2020)。

本研究还发现,浒苔降解过程中POC、PON浓度变化具有明显的阶段性。首先,浒苔降解前14 d POC、PON浓度均有所上升(图 1ab)。该结果表明,降解前2周为大型藻类降解过程的第1阶段——浸出阶段,该阶段主要是与细胞死亡和自溶有关的可溶性化合物的浸出与溶解过程(Andersen et al, 1984)。Feng等(2022)在海带降解过程中发现,POC在前5 d迅速浸出。与海带相比,本研究发现,浒苔藻体浸出过程持续时间较长,推测是因为Feng等(2022)所使用的是海带碎屑,而本研究使用的是完整浒苔藻体。研究表明,碎屑表面积的增加可能会加速碳和氮的物理浸出过程(Harrison et al, 1975; Sosik et al, 2013),海带组织被破坏且尺寸较小,因此浸出时间较短。POC与PON快速浸出导致微生物丰度在降解开始的一个月内上升(图 2)。耿倩倩等(2020)在浒苔30 d降解过程中也观察到微生物丰度上升的现象。这是由于浒苔藻源有机质的释放为微生物提供了充足营养物质,导致了微生物大量繁殖生长。

其次,浒苔降解2周后(第14~90天),POC、PON浓度明显下降(图 1ab)。该结果表明,此时浒苔降解进入第2阶段——微生物降解阶段,该阶段主要是难溶性物质在微生物以及胞外酶的作用下分解的过程(Krumhansl et al, 2012)。该阶段水体POC浓度持续下降,这与微生物作用有关,微生物吸收利用有机质,呼吸作用加剧,导致水体pH值下降(未发表数据)。Li等(2023)通过浒苔1周降解实验发现,POC浓度仅在前4 d升高,随后下降,而DOC与DIC浓度持续上升,证明POC被微生物迅速转化为DOC与DIC。本研究中,PON浓度在第14~60天下降,但在第90天有所上升,这可能与细菌在颗粒碎屑表面的定殖导致氮富集有关(Lee et al, 1980; Rieper-Kirchner, 1989)。研究表明,浒苔降解进行至第68、113天时,细菌群落中属于β-变形菌纲(Betaproteobacteria)的伯克氏菌(Burkholderiaceae)和属于浮霉菌纲(Planctomycetacia)的浮霉菌(Planctomycetaceae)相对丰度较高(Chen, 2020),这2种细菌均具有固氮功能(Delmont et al, 2018; 张珂飞等, 2021),可能会导致PON浓度的上升。本研究中,第90天POC和PON的浓度仍在变化,因此,后续研究需考虑开展浒苔更长时间的降解,系统总结浒苔长期降解过程中POC、PON浓度变化特征。

此外,本研究发现,降解时间虽然不会改变微生物丰度与POC、PON浓度及POC∶PON的正相关关系,但是不同时间段微生物丰度与POC、PON浓度的线性回归方程有所不同(图 3ab)。浸出阶段(第0~14天)拟合的线性回归方程斜率大于微生物降解阶段(第21~90天),即POC、PON浓度变化相同的值,浸出阶段的微生物丰度变化量大于微生物降解阶段。Chen等(2020)研究发现,在浒苔降解过程中,细菌和藻源碳的相互作用会导致细菌群落结构的演替和潜在代谢功能的显著改变。细菌可以分为r策略者和K策略者。r策略者菌群通常成长速率较快、生长周期较短,并能较快地利用活性有机质,而K策略者菌群有着较慢的生长速率、较长的生长周期和更有效率地利用低生物活性有机质(Andrews et al, 1986; Teeling et al, 2012)。在浸出阶段,浒苔释放大量活性有机质,细菌中的r策略者快速吸收利用活性有机质,且它们自身生长周期短、生长速度快,因此,该阶段细菌繁殖速度更快。在微生物降解阶段,随着活性有机质成分的消减,r策略主义菌群也逐渐消亡,水体中较为惰性的有机质占据优势,从而缓慢滋生了较多K策略菌群,由于K策略菌群生长周期长且生长速率较慢,可能导致变化相同单位的有机质浓度,浸出阶段微生物丰度变化略高于微生物降解阶段。

