渔业科学进展  2025, Vol. 46 Issue (2): 133-146  DOI: 10.19663/j.issn2095-9869.20240520001
0

引用本文 

秦翰林, 毕宇杰, 姜舒祺, 吴成辰, 谭志军, 耿倩倩, 郭萌萌. 全氟辛酸(PFOA)及其醚羧酸替代品在菲律宾蛤仔体内的蓄积差异研究[J]. 渔业科学进展, 2025, 46(2): 133-146. DOI: 10.19663/j.issn2095-9869.20240520001.
QIN Hanlin, BI Yujie, JIANG Shuqi, WU Chengchen, TAN Zhijun, GENG Qianqian, GUO Mengmeng. Accumulation Differences in Perfluorooctanoic Acid and Its Ether Carboxylic Acid Alternatives in the Manila Clam (Ruditapes philippinarum)[J]. Progress in Fishery Sciences, 2025, 46(2): 133-146. DOI: 10.19663/j.issn2095-9869.20240520001.

基金项目

现代农业产业技术体系专项资金(CARS-49)和中国水产科学研究院基本科研业务费(2023TD76)共同资助

作者简介

秦翰林,Email: 18324709198@163.com

通讯作者

郭萌萌,高级工程师,Email: guomm@ysfri.ac.cn

文章历史

收稿日期:2024-05-20
收修改稿日期:2024-07-10
全氟辛酸(PFOA)及其醚羧酸替代品在菲律宾蛤仔体内的蓄积差异研究
秦翰林 1,2, 毕宇杰 2, 姜舒祺 2, 吴成辰 1,2, 谭志军 2, 耿倩倩 2, 郭萌萌 2     
1. 上海海洋大学食品学院 上海 201306;
2. 海水养殖生物育种与可持续产出全国重点实验室 中国水产科学研究院黄海水产研究所 山东 青岛 266071
摘要:以菲律宾蛤仔(Ruditapes philippinarum)为受试生物,研究了全氟辛酸(PFOA)及其醚羧酸替代品(HFPO-DA、HFPO-TA、HFPO-TeA)的生物富集、组织分布与消除规律以及机体蛋白质对目标物蓄积的影响。通过计算动力学参数,解析菲律宾蛤仔对PFOA及其醚羧酸替代品的富集、分布与消除行为。此外,通过提取菲律宾蛤仔体内水溶性蛋白,进行了体外蛋白质孵育实验,分析不同目标物与蛤仔机体蛋白质的结合率差异,并进一步通过分子对接技术,探讨了目标物分子–蛋白质之间的结合作用力及其与富集特征的相关性。结果表明,PFOA及其醚羧酸替代品在菲律宾蛤仔体内快速富集,富集速率按照HFPO-DA、PFOA、HFPO-TA、HFPO-TeA的顺序依次升高,在不同组织中的富集作用由强到弱依次为内脏团、鳃、外套膜、闭壳肌,并在净化21 d后趋于空白组水平。PFOA及其醚羧酸替代品在菲律宾蛤仔体内的蓄积能力、不同目标物分子–蛤仔机体蛋白质的结合率均与目标物浓度密切相关,浓度越低,吸收速率常数(Ku)和生物浓缩系数(BCF)越大,蛋白质结合率越低,其分子结构也是富集能力强弱和蛋白质结合力强弱的关键影响因素,C-O键和碳氟链的增加有助于目标物分子与蛋白质残基的碱基结合,目标物在各组织中的含量和蛋白结合率由低到高依次为HFPO-DA、PFOA、HFPO-TA、HFPO-TeA。使用分子对接技术进一步验证了4个目标物与脂肪酸结合蛋白FABP1-A之间的结合作用力,其结合能由低到高依次为HFPO-TeA、HFPO-TA、PFOA、HFPO-DA,结合能越低,越容易与蛋白质结合。目标物的极性端与FABP1-A氨基酸残基直接形成氢键,疏水端则与非极性残基有疏水相互作用,氢键作用与疏水相互作用共同促进了PFOA及其醚羧酸替代品与蛋白质的相互结合,氢键数量的多少是导致目标物与蛋白结合亲和力差异的重要原因。本研究结果有助于阐释双壳贝类中PFOA及其醚羧酸替代品的差异化生物富集行为及富集机制,为新污染物的防控和治理奠定科学基础。
关键词全氟辛酸(PFOA)    醚羧酸替代品    菲律宾蛤仔    生物富集    蛋白质结合模式    
Accumulation Differences in Perfluorooctanoic Acid and Its Ether Carboxylic Acid Alternatives in the Manila Clam (Ruditapes philippinarum)
QIN Hanlin 1,2, BI Yujie 2, JIANG Shuqi 2, WU Chengchen 1,2, TAN Zhijun 2, GENG Qianqian 2, GUO Mengmeng 2     
1. College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China;
2. State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
Abstract: Perfluorooctanoic acid (PFOA) is a synthetic organic chemical with unique hydrophobic and oleophobic properties. It is extensively used in the production of a wide range of essential industrial and consumer products including aqueous film-forming foams, medical devices, and textiles. PFOA is widespread in aquatic environments and has attracted global attention due to the serious ecological risks it poses. Consequently, several countries and organizations have implemented strict restrictions or controls on its use. In 2019, PFOA and its salts were included as Annex A of the Stockholm Convention on Persistent Organic Pollutants, and in 2023, the Ministry of Ecology and Environment of the People's Republic of China and six other departments issued the "Key Regulated New Pollutant List 2023", which proposed environmental risk control measures for PFOA, its salts, and related compounds. With an increase in regulatory measures, the production and use of PFOA have declined, resulting in the rapid development and use of alternatives. Hexafluoropropylene oxide dimer acid (HFPO-DA), trimer acid (HFPO-TA), and tetramer acid (HFPO-TeA)—composed of CF2 or CF2O repeating units—have emerged as principal alternatives that maintain chemical properties similar to those of PFOA and are predominantly used in the manufacture of fluoropolymers and their processing aids.As filter-feeding organisms, bivalves are prolific and have a broad geographic distribution. They possess a marked capacity for accumulating organic contaminants, making them ideal indicators for monitoring pollution in marine environments and assessing the status of various marine ecosystems. Therefore, Manila clams (Ruditapes philippinarum) were used as the test organism in this study and exposed to two concentrations (2 ng/mL and 200 ng/mL) of PFOA and its alternatives—HFPO-DA, HFPO-TA, HFPO-TeA—within a mariculture setting.The purpose of this study was to analyze the tissue distribution, accumulation, and elimination patterns of these compounds in clams, and to evaluate differences in the accumulation ability of organisms to enrich PFOA and its ether carboxylic acid alternatives in clams by calculating kinetic parameters. Additionally, water-soluble proteins were extracted from the visceral masses and gills of the clams and incubated in vitro to explore the differences in binding rates between the target compounds and clam proteins. The binding modes between the target molecules and proteins were investigated using molecular docking techniques to further elucidate the relationship between molecular and protein interactions and the bioaccumulation properties of clams.It was found that that PFOA and its ether carboxylic acid alternatives were rapidly enriched in Manila clams. The enrichment rate of targets increased as HFPO-DA < PFOA < HFPO-TA < HFPO-TeA, and the enrichment effects in different tissues were visceral mass > gill > mantle > adductor muscle. After a 21-day depuration period, the contaminant levels in Manila clams approached those in the control group. Furthermore, in Manila clams, the accumulation capacity of PFOA and its alternatives, and the binding rates of different target molecules to body proteins were strongly correlated with the target concentrations. Lower target concentrations led to greater absorption rate constants and bioconcentration factors and lower binding rates of the targets to the protein. The target content and protein binding in each tissue were HFPO-DA < PFOA < HFPO-TA < HFPO-TeA. Additionally, the molecular structure of PFOA and its alternatives—particularly the increase in C-O bonds and C-F chains—enhanced their binding affinities with protein residues. The binding forces between PFOA, its alternatives, and the fatty acid-binding protein FABP1-A were further validated by molecular docking studies. The magnitude of the binding energy was HFPO-TeA < HFPO-TA < PFOA < HFPO-DA, and the lower the binding energy, the easier it was to bind to the protein. The polar ends of the targets formed hydrogen bonds with the amino acid residues of FABP1-A, whereas their hydrophobic ends engaged in hydrophobic interactions with nonpolar residues, collectively enhancing the protein binding of PFOA and its alternatives. The number of hydrogen bonds is also an important cause of binding affinity differences in the target proteins.This study elucidates the bioaccumulation behavior of PFOA and its alternatives in bivalves and provides a scientific basis for the control and management of emerging contaminants. Although the levels of PFOA and its alternatives in aquatic environments are currently traceable, the ecological risks associated with their persistence in the environment should not be underestimated. Moreover, the findings on their binding rates to clam proteins offer a scientific basis for the reasonable selection of alternatives. Additionally, the molecular docking data furnish a theoretical basis for investigating the specific binding of PFOA and its alternatives to proteins with different carbon chain lengths and structures.
Key words: Perfluorooctanoic acid (PFOA)    Ether carboxylic acid alternatives    Manila clams (Ruditapes philippinarum)    Bioaccumulation    Protein binding modes    

