渔业科学进展  2025, Vol. 46 Issue (2): 216-227  DOI: 10.19663/j.issn2095-9869.20240705005
0

引用本文 

陈诗宇, 夏斌, 朱琳, 李双, 李秋芬, 孙雪梅, 戴伟. 金属纳米颗粒对枯草芽孢杆菌和副溶血弧菌的生长毒性[J]. 渔业科学进展, 2025, 46(2): 216-227. DOI: 10.19663/j.issn2095-9869.20240705005.
CHEN Shiyu, XIA Bin, ZHU Lin, LI Shuang, LI Qiufen, SUN Xuemei, DAI Wei. Growth Toxic Effects of Metal Nanoparticles on Bacillus subtilis and Vibrio parahaemolyticus[J]. Progress in Fishery Sciences, 2025, 46(2): 216-227. DOI: 10.19663/j.issn2095-9869.20240705005.

基金项目

山东省重点研发计划(2020CXGC010703)、国家自然科学基金(42107137)、中国水产科学研究院基本科研业务费(2023TD13)、崂山实验室科技创新项目(LSKJ202203903)和山东省泰山学者专项(tsqn202211267)共同资助

作者简介

陈诗宇,Email: 2287250136@qq.com

通讯作者

孙雪梅,副研究员,Email: sunxm@ysfri.ac.cn

文章历史

收稿日期:2024-07-05
收修改稿日期:2024-09-06
金属纳米颗粒对枯草芽孢杆菌和副溶血弧菌的生长毒性
陈诗宇 1,2, 夏斌 2, 朱琳 2, 李双 2, 李秋芬 2, 孙雪梅 2, 戴伟 1     
1. 天津农学院水产学院 天津市水产生态及养殖重点实验室 天津 300384;
2. 中国水产科学研究院黄海水产研究所 山东 青岛 266071
摘要:金属纳米颗粒由于具有特殊的理化性能而得到广泛应用,随着其废弃物的排放,金属纳米颗粒不可避免地进入海洋中,其对海洋环境的安全性受到广泛关注。为研究常见金属纳米颗粒对海洋细菌的生长毒性,本研究以从渤海湾环境中分离的枯草芽孢杆菌(Bacillus subtilis, 革兰氏阳性菌)和副溶血弧菌(Vibrio parahaemolyticus, 革兰氏阴性菌)为受试生物,以常见的金属纳米颗粒为研究对象,借助非接触式电导率传感器(CCS)法研究其对枯草芽孢杆菌和副溶血弧菌的生长抑制效应。研究结果显示,纳米金(Au NPs)、纳米银(Ag NPs)、纳米氧化银(Ag2O NPs)、纳米二氧化钛(TiO2 NPs)能够抑制枯草芽孢杆菌和副溶血弧菌的生长,其在12 h时使20%的枯草芽孢杆菌受到抑制影响的效应浓度(12 h-EC20值)分别为1.81、0.03、1.71和54.43mg/L;对副溶血弧菌的12 h-EC20值分别为8.11、0.16、2.97和81.55 mg/L;在本研究设定的浓度范围内,纳米氧化锌(ZnO NPs)和纳米氧化铁(Fe2O3 NPs)对副溶血弧菌的生长表现出促进作用,而对枯草芽孢杆菌表现出抑制作用。本研究通过CCS法研究并分析了6种常见的金属纳米颗粒对枯草芽孢杆菌和副溶血弧菌的毒性效应,并获取了这6种金属纳米颗粒对上述2种细菌的EC20值,该EC20值可为我国全面系统的构建金属纳米材料在海洋生态系统中的环境风险评估提供理论依据。
关键词金属纳米颗粒    枯草芽孢杆菌    副溶血弧菌    EC20    生长毒性    
Growth Toxic Effects of Metal Nanoparticles on Bacillus subtilis and Vibrio parahaemolyticus
CHEN Shiyu 1,2, XIA Bin 2, ZHU Lin 2, LI Shuang 2, LI Qiufen 2, SUN Xuemei 2, DAI Wei 1     
1. Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China;
2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
Abstract: Metal nanoparticles have been widely used in ceramics, the chemical industry, communication, and biomedicine because of their large specific surface area, small size, good photoelectric performance, and other excellent physical and chemical properties. With this widespread use, waste is inevitably produced that enters into the environment. Concurrently, organic colloids from natural sources, dust aerosols from volcanic eruptions, and other metal nanoparticles also widely exist in nature which can be transferred directly or indirectly into the ocean through sewage dumping, air subsidence, and surface runoff, thereby threatening marine environments. Marine bacteria are the most abundant microbial group in marine ecosystems and play an important role in matter circulation, energy flow, and the maintenance of marine ecosystem diversity. With the increase in the concentration of metal nanoparticles in the marine environment, their impact on the physiological ecology of marine bacteria needs further research. Recently, a new type of automated phenotypic method—the non-contact conductivity sensor (CCS) method—has been developed and applied to obtain data on the toxic effects of nanomaterials on bacteria. The improved capacitance-coupled noncontact conductivity detector is mainly used for online and real-time monitoring of the conductivity of microbial culture fluids. The obtained response values are proportional to the concentration and mobility of the ionic current in culture mediums. Since the uncharged or weakly charged substrate will be converted into highly charged small-molecule substances during the growth and proliferation of bacteria—thus increasing the culture medium conductivity—the bacterial growth process can be recorded quickly and accurately by detecting the change in the