3.2 降解密度对POC、PON浓度变化的影响

本研究表明,降解密度对POC、PON浓度具有显著性影响,即高降解密度处理组具有较高的POC、PON浓度(图 1ab),为低降解密度处理组的2~3倍。同样,Wu等(2017a)也发现,香蒲(Typha orientalis C. Presl)降解对水质的影响程度随生物量的增加而增加。因此,本研究中低降解密度处理组POC、PON浓度较低,可归因于浒苔生物量的差异。但POC、PON浓度随降解密度增加并非严格按照比例增加,可能是因为影响浒苔降解过程的因素较多,如pH、溶解氧、初始营养盐浓度等。降解密度的改变会引起其他因素的改变,因此,导致高降解密度处理组的POC、PON浓度未达到低降解密度处理组的5倍。后续研究还需进一步结合多种培养条件的变化深入探究POC、PON浓度变化的影响因素。

另外,与5 g/L处理组相比,1 g/L处理组POC、PON浓度到达峰值所需时间更短(图 1ab)。该结果表明,降解密度越高,有机质的浸出过程持续时间越长。同样,刘牧时(2021)研究发现,不同生物量的浒苔具有不同的腐烂分解时间,生物量最高的处理组需要分解的时间最长。Wu等(2017b)研究表明,随着生物量的增加,碳、氮、磷的单位质量释放速率均有所下降,这可能是高降解密度组浸出时间更长的原因。另外,随着降解密度的升高,其释放的有机质更丰富,微生物呼吸作用和耗氧加剧,致使水体缺氧、酸化现象更加明显,这也会对浒苔的降解过程产生一定影响。

3.3 浒苔降解过程中POC∶PON的变化特征

本研究表明,浒苔降解会导致水体POC∶PON总体明显下降(第30天下降约6%~16%;第90天下降约68%~88%)(图 1c),与以往的研究结果一致。例如,Hill等(2009)研究发现,30 d降解结束时,沙菜(Hypnea spicifera)释放的POC∶PON下降17%左右,石花菜(Gelidium pristoides)释放的POC∶PON下降11%左右。浒苔降解结束(90 d)时POC∶PON下降幅度更大,可能是因为降解时间较长,其释放的活性较高的POC和PON已被微生物完全降解。

虽然水体POC∶PON总体呈下降趋势,但是在第0~6天,POC∶PON呈现上升趋势(上升约11%~ 20%)(图 1c)。在第0~6天,POC、PON浓度持续上升(图 1ab),表明PON的释放滞后于POC。相对于氮,碳的释放更快速,导致浒苔藻体组织POC∶PON不断下降(未发表数据),这与前人研究结果一致。例如,海带经44 d降解后,海带组织POC∶PON由12下降至2以下(Norderhaug et al, 2007)。石莼(Ulva lactuca)经过70 d的降解,藻体组织POC∶PON下降18% (Kristensen, 1994)。氮的滞后释放可能是由有机体内物质形态、组成比例的差异以及各类物质分解难易程度造成的。第6~90天,POC∶PON持续下降,根据POC∶PON下降原因的不同,可以将其分为2个阶段(第6~28天和第28~90天)。第6~28天,POC、PON浓度呈上升趋势,推测POC∶PON下降是由POC释放速率变缓、PON释放速率有所上升所致。第28~90天POC浓度下降,PON浓度也有所下降,但在第90天有所回升,因此,POC∶PON于第90天下降到最低值。微生物对氮的固定和呼吸作用消耗碳,可能是导致POC∶PON下降的原因(Pagioro et al, 1999; Thornton et al, 1994)。

本研究的统计分析显示,微生物丰度与POC∶PON之间无显著相关性(图 3c)。微生物丰度只能表征微生物的数量,不能反映微生物群落结构。微生物包括细菌、真菌、病毒等,以细菌为例,细菌群落根据粒径可以分为颗粒附着细菌菌群(3~20 μm)和浮游细菌菌群(0.2~3 μm)。研究表明,颗粒附着菌群在藻体分解形成颗粒碎屑和溶解释放有机物过程中起关键作用,而水体中浮游菌群在降解过程中的主要作用是利用和消耗溶解有机质,二者对降解过程的影响不同(Vörös et al, 2003; Yan et al, 2019; 张晓会等, 2004)。胡晓娟等(2023)研究发现,在龙须菜(Gracilaria lemaneiformis)降解过程中,水体细菌数量显著下降,但沉积物、藻体附着细菌数量无明显变化,这可能是微生物丰度与POC∶PON无直接相关关系的原因。另外,Mille-Lindblom等(2003)研究发现,在水生植物凋落物分解过程中,真菌与细菌存在拮抗作用,并且认为这种拮抗作用是微生物定殖和生长的重要影响因素。因此,微生物在浒苔降解过程中的作用十分复杂,后续研究还需深入探索微生物与POC∶PON之间的关系。