全氟辛酸(perfluorooctanoic acid, PFOA)是一种人工合成的有机化学品,其分子结构为含8个碳原子的烷基羧酸,而碳原子上的氢原子全部被氟原子取代(Garg et al, 2023)。由于其独特的化学结构,PFOA具有优异的表面活性、化学惰性和耐高温性(Li et al, 2022)。因此,PFOA已广泛应用于人类生活所需的工业和民用产品的生产领域,如水性成膜泡沫、医疗设备、纺织品、食品处理设备和机油添加剂的加工生产(Ye et al, 2015; Dasu et al, 2022)。然而,由于PFOA的上述特性与广泛应用,引发了严重的环境问题。据报道,PFOA在水环境中的污染普遍,在很多国家和地区的地表水、地下水和饮用水中都有检出(Johnson et al, 2022)。在中国渤海海水中PFOA的中位浓度为9.75 ng/L (Chen et al, 2017),南海海水中PFOA的浓度范围为37.5~1 541 ng/L (Cai et al, 2012),胶州湾海水中PFOA的浓度范围为8.18~16.20 ng/L (崔文杰等, 2019);在美国明尼苏达州和新泽西州的河流中,PFOA的浓度分别为42 ng/mL和70 ng/mL (Oliaei et al, 2013; Procopio et al, 2017)。PFOA在水环境中表现出高度的持久性,在水体中的半衰期为5.8年(González-Gaya et al, 2014)。此外,在人类活动区域之外的极地地区积雪中也可以检测到PFOA (Yeung et al, 2017),这表明PFOA具有远距离迁移性。PFOA还可以通过食物链的生物浓缩和生物放大进行种间转移,具有较高的生物蓄积性(Xiao et al, 2015),如在野生动物组织(Cui et al, 2018)和人类血清(Fromme et al, 2017)中均检测到PFOA的存在,蓄积含量高达90.9 ng/kg和20.2 ng/L。为此,越来越多的研究将PFOA暴露与生物毒性效应联系起来,研究表明,PFOA具有认知发育缺陷(Viberg et al, 2013)、神经行为障碍(Lenters et al, 2019)及潜在的致癌性(Rand et al, 2014)等多种生物毒性(Riaz et al, 2023),其生物蓄积已对人类健康产生不利影响。而水环境作为PFOA的重要归宿(Zhou et al, 2022),由PFOA引发的水生生态风险问题受到全球广泛关注,多个国家或组织均对PFOA进行了严格的限制或管控。2014年,欧洲化学品管理局(ECHA)将PFOA列入高度关注物质清单(SVHC),限制PFOA的生产和使用;2019年,PFOA及其盐类被列入《斯德哥尔摩公约》致癌物附件A中;2022年3月,我国国标《生活饮用水卫生标准》(GB 5749-2022)规定了生活饮用水中PFOA的限量标准为80 ng/L;2023年,我国生态环境部、工业和信息化部、农业农村部等六部门将PFOA及其盐类和相关化合物(简称PFOA类)列入《重点管控新污染物清单(2023年版)》,对其进行环境风险管控。

随着PFOA的管控措施日益严苛,其生产和使用量不断减少,随之而来的是相关替代品的研发及产量迅速增加。目前,已有的PFOA替代品以全氟烷基醚羧酸(perfluoroalkyl ether carboxylic acid,PFECAs) (Pan et al, 2018)为主,其分子结构中因添加了氧基团可能使替代品更易降解(Strynar et al, 2015)。六氟环氧丙烷二聚体羧酸(hexafluoropropylene oxide dimer acid, HFPO-DA)、六氟环氧丙烷三聚体羧酸(hexafluoropropylene oxidetrimer acid, HFPO-TA)和六氟环氧丙烷四聚体羧酸(hexafluoropropylene oxide tetrameracid, HFPO-TeA)是主要的PFECA,已被广泛应用于含氟聚合物制造的加工助剂生产以及作为合成其他含氟化学产品的原料(Bao et al, 2020)。这些化合物的碳链(醚基)中含有氧,由具有CF2或CF2O亚基重复单元的全氟化和多氟化化合物的同源系列组成,但保持着与PFOA相似的化学性质。近些年来,替代品的环境问题也日益严重。大量的污染调查表明它们广泛存在于水生环境中,如美国俄亥俄州和西弗吉尼亚州的地表水(Galloway et al, 2020)、北卡罗来纳州的开普菲尔河流域(Sun et al, 2016)、德国莱茵河(Lindim et al, 2016)、中国小清河(Wang et al, 2016)和黄浦江(Sun et al, 2017),荷兰(Gebbink et al, 2017)和瑞典(Xu et al, 2021)等国的环境监测报告也报道了HFPO-DA和HFPO-TA在水体中的存在,其中HFPO-TA的浓度甚至高达68.5 ng/mL (Pan et al, 2017)。毒理研究表明,HFPO-DA与HFPO-TA具有同PFOA相似的生物毒性,在斑马鱼(Danio rerio)胚胎中会诱导发育毒性(Wang et al, 2023)等。