conductivity of the culture medium. Bacteria are divided into Gram-positive and Gram-negative according to their different cell structures. The cell wall of Gram-negative bacteria has a larger outer membrane composed of tightly packed lipopolysaccharide molecules than that of Gram-positive bacteria, which leads to different resistance effects to external stress. Bacillus subtilis and Vibrio parahaemolyticus—Gram-positive and Gram-negative bacteria, respectively—are widely present in marine environments and represent two important microbial categories. Among these, B. subtilis is a typical probiotic in the marine environment that plays a key role in promoting host health and environmental restoration. V. parahaemolyticus is a representative pathogenic bacterium in marine environments that can have notable impacts on foodborne diseases. Based on the ecological roles and functions of these two bacteria in marine microbial communities, this study used B. subtilis and V. parahaemolyticus isolated from Bohai Bay as test organisms. Common metal nanoparticles were used as research objects, and the CCS method was used to study their growth inhibitory effects on B. subtilis and V. parahaemolyticus. The research process included preparation of the bacterial solution where V. parahaemolyticus was inoculated in TCBS liquid medium at 28 ℃ for 12 h. The bacteria solution was dipped and streaked on the TCBS plate and cultured overnight. The single colonies on the plate were selected and inoculated into the new TCBS liquid medium at 28 ℃ for 12 h. The cultured bacterial solution was centrifuged, the supernatant was poured out, washed, and centrifuged twice with normal saline (0.85% NaCl), and the bacterial precipitate was re-suspended in normal saline for subsequent study. The preparation method for B. subtilis was the same as described above, and the medium used was LB. Additionally, the metal nanoparticle suspension was prepared. Finally, a growth toxicity test was done using B. subtilis and AgNPs as examples. Here, 10 mL of the prepared nano-gold (Ag NPs) suspension was measured in sterilized glass bottles. The prepared 100 μL B. subtilis solution was inoculated into this and mixed evenly. The 3 mL mixed system was absorbed with a sterile syringe and added into the NMR tube, with three tubes for each concentration and three tubes for each positive and negative control. For the positive control 10 mL medium and 100 μL bacterial solution were added into the NMR tube, and for the negative control, the same amount of medium was added into the NMR tube which was then put into the CCS instrument for measurement. The voltage at the excitation electrode of the instrument was 16 V and the frequency was 2 MHz. The instrument was set to collect data every 1 minute, and the experiment lasted for 12 h. The results showed that Au NPs, nano-silver (Ag NPs), nano-silver oxide (Ag2O NPs), and nano-titanium dioxide (TiO2 NPs) could inhibit the growth of B. subtilis and V. parahaemolyticus. The 12 h-EC20 values of Au NPS, Ag NPs, Ag2O NPS, and TiO2 NPs against B. subtilis were 1.81, 0.03, 1.71, and 54.43 mg/L, respectively, and those of V. parahaemolyticus were 8.11, 0.16, 2.97, and 81.55 mg/L, respectively. In the concentration range used here, nano-zinc oxide (ZnO NPs) and nano-iron oxide (Fe2O3 NPs) promoted the growth of V. parahemolyticus but showed an inhibitory effect on B. subtilis. The EC20 values obtained in this study can provide a theoretical basis for environmental risk assessment of the construction of metal nanomaterials in marine ecosystems in China.
Key words: Metal nanoparticles    Bacillus subtilis    Vibrio parahaemolyticus    EC20    Growth toxicity    