4 结论

本研究通过浒苔90 d降解实验探究了降解密度对POC、PON浓度及其比值变化的影响,以及微生物丰度与POC、PON浓度及其比值的相关性。主要有以下结论:

(1) 浒苔降解过程中,POC、PON的释放具有明显的阶段性。有机质的浸出阶段,水体POC、PON浓度上升;而微生物降解阶段,POC浓度下降,PON浓度上升,这可能与细菌作用有关。降解密度对POC、PON浓度具有显著性影响,随着降解密度的增加,PON、POC释放完成需要的时间更长,POC、PON的释放量以及微生物丰度都有所增长。

(2) 降解过程中,POC∶PON呈先上升后下降的趋势,POC∶PON上升是由于浒苔降解过程中有机氮释放速率低于碳,而微生物对氮的固定以及呼吸作用消耗碳可能是POC∶PON下降的原因。微生物丰度与POC∶PON之间无显著相关,但在降解过程中,微生物作用较为复杂,后续研究需要借助基因测序等手段进一步探索微生物与POC∶PON之间的关系。

本研究主要针对浒苔降解过程中POC、PON的释放规律进行了研究,并量化了微生物丰度与POC、PON浓度及其比值的相关性。微生物在降解过程中的具体作用较为复杂,例如,细菌群落结构的演替通常伴随着颗粒有机质组分的变化,以及颗粒有机质向溶解有机质的转化。因此,未来需要围绕浒苔降解过程中微生物群落与颗粒有机质相互作用等方面开展更深入的研究,系统理解颗粒有机质释放及其调控机制。