双壳贝类作为滤食性生物,数量多、分布广,对有机污染物具有较高的蓄积能力,其作为污染物指示性生物已广泛用于监测海洋环境污染(Kibria et al, 2016),适用于评估不同海洋环境的污染状况。而目前针对PFOA,尤其是其替代品在贝类体内蓄积行为的相关研究较少,不利于科学评估新污染物引发的海洋生态风险。菲律宾蛤仔(Ruditapes philippinarum)是我国沿海地区重要的滩涂贝类,分布广,对污染物具有高蓄积性、高敏感性等特点。本研究选用菲律宾蛤仔为受试生物,采用海水暴露于不同浓度(2 ng/mL、200 ng/mL)的PFOA及其醚羧酸替代品HFPO-DA、HFPO-TA、HFPO-TeA,研究4种目标物在菲律宾蛤仔体内的富集、组织分布与消除规律,并通过计算动力学参数,评价蛤仔对PFOA及其醚羧酸替代品的富集能力差异。此外,通过提取菲律宾蛤仔体内水溶性蛋白,进行体外蛋白质孵育实验,探究不同目标物与蛤仔机体蛋白质的结合率差异,并进一步通过分子对接技术,探讨不同目标物分子–蛋白质的结合作用力与富集特征的相关性。本研究结果有助于阐释双壳贝类中PFOA及其醚羧酸替代品的差异化生物富集行为及富集机制,为新污染物的防控和治理奠定科学基础。

1 材料与方法 1.1 仪器与试剂

仪器:Prominence UPLC液相色谱(Shimadzu公司),四极杆-线性离子阱复合质谱(AB SCIEX公司),高速离心机(日本Hitachi公司),恒温振荡器(CRYSTAL公司),超声波提取仪(江苏省昆山市超声仪器公司),旋涡混合器(上海医大仪器厂),多功能酶标仪(美国Bio-Rad公司),微孔板恒温振荡器(浙江省杭州瑞诚仪器有限公司),可见分光光度计(上海尤尼柯仪器有限公司),台式高速冷冻离心机(上海力康生物医疗科技控股有限公司),电热恒温水浴锅(上海圣科仪器设备有限公司)。

试剂:PFOA、HFPO-DA、HFPO-TA、HFPO-TeA标准品购自上海麦克林生化科技股份有限公司,纯度均 > 95%;同位素内标标准溶液13C8-全氟辛酸(Perfluoro-n-[13C8]octanoic acid,M8PFOA)购自加拿大Wellington Laboratories公司,纯度 > 98%。

甲醇,乙腈,水(LC-MS级,美国Merk公司);乙酸铵(HPLC级,美国Sigma Aldrich公司);超纯水(18.2 MΩ. cm);超滤离心管(Ultracel®-10K,德国Merck millipore公司);其他未作特殊说明的试剂均为分析纯。

1.2 实验用贝

菲律宾蛤仔于2023年10月购自山东省青岛市红岛区,选取健康无损伤、大小均一的二龄蛤仔作为实验用贝,体长为(3.50±0.34) cm,体重为(7.29±1.37) g。在暴露实验前,驯养7 d以适应实验室条件。

1.3 PFAS暴露实验设计

实验海水取自胶州湾,海水温度为(18.0±1.0) ℃,盐度29.7±2.1,pH值8.0±0.2,溶解氧(7.0±0.1) mL/g,且保持24 h连续不间断充氧,每日更换海水。以小球藻泥作为饵料每日投喂,投喂量占菲律宾蛤仔平均体重的0.6% (刘芝余等, 2017)。

暂养结束后,空白对照组和每个浓度的目标物暴露组(2 ng/mL和200 ng/mL)均设置3个平行实验组,每个实验组随机放置300只菲律宾蛤仔。整个实验持续28 d,其中,暴露实验组在富集阶段(0~7 d)每日更换海水(15 L),并加入150 μL目标物标准溶液(0.2 mg/mL、20 mg/mL);代谢阶段(8~21 d),每日更换洁净无目标物的海水。空白对照组和暴露实验组分别在0、1、3、5、6、7、8、10、14、21和28 d随机取样,每个实验组随机采集30只蛤仔,将其中27只蛤仔迅速解剖为内脏团、鳃、外套膜和闭壳肌4个组织,将其余3只除去贝壳后剩余部分作为整贝软体组织,解剖后冻存于–80 ℃供后续实验使用。

1.4 样品前处理

目标物含量分析前处理:准确称取2 g匀浆的生物样品于50 mL聚丙烯(polypropylene,PP)离心管中,加入200 µL M8PFOA (10 ng/mL),5 mL超纯水,涡旋1 min后加入5 mL乙腈,再涡旋1 min后超声10 min,以4 000 r/min离心5 min。取上清液于另一支50 mL的离心管内,加入5 mL乙腈,进行二次提取、离心,合并上清液。在上清液中加入4 g无水硫酸镁、1 g氯化钠,迅速混匀,涡旋10 min,以4 000 r/min离心5 min。取上清液于15 mL PP离心管内,在管中加入100 mg PSA、80 mg C18和30 mg GCB,迅速涡旋1 min,以4 000 r/min离心10 min,上清液转移至10 mL PP离心管中进行氮吹,控制氮吹仪的水温低于40 ℃,气流使液面产生涟漪条件下浓缩至约0.5 mL,再用50%甲醇水溶液定容至1 mL,涡旋混匀,12 000 r/min离心10 min,过0.22 μm PP针式滤器,待测。

超滤离心法分离结合蛋白:将蛤仔的组织解剖后立即提取蛋白,迅速放入液氮后取出并进行冷冻研磨。取1 g组织,加入9 mL PBS溶液(pH7.2-7.4,0.01M),混匀,以2 500 r/min离心10 min,取上清液1 mL,用PBS稀释至1%即获得蛋白液。向蛋白液中加入目标物溶液,使其浓度分别达到2 ng/mL和200 ng/mL,37 ℃水浴孵育15 min后得到孵育液。取500 μL孵育液转移至超滤离心管中,以12 000 r/min离心15min后取滤液至进样小瓶,待测。

1.5 仪器分析

仪器条件主要参考郭萌萌等(2015)的方法,具体参数如下:

液相色谱条件:为了将液相系统背景干扰组分与样品中的目标组分分离,在混合器和进样器之间安装延迟色谱柱:Waters C18 (2.1 mm×50.0 mm,5 µm);分析色谱柱为Phenomenex Kinetex XB-C18 (2.1 mm× 100.0 mm,2.6 µm);柱温:40 ℃;流速:0.30 mL/min;进样量:5 µL;流动相:A为5 mmol/L乙酸铵水溶液,B为甲醇;洗脱梯度:初始流动相为20% B,0.5~2.0 min升至60% B,2.0~6.0 min升至95% B,6.0~10.0 min保持95% B,10.1~12.0 min恢复至初始流动相。

质谱条件:电喷雾离子源(ESI),多反应监测(MRM),负离子模式;气帘气压力:0.24 MPa;喷雾电压:–4.5 kV;碰撞气压力:0.02 MPa;温度:650 ℃;碰撞室入口电压:–10 V;碰撞室出口电压:–12 V;驻留时间:20 ms;离子源Gas1:0.34 MPa;Gas2:0.34 MPa。目标物的母离子(parent ion)、子离子(product ion)、解簇电压(declustering potential,DP)、碰撞能(collision energy, CE)和碰撞室射出电压(collision cell exit potential, CXP)等参数见表 1

表 1 PFOA、HFPO-DA、HFPO-TA、HFPO-TeA和M8PFOA的质谱参数 Tab.1 The mass spectral parameters of PFOA, HFPO-DA, HFPO-TA, HFPO-TeA, and M8PFOA
1.6 质量控制与保证

为减少外源性污染,实验中均选用聚丙烯材质的器皿,并在实验前使用甲醇充分清洗并风干。定量分析采用标准曲线校正,同位素内标法定量。样品检测的同时做试剂空白,所有实验数据均扣除空白值。采用至少6个浓度点进行标准曲线的绘制,标准曲线线性范围为0.5~20 ng/mL,线性相关系数(r)在0.995以上。PFOA的检出限为0.020 ng/g,HFPO-DA和HFPO-TA的检出限为0.040 ng/g,HFPO-TeA的检出限为0.060 ng/g。添加量分别为0.5 ng/g和2 ng/g时,目标化合物的加标回收率范围为97%~112%,相对标准偏差(RSD)为5.1%~10.8%。

1.7 数据分析 1.7.1 吸收与净化一阶非线性动力学模型

利用Origin2023b非线性回归技术将净化数据拟合到一阶非线性衰减模型中,计算出净化速率常数Kd,公式如下:

$ {C_t} = {C_{t = 0}} \times {{\text{e}}^{ - {{\text{K}}_{\text{d}}}t}} $ (1)

式中,Ct代表不同取样点菲律宾蛤仔组织中目标物的PFOA及其醚羧酸替代品的含量(ng/g),Ct=0代表净化实验开始时目标物的含量(ng/g),t代表时间(d),Kd代表消除速率常数(d–1)。

将富集数据拟合到一阶非线性生物累积模型中,计算吸收速率常数Ku,公式如下:

$ ^{ } {C_t} = \frac{{{{\text{K}}_{\text{u}}}C}}{{{{\text{K}}_{\text{d}}}}} \times (1 - {{\text{e}}^{ - {{\text{K}}_{\text{d}}}t}}) ^{ } $ (2)

式中,Ct代表不同取样点菲律宾蛤仔组织中目标物的含量(ng/g),C代表海水中目标物的浓度(ng/g),t代表时间(h),Ku代表吸收速率常数(mL/g·d–1)。

半衰期(t1/2)计算公式:

$t_{1 / 2}=\ln 2 / \mathrm{K}_{\mathrm{d}} $ (3)

生物浓缩系数(BCF)为吸收速率常数(Ku)和消除速率常数(Kd)的比值,单位为mL/g:

$ \text{BCF}=\text{K}_\text{u}/\text{K}_\text{d } $ (4)
1.7.2 目标物与机体蛋白的结合率

蛋白结合率(r)计算公式:

$ r = \frac{{{C_0} - {C_1}}}{{{C_0}}} $ (5)

式中,C0代表蛋白液中加入目标物后的溶液浓度,C1代表孵育液通过超滤离心管后溶液浓度。

1.7.3 分子对接计算机模拟

采用计算机蛋白–配体对接软件AutodockVina 1.2.2进行目标物与脂肪酸结合蛋白的分子对接模拟。由于目前针对菲律宾蛤仔机体蛋白的鉴定及定性工作尚缺乏,本研究以UniProt (https://www.uniprot.org/)数据库中一种来源于斑马鱼体内的脂肪酸结合蛋白(FABP1-A)为分子对接的载体蛋白,从PubChem化合物数据库(https://pubchem.ncbi.nlm.nih.gov/)中获得了PFOA、HFPO-DA、HFPO-TeA的分子结构;通过GAUSSIAN 16软件在UM602X 6-311G++2df 2pd SMD=WATER的水平下进行振动频率和结构优化的计算,选取能量最低的构型作为HFPO-TA的分子结构。对接口袋设置为1个30 Å×30 Å×30 Å的正方形口袋,格点距离为0.05nm。分子对接研究采用Autodock Vina 1.2.2 (http://autodock.scripps.edu/)进行模型可视化。

1.7.4 统计分析

本研究采用Excel 2021软件进行数据统计,所有实验数据均以3个平行组数据的平均值±标准差(Mean±SD)表示,若目标物含量低于检出限或未检出时,在数据处理过程中其含量数值以0进行计算。采用Origin 2021进行数据绘图。

2 结果 2.1 PFOA及其醚羧酸替代品在菲律宾蛤仔体内的组织分布

在暴露实验前的驯养阶段,菲律宾蛤仔组织中均未检测到PFOA及其醚羧酸替代品;同时,在整个实验阶段,小球藻泥和空白对照组海水中均未检出4个目标物,从而排除了实验过程中的本底污染。

为明确PFOA及其醚羧酸替代品在菲律宾蛤仔体内的组织分布与富集靶器官,比较了不同组织(内脏团、鳃、外套膜、闭壳肌)中目标物的浓度。由图 1可知,随着暴露时间的延长,各组织中HFPO-DA、PFOA、HFPO-TA、HFPO-TeA浓度持续增加,在5 d或6 d达到峰值,峰值含量由高到低依次为内脏团、鳃、外套膜、闭壳肌。其中,富集阶段的内脏团中HFPO-DA、PFOA、HFPO-TA、HFPO-TeA含量显著高于其他组织,且比其他组织优先达到峰值,峰值含量分别高达290.5、746.7、816.3、2 686.8 ng/mL (暴露浓度为2 ng/mL)和2 733.9、2 815.6、2 921.9、19 205.9 ng·/mL (暴露浓度为200 ng/mL)。由此可知,菲律宾蛤仔可迅速蓄积PFOA及其醚羧酸替代品,且具有组织分布差异性,内脏团为富集靶器官。