金属纳米颗粒是含有金属元素的纳米颗粒(林道辉等, 2009; 韩泽蓉等, 2023),因其具有巨大的比表面积、特殊的小尺寸效应、良好的光电性能等优越的理化特性(王大力等, 2012; 陈嘉祥等, 2018; Sengul et al, 2020),被广泛应用于陶瓷、化工、通讯和生物医疗等领域(Klaine et al, 2008; Naqvi et al, 2010; 花文凤等, 2014; Feng et al, 2018)。随着金属纳米颗粒在各领域的广泛使用,其废弃物不可避免地产生并进入自然界中;同时天然来源的有机胶体、火山爆发产生的烟尘气溶胶等金属纳米颗粒也广泛存在于自然界中。这些环境中的天然和人工金属纳米颗粒可通过污水倾倒、空气沉降、地表径流等直接或间接方式最终汇入海洋,从而对海洋环境构成潜在威胁(苗令占等, 2019)。研究发现,长江口淡水沉积物中锌纳米粒子的浓度为2.74×1012~1.21×1013颗粒/kg (Tou et al, 2021);地中海和大西洋中检测到的钛基纳米粒子的浓度范围为1.2×108~3.8×109颗粒/L (Sanchís et al, 2020; Li et al, 2023)。随着时间积累,海洋中的金属纳米颗粒浓度逐年增加,其对海洋生态环境的影响引起了人们的关注。

海洋细菌是海洋生态系统中丰度最高的微生物类群(王奕娜, 2020),常见的有假单胞菌属(Pseudomonas)、弧菌属(Vibrio)、微球菌属(Micrococcus)、八叠球菌属(Sarcina)、芽孢杆菌属(Bacillus)、棒杆菌属(Corynebacterium)和链霉菌属(Streptomyces)等多个属,它们在海洋生态系统中的物质循环、能量流动以及维持海洋生态系统的多样性等方面发挥着重要作用(寻卓然等, 2024)。海洋细菌还参与各种海洋污染物和毒物转化与降解的过程,这有助于保持海洋生态系统的平衡和促进海洋的自净能力(程晓宇, 2019; 王奕娜, 2020)。随着海洋环境中金属纳米颗粒浓度的增加,其对海洋细菌生理生态的影响亟需深入研究。

获取纳米材料对细菌毒性效应数据的常规测定方法有平板涂布法、牛津杯法、紫外分光光度计法等,这些传统的方法在测定过程中耗时长、误差大、操作复杂(姜晓瑜等, 2021)。近年来,Zhang等(20212023)创建了一种新型的自动化表型方法——非接触式电导率传感器(CCS)法,其主要采用改进的电容耦合非接触电导检测器进行微生物培养液电导率值的在线、实时监测,所获得的响应值与培养介质中离子载流的浓度和迁移率成正比。通过检测培养介质的电导率变化情况即可快速而准确地记录细菌的生长过程。根据细胞结构的不同,细菌分为革兰氏阳性菌和革兰氏阴性菌,其中革兰氏阴性菌细胞壁比革兰氏阳性菌多一层由紧密堆积的脂多糖(LPS)分子构成的外膜,导致这2类细菌对外界胁迫产生不同的抵抗效应(李永强等, 2024; 刘畅等, 2024)。同时,枯草芽孢杆菌(Bacillus subtilis)和副溶血弧菌(Vibrio parahaemolyticus)作为海洋环境中广泛存在的革兰氏阳性菌和革兰氏阴性菌,它们分别代表了2种重要的微生物类别(Baker-austin et al, 2017; 鄢陆琪, 2023)。其中,枯草芽孢杆菌是海洋环境中的典型益生菌,其在促进宿主健康和环境修复方面发挥着关键作用;而副溶血弧菌则是海洋环境中的致病菌代表,其在引发食源性疾病方面具有显著影响(Liu et al, 2010; 郑姚等, 2021)。基于2种细菌在海洋微生物群落中的生态角色和功能,本研究以枯草芽孢杆菌和副溶血弧菌为实验生物,以常见的金属纳米颗粒为研究对象,采用CCS法研究金属纳米颗粒对枯草芽孢杆菌(革兰氏阳性菌)和副溶血弧菌(革兰氏阴性菌)的生长毒性效应,并获取其12 h-EC20值,此研究结果将为海洋环境中金属纳米颗粒的环境风险评估提供科学依据。

1 材料与方法 1.1 实验材料及主要仪器 1.1.1 金属纳米颗粒材料

所用金属纳米颗粒均购自苏州衍生生物科技有限公司,其具体相关信息见表 1,不同金属纳米颗粒的透射电子显微镜(TEM)表征图像见图 1

表 1 金属纳米颗粒材料相关信息 Tab.1 The information of nano-metal particles
图 1 金属纳米颗粒的透射电子显微镜(TEM)图像 Fig.1 Transmission electron microscopy (TEM) image of a metal nanoparticle
1.1.2 菌株及培养基