致谢: 感谢中国科学院青岛生物能源与过程研究所张永雨研究员在实验设计和数据分析方面提供的帮助。感谢中国海洋大学朋鹏、张传莉、包孝涵在采集海水方面提供的帮助,作者对以上人员表示诚挚感谢。
参考文献
ANDERSEN F, HARGRAVE B T. Effects of Spartina detritus enrichment on aerobic/anaerobic benthic metabolism in an intertidal sediment. Marine Ecology Progress, 1984, 16: 161-171
ANDREWS J H, HARRIS R F. r- and K-selection and microbial ecology. In: MARSHALL K C (eds). Advances in microbial ecology. Advances in Microbial Ecology, Springer, Boston, MA, 1986, 9: 99–147
CHEN J, LI H M, ZHANG Z H, et al. DOC dynamics and bacterial community succession during long-term degradation of Ulva prolifera and their implications for the legacy effect of green tides on refractory DOC pool in seawater. Water Research, 2020, 185: 116268
CHEN J. Dynamic changes of microbial communities and organic matter during long-term degradation of Ulva prolifera and their legacy effects on carbon and nitrogen in seawater. Doctoral Dissertation of University of Chinese Academy of Sciences (Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences), 2020 [陈晶. 浒苔长期降解过程中微生物与有机质动态变化及碳氮遗留效应. 中国科学院大学(中国科学院青岛生物能源与过程研究所)博士研究生毕业论文, 2020]
DEBUSK T A, DIERBERG F E. Effect of nitrogen and fiber content on the decomposition of the waterhyacinth (Eichhornia crassipes [Mart.] Solms). Hydrobiologia, 1984, 118: 199-204
DELMONT T O, QUINCE C, SHAIBER A, et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nature Microbiology, 2018, 3: 804-813
FENG G C, LIU G Z, SUI S F. Occupational delection and evaluation on workplaces of clearance and transport for rotten Enteromorpha prolifera. Chinese Journal of Public Health Engineering, 2011, 10(1): 45-46 [冯国昌, 刘钢柱, 隋少峰. 腐烂浒苔清运现场职业卫生检测与评价. 中国卫生工程学, 2011, 10(1): 45-46]
FENG L N, ZHANG H B, SUN Y Y, et al. On nutrient releases from the decomposition of Ulva prolifera green tide and their impacts on nearshore seawaters in the southern Yellow Sea. Haiyang Xuebao, 2020, 42(8): 59-68 [冯丽娜, 张海波, 孙雨嫣, 等. 浒苔绿潮消亡腐败过程中的营养盐释放及其对近海环境的影响. 海洋学报, 2020, 42(8): 59-68]
FENG X T, LI H M, ZHANG Z H, et al. Microbial-mediated contribution of kelp detritus to different forms of oceanic carbon sequestration. Ecological Indicators, 2022, 142: 109186 DOI:10.1016/j.ecolind.2022.109186
FILBEE-DEXTER K, SCHEIBLING R E. Detrital kelp subsidy supports high reproductive condition of deep-living sea urchins in a sedimentary basin. Aquatic Biology, 2014, 23: 71-86 DOI:10.3354/ab00607
GARCÍA-ROBLEDO E, CORZO A, LOMAS J, et al. Biogeochemical effects of macroalgal decomposition on intertidal microbenthos: A microcosm experiment. Marine Ecology Progress Series, 2008, 356: 139-151 DOI:10.3354/meps07287
GENG H X, YU R C, ZHANG Q C, et al. Tracing the settlement region of massive floating green algae in the Yellow Sea. Journal of Oceanology and Limnology, 2019, 37: 1555-1565 DOI:10.1007/s00343-019-8348-x
GENG Q Q, CHEN J, LI H M, et al. Release dynamics and composition of dissolved organic matter from the macroalgae Ulva prolifera under different temperature regimes. Progress in Fishery Sciences, 2020, 41(2): 27-34 [耿倩倩, 陈晶, 李鸿妹, 等. 温度对浒苔降解过程中溶解有机物释放及其组成的影响. 渔业科学进展, 2020, 41(2): 27-34]
GESSNER M O. Breakdown and nutrient dynamics of submerged Phragmites shoots in the littoral zone of a temperate hardwater lake. Aquatic Botany, 2000, 66: 9-20
HARRISON P G, MANN K H. Detritus formation from eelgrass (Zostera marina L.): The relative effects of fragmentation, leaching, and decay. Limnology and Oceanography, 1975, 20: 924-934
HILL J M, MCQUAID C D. Variability in the fractionation of stable isotopes during degradation of two intertidal red algae. Estuarine, Coastal and Shelf Science, 2009, 82: 397-405 DOI:10.1016/j.ecss.2009.02.001