图 1 富集阶段菲律宾蛤仔各组织中PFOA及其醚羧酸替代品污染物含量 Fig.1 Contents of PFOA and its ether carboxylic acid alternatives in tissues of Manila clams exposed to different concentrations during the enrichment stage a, b, c, and d: 2 ng/mL; e, f, g, and h: 200 ng/mL.
2.2 PFOA及其醚羧酸替代品在菲律宾蛤仔体内的富集与消除动力学

PFOA及其醚羧酸替代品在菲律宾蛤仔体内不同组织和整贝软体组织中的蓄积和消除趋势如图 2所示,分别将净化和富集数据拟合到一阶非线性指数衰减和富集模型中(相关系数r2为0.855 2~0.999),通过计算得到不同组织及整贝软体组织的净化速率常数(Kd)、吸收速率常数(Ku)、半衰期(t1/2)和生物浓缩系数(BCF),结果如表 2所示。各浓度处理组中,各取样时间点的蛤仔不同组织及整贝软体组织富集目标物的含量由低到高依次为HFPO-DA、PFOA、HFPO-TA、HFPO-TeA,其在整贝软体组织中的Kd值分别为1.89~2.01 d–1、1.88~1.99 d–1、1.75~1.95 d–1和1.49~1.52 d–1,且目标物含量在净化21 d后趋于空白组水平,其中,HFPO-DA的Kd值相对较大,说明HFPO-DA更容易清除。4个目标物在各组织中的半衰期分别为0.35~0.60 d (约8.4~14.4 h)、0.31~0.48 d (约7.44~11.52 h)、0.28~0.42 d (约6.72~10.08 h)、0.28~0.59 d (约6.72~14.16 h),无显著差异。但4个目标物在菲律宾蛤仔各组织中的BCF值存在显著差异,即HFPO-DA、PFOA、HFPO-TA、HFPO-TeA依次升高,BCF值的趋势在蛤仔各组织中均保持一致。另外,鳃的Ku值在4个组织中最大,而内脏团作为富集靶器官,Kd值在各组织中最小。

图 2 PFOA及其醚羧酸替代品在菲律宾蛤仔体内富集(0~7 d)与消除(8~28 d)趋势 Fig.2 Uptake (0~7 d) and depuration (8~28 d) of PFOA and its ether carboxylic acid alternatives measured in the tissues and whole body clam exposed to different concentrations a, b, c, and d: 2 ng/mL; e, f, g, and h: 200 ng/mL.
表 2 菲律宾蛤各组织中PFOA、HFPO-DA、HFPO-TA和HFPO-TeA的含量、Kd、Kut1/2、BCF值 Tab.2 Content, Kd, Ku, t1/2, and BCF of various tissues of Manila clams exposed to PFOA, HFPO-DA, HFPO-TA, and HFPO-TeA
2.3 PFOA及其醚羧酸替代品与菲律宾蛤仔机体蛋白的结合率

PFOA及其醚羧酸替代品与菲律宾蛤仔机体蛋白之间的结合率如图 3所示,结果表明,目标物–机体蛋白的结合率与目标物在蛤仔体内的蓄积能力具有相关性。PFOA及其醚羧酸替代品与蛤仔蛋白质的结合率越高,其在蛤仔体内的蓄积能力越强。不同目标物与蛤仔内脏团蛋白和鳃蛋白的结合率具有差异性,均表现为HFPO-DA、PFOA、HFPO-TA、HFPO-TeA依次升高,其中,高剂量孵育组的结合率大于低剂量组,且HFPO-DA与蛋白的结合率显著低于PFOA、HFPO-TA和HFPO-TeA。这一结果表明,目标物在蛤仔体内的生物蓄积能力与污染物–蛋白间的结合率存在定量关系(Xie et al, 2020);同时,污染物的分子结构(图 4)也是影响目标物与蛋白质的结合率差异的重要因素,随着污染物分子主链长度的增加,污染物–机体蛋白的结合率越高。

图 3 PFOA及其醚羧酸替代品与菲律宾蛤仔蛋白质的结合率(a:内脏团;b:鳃) Fig.3 Binding rate of PFOA and its ether carboxylic acid alternatives to the proteins of Manila clams (a: Visceral mass; b: Gill)
图 4 PFOA、HFPO-DA、HFPO-TA、HFPO-TeA的分子结构 Fig.4 Molecular structure of PFOA, HFPO-DA, HFPO-TA, and HFPO-TeA
2.4 PFOA及其醚羧酸替代品与脂肪酸结合蛋白的结合模式

为了评估实验体系中PFOA及其醚羧酸替代品分子与结合蛋白之间的结合模式,本研究选取脂肪酸结合蛋白FABP1-A为靶蛋白,采用分子对接技术计算并模拟了PFOA、HFPO-DA、HFPO-TA、HFPO-TeA与靶蛋白FABP1-A之间的结合能和作用模式。FABP1-A与PFOA及其醚羧酸替代品分子结合的示意图如图 5所示,目标分子通过氢键和疏水作用力与FABP1-A蛋白质靶标结合,PFOA及其醚羧酸替代品分子的羧基极性端与FABP1-A分子的氨基酸残基之间形成氢键;同时,FABP1-A分子的UNL1、LE41、GLU18等氨基酸残基形成了一个包围形疏水性力场,与PFOA及其醚羧酸替代品分子的C-F键非极性端形成疏水作用力。PFOA及其醚羧酸替代品分子与FABP1-A的结合能由低到高顺序为HFPO-TeA (–8.032 kJ/mol)\HFPO-TA (–7.165 kJ/mol) < PFOA (–7.137 kJ/mol) < HFPO-DA (–7.064 kJ/mol)。不同小分子与同一蛋白质的结合能越低,越容易结合,HFPO-TeA与FABP1-A的结合能显著低于其他目标物,因此,HFPO-TeA表现出与蛋白更高的结合能力,这与上述生物富集行为和蛋白质结合率的研究结果一致,从理论上进一步佐证了本实验结果。

图 5 PFOA及其醚羧酸替代品分子与FABP1-A的结合方式 Fig.5 The binding mode of PFOA and its ether carboxylic acid alternatives molecules to FABP1-A a: HFPO-DA; b: PFOA; c: HFPO-TA; d: HFPO-TeA
3 讨论 3.1 PFOA及其醚羧酸替代品在菲律宾蛤仔体内的差异化蓄积特征