枯草芽孢杆菌(库藏号:B10)和副溶血弧菌(库藏号:V12)均分离自渤海海域,并保存于中国水产科学研究院黄海水产研究所。枯草芽孢杆菌采用Luria-Bertani (LB)培养基,副溶血弧菌采用Thiosulfate Citrate Bile Salts Sucrose (TCBS)培养基,培养基均购自青岛高科技工业园海博生物技术有限公司。

实验开始前,采用CCS法绘制枯草芽胞杆菌和副溶血弧菌的生长曲线,如图 2可知,枯草芽胞杆菌和副溶血弧菌在720 min (12 h)时基本都进入生长稳定期。

图 2 枯草芽孢杆菌和副溶血弧菌生长曲线 Fig.2 Growth curves of B. subtilis and V. parahaemolyticus
1.1.3 主要仪器

32通道非接触式电导率传感器(澳大利亚专业电子公司代加工)(Zhang et al, 2021);BSA223型电子天平[赛多利斯科学仪器(北京)有限公司],ES-60C恒温孵育摇床(杭州米欧仪器有限公司),KH5200型超声波清洗器(昆山禾制超声仪器有限公司),BPN-150CH二氧化碳培养箱(上海一恒科学仪器有限公司)。

1.2 实验方法 1.2.1 菌液配制

将副溶血弧菌接种于TCBS液体培养基中28℃培养12 h;蘸取菌液在TCBS平板上划线并过夜培养;挑取平板上的单菌落再次接种到新的TCBS液体培养基中28 ℃培养12 h;将培养后的菌液放入离心机中离心,弃上清液,用生理盐水(0.85 % NaCl) 2次洗涤离心,并将细菌沉淀重新悬浮于生理盐水中供后续研究使用。枯草芽孢杆菌的配制方法与副溶血弧菌相同,使用的培养基为LB培养基。

1.2.2 金属纳米颗粒悬浮液配制

以Ag NPs为例,取Ag NPs悬液标准品,加入配置好的LB (或TCBS)培养基稀释成10 mg/L Ag NPs悬液储备液(每次使用前需超声20 min),再通过稀释10 mg/L Ag NPs悬液储备液得到所需浓度的悬液。配置其他金属纳米颗粒悬浮液时采用相同的方法,其中,Ag2O NPs储备液的浓度为50 mg/L,ZnO NPs、Fe2O3 NPs和TiO2 NPs储备液的浓度为200 mg/L,不同金属纳米颗粒不同浓度悬浮液配制见表 2

表 2 金属纳米颗粒悬浮液的配制 Tab.2 Nanomaterial suspension preparation concentration/(mg/L)
1.2.3 金属纳米颗粒对细菌的生长毒性实验

根据Zhang等(2021)的实验步骤进行操作,以枯草芽孢杆菌和Ag NPs为例。量取10 mL配制好的Ag NPs悬液于已灭菌的玻璃瓶中;取配制好的100 μL枯草芽孢杆菌菌液接种到其中,混合均匀;用无菌注射器吸取3 mL混合体系加入到核磁共振管中,每个浓度取3管,并设置阳性及阴性对照各3管(阳性对照:核磁共振管中加入10 mL培养基和100 μL菌液;阴性对照:核磁共振管中加入等量的培养基);将核磁共振管放入仪器中进行测量(Zhang et al, 2021),仪器激励电极处的电压为16 V,频率为2 MHz,设置仪器每隔1 min采集一次数据,实验持续12 h。测定其他纳米材料,即Au NPs、Ag2O NPs、ZnO NPs、Fe2O3 NPs、TiO2 NPs对枯草芽孢杆菌和副溶血弧菌的生长毒性时采用相同的实验方法。

由于非接触式电导率传感器激励电极处产生的交流电流信号经过信号处理电路中的电流–电压转换环节、整流环节等最终将交流电流信号转化成直流电压信号输出(Zhang et al, 2023; 周颖, 2015),因此,本研究采集到的是关于浓度和电压关系的数据。

1.3 数据处理

为计算金属纳米颗粒对枯草芽孢杆菌和副溶血弧菌的12 h-EC20值,利用Graphpad Prism软件,将不同金属纳米颗粒浓度的对数值与细菌的生长抑制率作图,生成剂量–抑制曲线,并由此计算枯草芽孢杆菌和副溶血弧菌的12 h-EC20值。

此外,本研究所有数据均采用平均值±标准差(Mean±SD)表示,平均值和标准差用Excel软件进行计算。组间数据用Excel软件进行差异分析,P < 0.05表示数据间有显著性差异,并利用Origin 9.1软件做图,生成浓度–电压柱形图。