HU X J, ZHAO X, YANG Y F, et al. Effects of litter decomposition of Gracilaria lemaneiformis segments on environment and its succession characteristics of bacterial community. Haiyang Xuebao, 2023, 45(8): 130-142 [胡晓娟, 赵秀, 杨宇峰, 等. 大型海藻龙须菜(Gracilaria lemaneiformis)藻段凋落分解对环境的影响及细菌群落演替特征. 海洋学报, 2023, 45(8): 130-142]
KOMADA T, ANDERSON M R, DORFMEIER C L. Carbonate removal from coastal sediments for the determination of organic carbon and its isotopic signatures, δ13C and Δ14C: Comparison of fumigation and direct acidification by hydrochloric acid. Limnology and Oceanography: Methods, 2008, 6: 254-262 DOI:10.4319/lom.2008.6.254
KRAGH T, SONDERGAARD M, TRANVIK L. Effect of exposure to sunlight and phosphorus-limitation on bacterial degradation of coloured dissolved organic matter (CDOM) in freshwater. FEMS Microbiology Ecology, 2018, 64(2): 230-239
KRAUSE-JENSEN D, DUARTE C M. Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience, 2016, 9(10): 737-742 DOI:10.1038/ngeo2790
KRISTENSEN E. Decomposition of macroalgae, vascular plants and sediment detritus in seawater: Use of stepwise thermogravimetry. Biogeochemistry, 1994, 26(1): 1-24 DOI:10.1007/BF02180401
KRUMHANSL K A, SCHEIBLING R E. Production and fate of kelp detritus. Marine Ecology Progress Series, 2012, 467: 281-302 DOI:10.3354/meps09940
LEE C, HOWARTH R W, HOWES B L. Sterols in decomposing Spartina alterniflora and the use of ergosterol in estimating the contribution of fungi to detrital nitrogen. Limnology and Oceanography, 1980, 25(2): 290-303 DOI:10.4319/lo.1980.25.2.0290
LI H M, FENG X T, XIONG T Q, et al. Green tides significantly alter the molecular composition and properties of coastal DOC and perform dissolved carbon sequestration. Environmental Science and Technology, 2023, 57(1): 770-779 DOI:10.1021/acs.est.2c05684
LI X, ZHOU X H, ZHAO Y R. Research progress on constitutes of Ulva prolifera extract and their biological function. Chinese Journal of Animal Nutrition, 2019, 31(12): 5468-5475 [李响, 周锡红, 赵玉蓉. 浒苔提取物成分分析及其生理功能研究进展. 动物营养学报, 2019, 31(12): 5468-5475]
LIU J L, YANG X Q, LI J Y, et al. Research progress on settled mature Ulva prolifera during the outbreak of green tide in the Yellow Sea. Environmental Pollution and Control, 2020, 42(5): 614-618 [刘金林, 杨晓倩, 李继业, 等. 黄海绿潮暴发期间浒苔沉降研究进展. 环境污染与防治, 2020, 42(5): 614-618]
LIU M S. The effect of decay Enteromorpha prolifera on seawater ecological environment. Journal of Shandong Agricultural University (Natural Science Edition), 2021, 52(3): 466-469 [刘牧时. 腐烂浒苔对海洋生态的影响. 山东农业大学学报(自然科学版), 2021, 52(3): 466-469]
LIU N, YU Y X, WANG Y G, et al. Correlation analysis of bacterial community structure and eco-environmental factors in water and algae along Qingdao Coast before and after the outbreak of Ulva prolifera. Progress in Fishery Sciences, 2024, 45(6): 24-37 [刘妮, 于永翔, 王印庚, 等. 浒苔暴发前后青岛沿岸水体和藻体的细菌群落结构与生态环境因子相关性分析. 渔业科学进展, 2024, 45(6): 24-37 DOI:10.19663/j.issn2095-9869.20230904001]
LIU X Q, LI Y, WANG Z L, et al. Cruise observation of Ulva prolifera bloom in the southern Yellow Sea, China. Estuarine, Coastal and Shelf Science, 2015, 163: 17-22 DOI:10.1016/j.ecss.2014.09.014
LIU X Q. Distributions of floating green algae and micro-propagules in the formatting and developing processes in the Yellow Sea in 2012. Master´s Thesis of the First Institute of Oceanography, State Oceanic Administration, 2014 [刘湘庆. 黄海绿潮形成过程中漂浮绿藻及微观繁殖体时空分布研究. 国家海洋局第一海洋研究所硕士研究生毕业论文, 2014]
MARIE D, PARTENSKY F, VAULOT D, et al. Enumeration of phytoplankton, bacteria, and viruses in marine samples. Current Protocols in Cytometry, 1999, 10 DOI:10.1002/0471142956.cy1111s10