生物浓缩系数(BCF)和生物累积系数(BAF)是描述化学物质在生物体内富集趋势的重要指标。本研究通过计算4个目标物在菲律宾蛤仔各组织中的BCF值,发现其BCF值有显著差异,按照HFPO-DA、PFOA、HFPO-TA、HFPO-TeA的顺序升高。与本研究结果相近的是,Pan等(2017)研究表明,HFPO-DA、PFOA和HFPO-TA的BCF值随着其分子主链长度的增加而显著增加。鲤鱼(Cyprinus carpio)血液中HFPO-DA、HFPO-TA和PFOA的logBCF值分别为0.86、2.18、1.93,证明HFPO-TA在鲤鱼体内更容易富集,HFPO-DA的富集能力最弱。Burkhard等(2011)研究发现,鱼类肌肉或鱼片中HFPO-DA的logBAF值(0.61)低于PFOA(0.93),鱼类肝脏中HFPO-DA的logBAF值(0.50)低于PFOA(1.96),也表明HFPO-DA在水生生物体内的累积能力弱于PFOA。此外辛醇-水分配系数Kow值与化合物的生物富集有一定的正相关,通常logKow值越高,生物蓄积能力越强,越容易透过生物膜进行扩散。Zhang等(2022)研究发现,HFPO-DA、HFPO-TA和PFOA的logKow值分别为3.36、5.56、4.81,也是HFPO-TA生物蓄积能力强于PFOA和HFPO-DA的进一步佐证。虽然目前针对HFPO-TeA的相关研究较少,但根据我们的研究结果及化合物结构主链长度的变化趋势均证明了HFPO-TeA较HFPO-TA、PFOA和HFPO-DA更容易在菲律宾蛤仔体内富集。

尽管4种目标物的生物累积能力存在差异,但其在菲律宾蛤仔各组织中的分布一致,即蛤仔内脏团和鳃中这些目标物的含量均高于外套膜和闭壳肌。其原因在于贝类可通过鳃的呼吸作用加快血液与水的交换速率(Liu et al, 2011),能加快污染物的吸收与清除。而内脏团是PFOA及其醚羧酸替代品富集作用靶器官,原因可能是目标物分子结构与脂肪酸类似(Ng et al, 2013),导致肝脏组织中的相关脂肪酸结合/转运等蛋白与目标物分子发生亲和作用,使得目标物在肝脏中大量累积。此外,Li等(2019)的研究表明,在小鼠和人类前脂肪细胞中HFPO-TA的结合亲和力、激动活性和脂肪生成活性均高于PFOA,这也解释了内脏团中目标物浓度较高的原因。

污染物的生物半衰期是描述污染物在生物体内消除的重要指标,本研究通过计算4个目标物在菲律宾蛤仔各组织中的净化速率常数(Kd值),发现其Kd值存在差异,按照HFPO-DA、PFOA、HFPO-TA、HFPO-TeA的顺序依次升高。有相关研究证明,半衰期的长短通常受生物体型大小的影响。PFOA的生物半衰期在脊椎动物中存在较大差异,如:大鼠为12~46 d (Han et al, 2003),猴子为21 d (Butenhoff et al, 2004),这些脊椎动物对PFOA的半衰期相对较长,显著高于本研究结果,其生物积累可归因于缺乏代谢、肠肝再循环和肾脏吸收。而在水生生物中,PFOA在黑头呆鱼(Pimephales promelas)雌鱼中的半衰期约为6.3 h (Lee et al, 2010),在紫贻贝(Mytilus galloprpvincialis)中半衰期约为10.56 h (崔文杰等, 2020),与本研究结果相似。与脊椎类动物相比,水生生物的鳃是PFOA及其醚羧酸替代品消除的重要器官,从而缩短了这类污染物的半衰期。此外,暴露浓度、暴露时间和物种差异也可能是导致这类化合物半衰期差异的重要原因。

本研究明晰了菲律宾蛤仔体内PFOA及其醚羧酸替代品4个不同目标物的富集和消除规律的差异性,即随目标物分子主链长度的增加,其生物富集能力升高,但其在各组织中富集趋势保持一致。这为理解PFOA及其醚羧酸替代品在生物体内的富集与转运行为提供了重要参考。

3.2 PFOA及其醚羧酸替代品分子与菲律宾蛤仔机体蛋白结合的差异

蛋白质是PFOA及其醚羧酸替代品转运到菲律宾蛤仔组织的重要介质,蛋白质结合的亲和力是生物蓄积潜力的重要影响因素,其中平衡梯度可以驱动组织的摄取(Ng et al, 2015; Cheng et al, 2017)。本研究通过提取菲律宾蛤仔体内水溶性蛋白,进行体外蛋白质孵育实验,来分析不同目标物与蛤仔机体蛋白质的结合率差异,结果表明,不同目标物分子与蛤仔机体蛋白的结合率存在显著差异,其结合率表现为HFPO-DA、PFOA、HFPO-TA、HFPO-TeA依次升高。此外,全氟碳链长度同样是影响PFOA及其醚羧酸替代品分子与蛋白质结合亲和力的关键因素(Ng et al, 2015; Jackson et al, 2021; Crisalli et al, 2023),如Liu等(2017)通过光谱学、分子生物学等方法,探明了不同分子结构的PFOS、PFHxS、PFBS,随碳链的增长,这些化合物分子与人血清白蛋白酯酶结合能力增强,与本研究中目标物的主链越长与蛋白质的结合率越高(HFPO-DA、PFOA、HFPO-TA、HFPO-TeA的结合率依次升高)的结果相一致。羧基作为目标物的极性端可与蛋白质氨基酸残基直接形成氢键,全氟烷基化链作为疏水端则与非极性残基有疏水相互作用(Jackson et al, 2021),共同促进了HFPO-DA、HFPO-TA和HFPO-TeA与蛋白质的相互结合。Li等(2019)通过受体结合实验,发现HFPO-DA形成的氢键数少于或等于PFOA,其结合亲和力远小于PFOA,而根据钱力波等(2021)的研究,HFPO-TA与蛋白结合亲和力强于PFOA,说明氢键数量的多少是导致污染物与蛋白结合亲和力差异的重要原因,因此,替代品与蛋白结合亲和力的大小依次为HFPO-DA、PFOA、HFPO-TA,与本研究中目标物与蛋白质结合率结果相一致。此外,Sheng等(2018)对比了PFOA、HFPO-DA、HFPO-TA与人肝脏脂肪酸结合蛋白(hL-FABP)的结合亲和力,亲和力按照HFPO-DA、PFOA、HFPO-TA的顺序依次升高,与本研究结果一致。由于C-O键较强的电负性,HFPO-TA和HFPO-TeA与hL-FABP内袋结合,与PFOA相比具有更高的结合能。由此可见,PFOA及其醚羧酸替代品与蛤仔机体蛋白之间的结合模式与其构效关系密切相关。

本研究探究了不同目标物分子与菲律宾蛤仔蛋白的结合率以及目标物分子与FABP1-A的结合模式,即化合物主链长度的增加,其与蛋白的结合率越高。这为我们进一步明确不同碳链长度和结构的全氟烷基物质在双壳贝类体内的差异化富集机制及替代品的合理选择提供了科学依据。

4 结论

(1) 菲律宾蛤仔对PFOA及其醚羧酸替代品有较强的生物蓄积能力,内脏团为富集靶器官;目标物在各组织中含量峰值由低到高依次为HFPO-DA、PFOA、HFPO-TA、HFPO-TeA。