MENG L Z, ZHAO Z L, LU L F, et al. Source identification of particulate organic carbon using stable isotopes and n-alkanes: Modeling and application. Water Research, 2021, 197: 117083 DOI:10.1016/j.watres.2021.117083
MILLE-LINDBLOM C, TRANVIK L J. Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microbial Ecology, 2003, 45: 173-182
NI Z J, LI B, SUN Y Q, et al. Effects of light intensity and nutrients on dissolved organic carbon released from Saccharina japonica young seedling. Progress in Fishery Sciences, 2022, 43(5): 8-15 [尼志杰, 李斌, 孙琰晴, 等. 光照强度和营养盐对海带幼苗释放溶解有机碳的影响. 渔业科学进展, 2022, 43(5): 8-15 DOI:10.19663/j.issn2095-9869.20210726001]
NORDERHAUG K M, NYGAARD K, FREDRIKSEN S. Importance of phlorotannin content and C: N ratio of Laminaria hyperborea in determining its palatability as food for consumers. Marine Biology Research, 2007, 2: 367-371
OSCHLIES A, SCHULZ K G, RIEBESELL U, et al. Simulated 21st century's increase in oceanic suboxia by CO2-enhanced biotic carbon export. Global Biogeochemical Cycles, 2008, 22(4): 8
PAGIORO T A, THOMAZ S M. Decomposition of Eichhornia azurea from limnologically different environments of the Upper Paraná River floodplain. Hydrobiologia, 1999, 411: 45-51
QU T F, ZHAO X Y, HAO Y, et al. Ecological effects of Ulva prolifera green tide on bacterial community structure in Qingdao offshore environment. Chemosphere, 2020, 244: 125477 DOI:10.1016/j.chemosphere.2019.125477
RIEPER-KIRCHNER M. Microbial degradation of North Sea macroalgae: Field and laboratory studies. Botanica Marina, 1989, 32: 241-252 DOI:10.1515/botm.1989.32.3.241
ROCHELLE-NEWALL E J, PIZAY M D, MIDDELBURG J J, et al. Degradation of riverine dissolved organic matter by seawater bacteria. Aquatic Microbial Ecology, 2004, 37(1): 9-22
SCHNEIDER B, ENGEL A, SCHLITZER R. Effects of depth- and CO2-dependent C: N ratios of particulate organic matter (POM) on the marine carbon cycle. Global Biogeochemical Cycles, 2004, 18(2): 2015
SHARP J H. Improved analysis for "particulate" organic carbon and nitrogen from seawater. Limnology and Oceanography, 1974, 19: 984-989 DOI:10.4319/lo.1974.19.6.0984
SHI L M, HUANG Y X, ZHANG M, et al. Bacterial community dynamics and functional variation during the long-term decomposition of cyanobacterial blooms in-vitro. Science of the Total Environment, 2017, 598: 77-86 DOI:10.1016/j.scitotenv.2017.04.115
SMETACEK V, ZINGONE A. Green and golden seaweed tides on the rise. Nature, 2013, 504: 84-88
SOSIK E A, SIMENSTAD C A. Isotopic evidence and consequences of the role of microbes in macroalgae detritus-based food webs. Marine Ecology Progress Series, 2013, 494: 107-119
TEELING H, FUCHS B M, BECHER D, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science, 2012, 336(6081): 608-611
TESSAROLLI L P, BAGATINI I L, BIANCHINI Jr I, et al. Bacterial degradation of dissolved organic matter released by Planktothrix agardhii (Cyanobacteria). Brazilian Journal of Biology, 2018, 78(1): 108-116
THORNTON S F, MCMANUS J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: Evidence from the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science, 1994, 38(3): 219-233
VÖRÖS L, V.-BALOGH K, KONCZ E,. Phytoplankton and bacterioplankton production in a reed-covered water body. Aquatic Botany, 2003, 77(2): 99-110
WANG X J, JIN C J, WANG L S, et al. Distribution characteristics and influencing factors of particulate organic carbon in the Yellow Sea and the Bohai Sea in summer of 2016. Haiyang Xuebao, 2018, 40(10): 200-208 [王雪景, 金春洁, 王丽莎, 等. 2016年夏季黄, 渤海颗粒有机碳的分布特征及影响因素. 海洋学报, 2018, 40(10): 200-208]
WANG Z L, FU M Z, XIAO J, et al. Progress on the study of the Yellow Sea green tides caused by Ulva prolifera. Haiyang Xuebao, 2018, 40(2): 1-13 [王宗灵, 傅明珠, 肖洁, 等. 黄海浒苔绿潮研究进展. 海洋学报, 2018, 40(2): 1-13]