(2) PFOA及其醚羧酸替代品的浓度越低,Ku值和BCF值越大,蛋白质结合率越低;C-O键和碳氟链的增加有助于目标物分子与蛋白质残基的碱基结合,目标物与蛋白的结合率为HFPO-DA、PFOA、HFPO-TA、HFPO-TeA依次升高,结合作用力包括疏水作用力和氢键等。

(3) PFOA及其醚羧酸替代品分子的羧基极性端与FABP1-A氨基酸残基直接形成氢键,C-F键非极性端则与FABP1-A氨基酸非极性残基有疏水相互作用,其结合能由低到高依次为HFPO-TeA、HFPO-TA、PFOA、HFPO-DA,结合能越低,越容易与蛋白质结合,富集能力越强。

尽管目前海洋环境中PFOA及其醚羧酸替代品的含量为痕量水平,但因低浓度污染物的生物浓缩系数更高,由此可能产生的生态安全风险不容忽视;与PFOA相比,HFPO-TA和HFPO-TeA分子由于C-O键的强电负性而表现出更强的生物富集能力和蛋白质结合亲和力,因此,应更加谨慎和考虑将其用作PFOA的替代品。

参考文献
BAO Y, CAGNETTA G, HUANG J, et al. Degradation of hexafluoropropylene oxide oligomer acids as PFOA alternatives in simulated nanofiltration concentrate: Effect of molecular structure. Chemical Engineering Journal, 2020, 382: 122866
Burkhard L P. Evaluation of published bioconcentration factor (BCF) and bioaccumulation factor (BAF) data for per-and polyfluoroalkyl substances across aquatic species. Environmental Toxicology and Chemistry, 2021, 40(6): 1530-1543
BUTENHOFF J L, KENNEDY G L J, HINDERLITER P M, et al. Pharmacokinetics of perfluorooctanoate in cynomolgus monkeys. Toxicological Sciences, 2004, 82(2): 394-406
CAI M, ZHAO Z, YANG H, et al. Spatial distribution of per- and polyfluoroalkyl compounds in coastal waters from the East to South China Sea. Environmental Pollution, 2012, 161: 162-169
CHEN H, HAN J, ZHANG C, et al. Occurrence and seasonal variations of per- and polyfluoroalkyl substances (PFASs) including fluorinated alternatives in rivers, drain outlets and the receiving Bohai Sea of China. Environmental Pollution, 2017, 231: 1223-1231
CHENG W, NG C A. A permeability-limited physiologically based pharmacokinetic (PBPK) model for perfluorooctanoic acid (PFOA) in male rats. Environmental Science and Technology, 2017, 51(17): 9930-9939 DOI:10.1021/acs.est.7b02602
CRISALLI A M, CAI A, CHO B P. Probing the interactions of perfluorocarboxylic acids of various chain lengths with human serum albumin: Calorimetric and spectroscopic investigations. Chemical Research in Toxicology, 2023, 36(4): 703-713 DOI:10.1021/acs.chemrestox.3c00011
CUI Q, PAN Y, ZHANG H, et al. Elevated concentrations of perfluorohexanesulfonate and other per- and polyfluoroalkyl substances in Baiyangdian Lake (China): Source characterization and exposure assessment. Environmental Pollution, 2018, 241: 684-691 DOI:10.1016/j.envpol.2018.05.099
CUI W J, PENG J X, TAN Z J, et al. Pollution characteristics of perfluorinated alkyl substances (PFASs) in seawater, sediments and biological samples from Jiaozhou Bay. Environmental Science, 2019, 40(9): 3990-3999 [崔文杰, 彭吉星, 谭志军, 等. 全氟烷基物质在胶州湾海水、沉积物及生物中污染特征. 环境科学, 2019, 40(9): 3990-3999]
崔文杰, 彭吉星, 谭志军, 等. 全氟辛酸在紫贻贝体内的富集、分布与消除. 中国环境科学, 2019, 40(9): 4091-4098
DASU K, XIA X, SIRIWARDENA D, et al. Concentration profiles of per- and polyfluoroalkyl substances in major sources to the environment. Journal of Environmental Management, 2022, 301: 113879 DOI:10.1016/j.jenvman.2021.113879
FROMME H, WÖCKNER M, ROSCHER E, et al. ADONA and perfluoroalkylated substances in plasma samples of German blood donors living in South Germany. International Journal of Hygiene and Environmental Health, 2017, 220(2, Part B): 455-460
GALLOWAY J E, MORENO A V P, LINDSTROM A B, et al. Evidence of air dispersion: HFPO–DA and PFOA in Ohio and West Virginia surface water and soil near a fluoropolymer production facility. Environmental Science and Technology, 2020, 54(12): 7175-7184 DOI:10.1021/acs.est.9b07384
GARG A, SHETTI N P, BASU S, et al. Treatment technologies for removal of per-and polyfluoroalkyl substances (PFAS) in biosolids. Chemical Engineering Journal, 2023, 453: 139964
GEBBINK W A, ASSELDONK L, LEEUWEN S P J. Presence of emerging per- and polyfluoroalkyl substances (PFASs) in river and drinking water near a fluorochemical production plant in the Netherlands. Environmental Science and Technology, 2017, 51(19): 11057-11065
GONZÁLEZ-GAYA B, DACHS J, ROSCALES J L, et al. perfluoroalkylated substances in the global tropical and subtropical surface oceans. Environmental Science and Technology, 2014, 48(22): 13076-13084
GUO M M, WU H Y, LU L N, et al. Simultaneous identification and detection of 23 perfluorinated alkyl substances in processed aquatic products by impurity delay using liquid chromatography coupled with quadrupole/linear ion trap mass spectrometry. Analytical Chemistry, 2015, 43(8): 1105-1112 [郭萌萌, 吴海燕, 卢立娜, 等. 杂质延迟-液相色谱-四极杆/离子阱复合质谱测定水产加工食品中23种全氟烷基化合物. 分析化学, 2015, 43(8): 1105-1112]
HAN X, SNOW T A, KEMPER R A, et al. Binding of perfluorooctanoic acid to rat and human plasma proteins. Chemical Research in Toxicology, 2003, 16(6): 775-781 DOI:10.1021/tx034005w
JACKSON T W, SCHEIBLY C M, POLERA M E, et al. Rapid characterization of human serum albumin binding for per-and polyfluoroalkyl substances using differential scanning fluorimetry. Environmental Science and Technology, 2021, 55(18): 12291-12301 DOI:10.1021/acs.est.1c01200
JOHNSON G R, BRUSSEAU M L, CARROLL K C, et al. Global distributions, source-type dependencies, and concentration ranges of per- and polyfluoroalkyl substances in groundwater. Science of the Total Environment, 2022, 841: 156602 DOI:10.1016/j.scitotenv.2022.156602
KIBRIA G, HOSSAIN M M, MALLICK D, et al. Monitoring of metal pollution in waterways across Bangladesh and ecological and public health implications of pollution. Chemosphere, 2016, 165: 1-9 DOI:10.1016/j.chemosphere.2016.08.121
LEE J J, SCHULTZ I R. Sex differences in the uptake and disposition of perfluorooctanoic acid in fathead minnows after oral dosing. Environmental Science and Technology, 2010, 44(1): 491-496 DOI:10.1021/es901838y