WU S Q, HE S B, HUANG J C, et al. Decomposition of emergent aquatic plant (Cattail) litter under different conditions and the influence on water quality. Water, Air, and Soil Pollution, 2017a, 228: 70
WU S Q, HE S B, ZHOU W L, et al. Decomposition characteristics of three different kinds of aquatic macrophytes and their potential application as carbon resource in constructed wetland. Environmental Pollution, 2017b, 231: 1122-1133
XIONG T Q, LI H M, YUE Y F, et al. Legacy effects of late macroalgal blooms on dissolved inorganic carbon pool through alkalinity enhancement in coastal ocean. Environmental Science and Technology, 2023, 57(5): 2186-2196
YAN D D, XIA P H, SONG X, et al. Community structure and functional diversity of epiphytic bacteria and planktonic bacteria on submerged macrophytes in Caohai Lake, southwest of China. Annals of Microbiology, 2019, 69: 933-944
YIN C Y, GUAN B H, CHEN M Q, et al. Nitrogen and phosphorus release during decomposition of floating and submerged macrophytes. Jiangsu Agricultural Sciences, 2017, 45(21): 275-277 [殷春雨, 关保华, 陈梦琪, 等. 漂浮和沉水植物降解过程中氮磷的释放规律. 江苏农业科学, 2017, 45(21): 275-277]
YU R C, SUN S, YAN T, et al. Progresses and perspectives on green-tide studies in the Yellow Sea. Oceanologia et Limnologia Sinica, 2018, 49(5): 942-949 [于仁成, 孙松, 颜天, 等. 黄海绿潮研究: 回顾与展望. 海洋与湖沼, 2018, 49(5): 942-949]
ZHANG K F, ZHONG Y J, SUN L L, et al. Plant-associated beneficial Burkholderia. Acta Microbiologica Sinica, 2021, 61(8): 2205-2218 [张珂飞, 钟永嘉, 孙丽莉, 等. 植物有益伯克霍尔德氏菌的研究进展及其在农业中的应用. 微生物学报, 2021, 61(8): 2205-2218]
ZHANG L B, CHEN M M, ZHENG Y, et al. Microbially driven fate of terrigenous particulate organic matter in oceans. Limnology and Oceanography, 2023, 68(1): 12255
ZHANG P Y, XIN Y, ZHONG X S, et al. Integrated effects of Ulva prolifera bloom and decay on nutrients inventory and cycling in marginal sea of China. Chemosphere, 2021, 264: 128389
ZHANG T, SHI X Y, ZHANG C S, et al. Distribution of organic carbon in the end of the decline of Enteromorpha prolifera in 2008. Marine Environmental Science, 2011, 30(3): 324-328 [张婷, 石晓勇, 张传松, 等. 2008年浒苔消亡末期有机碳分布情况的初步研究. 海洋环境科学, 2011, 30(3): 324-328]
ZHANG T, WANG X C. Release and microbial degradation of dissolved organic matter (DOM) from the macroalgae Ulva prolifera. Marine Pollution Bulletin, 2017, 125(1/2): 192-198
ZHANG X H, SONG Z L. The changes of the bacterial endotoxins before and after the pasteurization, using the method of checking the bacterial endotoxins. Hebei Chemical Engineering and Industry, 2004, 27(4): 25, 36 [张晓会, 宋增良. 用细菌内毒素检查法检测巴氏灭活前后内毒素的变化. 河北化工, 2004, 27(4): 25, 36]
ZHANG X W, TANG Q S. Estimation of carbon sequestration by Ulva prolifera and potential ways to increase the carbon sink. Progress in Fishery Sciences, 2022, 43(5): 34-39 [张晓雯, 唐启升. 浒苔碳汇功能评估及其扩增途径. 渔业科学进展, 2022, 43(5): 34-39 DOI:10.19663/j.issn2095-9869.20220331002]
ZHANG Y Y, HE P M, LI H M, et al. Ulva prolifera green-tide outbreaks and their environmental impact in the Yellow Sea, China. National Science Review, 2019, 6(4): 825-838
ZHAO J Y, GENG H X, ZHANG Q C, et al. Green tides in the Yellow Sea promoted the proliferation of pelagophyte Aureococcus anophagefferens. Environmental Science and Technology, 2022, 56(5): 3056-3064
ZHAO J, JIANG P, LIU Z Y, et al. The Yellow Sea green tides were dominated by one species, Ulva (Enteromorpha) prolifera, from 2007 to 2011. Chinese Science Bulletin, 2013, 58(19): 2298-2302
ZHOU M J, LIU D Y, ANDERSON D M, et al. Introduction to the special issue on green tides in the Yellow Sea. Estuarine, Coastal and Shelf Science, 2015, 163: 3-8