LENTERS V, ISZATT N, FORNS J, et al. Early-life exposure to persistent organic pollutants (OCPs, PBDEs, PCBs, PFASs) and attention-deficit/hyperactivity disorder: A multi-pollutant analysis of a Norwegian birth cohort. Environment International, 2019, 125: 33-42 DOI:10.1016/j.envint.2019.01.020
LI C, REN X, GUO, L. Adipogenic activity of oligomeric hexafluoropropylene oxide (perfluorooctanoic acid alternative) through peroxisome proliferator-activated receptor γ pathway. Environmental Science and Technology, 2019, 53(6): 3287-3295 DOI:10.1021/acs.est.8b06978
LI J, WANG L, ZHANG X, et al. Per-and polyfluoroalkyl substances exposure and its influence on the intestinal barrier: An overview on the advances. Science of the Total Environment, 2022, 852: 158362 DOI:10.1016/j.scitotenv.2022.158362
LINDIM C, GILS J, COUSINS I T. Europe-wide estuarine export and surface water concentrations of PFOS and PFOA. Water Research, 2016, 103: 124-132
LIU Z Y, ZHAI Y X, YAO L, et al. The effects of perfluorooctanoic acid (PFOA) on enzyme activities in Ruditapes philippinarum. Journal of Ecotoxicology, 2017, 12(3): 695-704 [刘芝余, 翟毓秀, 姚琳, 等. 全氟辛酸(PFOA)对菲律宾蛤仔体内酶活性的影响. 生态毒理学报, 2017, 12(3): 695-704]
NG C A, HUNGERBUEHLER K. Exploring the use of molecular docking to identify bioaccumulative perfluorinated alkyl acids (PFAAs). Environmental Science and Technology, 2015, 49(20): 12306-12314 DOI:10.1021/acs.est.5b03000
OLIAEI F, KRIENS D, WEBER R, et al. PFOS and PFC releases and associated pollution from a PFC production plant in Minnesota (USA). Environmental Science and Pollution Research, 2013, 20(4): 1977-1992 DOI:10.1007/s11356-012-1275-4
PAN Y, ZHANG H, CUI Q, et al. First report on the occurrence and bioaccumulation of hexafluoropropylene oxide trimer acid: An emerging concern. Environmental Science and Technology, 2017, 51(17): 9553-9560 DOI:10.1021/acs.est.7b02259
PAN Y, ZHANG H, CUI Q, et al. Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water. Environmental Science and Technology, 2018, 52(14): 7621-7629
PROCOPIO N A, KARL R, GOODROW S M, et al. Occurrence and source identification of perfluoroalkyl acids (PFAAs) in the Metedeconk River Watershed, New Jersey. Environmental Science and Pollution Research, 2017, 24(35): 27125-27135
QIAN L B, HUANG M W, SU Z B, et al. Progress in environmental and ecotoxicity studies of hexafluoropropylene oxide trimer carboxylic acid (HFPO-TA). Organic Fluorine Industry, 2021, 4: 31-38 [钱力波, 黄美薇, 苏兆本, 等. 六氟环氧丙烷三聚体羧酸(HFPO-TA)环境和生态毒性研究进展. 有机氟工业, 2021, 4: 31-38]
RAND A A, ROONEY J P, BUTT C M, et al. Cellular toxicity associated with exposure to perfluorinated carboxylates (PFCAs) and their metabolic precursors. Chemical Research in Toxicology, 2014, 27(1): 42-50
RIAZ R, JUNAID M, REHMAN M Y A, et al. Spatial distribution, compositional profile, sources, ecological and human health risks of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in freshwater reservoirs of Punjab, Pakistan. Science of the Total Environment, 2023, 856: 159144
SHENG N, CUI R, WANG J, et al. Cytotoxicity of novel fluorinated alternatives to long-chain perfluoroalkyl substances to human liver cell line and their binding capacity to human liver fatty acid binding protein. Archives of Toxicology, 2018, 92(1): 359-369
STRYNAR M, DAGNINO S, MCMAHEN R, et al. Identification of novel perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs) in natural waters using accurate mass time-of-flight mass spectrometry (TOFMS). Environmental Science and Technology, 2015, 49(19): 11622-11630
SUN M, AREVALO E, STRYNAR M, et al. legacy and emerging perfluoroalkyl substances are important drinking water contaminants in the Cape Fear River Watershed of North Carolina. Environmental Science and Technology Letters, 2016, 3(12): 415-419
SUN Z, ZHANG C, YAN H, et al. Spatiotemporal distribution and potential sources of perfluoroalkyl acids in Huangpu River, Shanghai, China. Chemosphere, 2017, 174: 127-135
VIBERG H, LEE I, ERIKSSON P. Adult dose-dependent behavioral and cognitive disturbances after a single neonatal PFHxS dose. Toxicology, 2013, 304: 185-191
WANG P, LU Y, WANG T, et al. Shifts in production of perfluoroalkyl acids affect emissions and concentrations in the environment of the Xiaoqing River Basin, China. Journal of Hazardous Materials, 2016, 307: 55-63
XIAO F, SIMCIK M F, HALBACH T R, et al. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a U. S. metropolitan area: Migration and implications for human exposure. Water Research, 2015, 72: 64-74
XU Y, NIELSEN C, LI Y, et al. Serum perfluoroalkyl substances in residents following long-term drinking water contamination from firefighting foam in Ronneby, Sweden. Environment International, 2021, 147: 106333
YE F, ZUSHI Y, MASUNAGA S. Survey of perfluoroalkyl acids (PFAAs) and their precursors present in Japanese consumer products. Chemosphere, 2015, 127: 262-268
YEUNG L W Y, DASSUNCAO C, MABURY S, et al. Vertical profiles, sources, and transport of PFASs in the Arctic Ocean. Environmental Science and Technology, 2017, 51(12): 6735-6744
ZHANG B, HE Y, YANG G, et al. Legacy and emerging poly- and perfluoroalkyl substances in finless porpoises from East China Sea: Temporal trends and tissue-specific accumulation. Environmental Science and Technology, 2022, 17(10): 6113-6122
ZHOU Y, YANG L, WANG T, et al. Optimizing the fugacity model to select appropriate remediation pathways for perfluoroalkyl substances (PFASs) in a lake. Journal of Hazardous Materials, 2022, 438: 129558