2 结果与讨论 2.1 金属纳米颗粒对枯草芽孢杆菌的生长抑制

本研究采用CCS法研究了常见的金属纳米颗粒对枯草芽孢杆菌(革兰氏阳性菌)的毒性影响,由图 3可知,Au NPs、Ag NPs、Ag2O NPs、ZnO NPs、Fe2O3 NPs和TiO2 NPs对枯草芽孢杆菌的生长具有抑制作用,当其浓度分别为1.50、0.04、2.00、2.00、60.00和5.00 mg/L时,枯草芽孢杆菌生长开始受到抑制(P < 0.05)(图 3A~F)。同时,当Au NPs (图 3A)和ZnO NPs (图 3D)悬液浓度分别高于1.50 mg/L和5.00 mg/L时,它们对枯草芽孢杆菌的毒性影响逐渐减弱,这可能与纳米粒子的团聚现象有关。研究表明,Au NPs和ZnO NPs的毒性与粒径有关,粒径越小,毒性越强;随着浓度增加,Au纳米颗粒和ZnO纳米颗粒团聚并导致其有效粒径变大,对细菌的毒性作用也随之减弱(Iswarya et al, 2016; 荣馨宇等, 2023)。金属纳米颗粒对细菌的毒性影响与其浓度也有关,浓度越高其释放的金属离子浓度越高,毒性越强(丁怡丹等, 2020)。随着Ag NPs浓度的增加,枯草芽孢杆菌生长受到的抑制作用增强(图 3B)。

图 3 金属纳米颗粒对枯草芽孢杆菌的生长抑制 Fig.3 The growth inhibition of metal nanoparticles on B. subtilis

此外,本研究还发现ZnO NPs和Fe2O3 NPs对枯草芽孢杆菌的生长表现出抑制现象(图 3D~E),而对副溶血弧菌的生长表现出促进现象(图 4D~E)。这一方面是由于副溶血弧菌对锌和铁的需求比较高,其在富锌和富铁环境中可以利用锌和铁进行呼吸作用和代谢活动,从而获得能量和生长所需的营养物质(刘芳彤等, 2019);而枯草芽孢杆菌对锌和铁的需求较低,虽然其也可利用锌和铁进行呼吸作用和代谢活动,但它通常在低锌或低铁环境中生长得更好(Hood et al, 2012; Cornelis et al, 2013)。另一方面是由于ZnO NPs和Fe2O3 NPs对细菌的毒性与受试菌种的类型有关(王大力等, 2012),相比于革兰氏阳性菌(枯草芽孢杆菌),革兰氏阴性菌(副溶血弧菌)的细胞壁多有一层LPS外膜结构,且已有研究表明,细菌细胞壁的LPS能够吸附Mg2+和Ca2+等阳离子,形成非常紧密的堆积层,并赋予外膜特有的渗透屏障特性,使它们在允许营养物质进入的同时能够在一定程度上阻碍有毒物质(金属纳米颗粒等)进入细胞(张静静, 2022),这为副溶血弧菌提供了有效抵抗纳米粒子的屏障(Fan et al, 2002; Yoon et al, 2007; Tran et al, 2010)。

图 4 金属纳米颗粒对副溶血弧菌的生长抑制 Fig.4 The growth inhibition of Metal nanoparticles on Vibrio parahaemolyticus sp.
2.2 金属纳米颗粒对副溶血弧菌的生长抑制

本研究通过CCS法还研究了常见的金属纳米颗粒对副溶血弧菌(革兰氏阴性菌)的生长影响,由图 4可知,Au NPs、Ag NPs、Ag2O NPs和TiO2 NPs对副溶血弧菌的生长具有抑制作用,当其浓度分别为2.00、2.56、4.00和10.00 mg/L时,副溶血弧菌的生长开始受到抑制(P < 0.05)(图 4A~CF)。已有研究也发现,一定浓度的金属纳米颗粒对铜绿假单胞菌(Pseudomonas aeruginosa)、大肠杆菌(Escherichia coli)和藻类等的生长表现出明显的抑制作用(Zhang et al, 2021; 郑有坤等, 2021; Cavalu et al, 2011)。金属纳米颗粒对副溶血弧菌的生长抑制作用与金属纳米离子的释放(Au+、Ag+等)有关(Xie et al, 2020; Zhang et al, 2021),金属纳米离子的不断释放是一种潜在的杀菌机制(刘玉琳等, 2023)。研究表明,Au NPs、Ag NPs、Ag2O NPs释放的Au+和Ag+能够刺激副溶血弧菌产生活性氧(ROS)等超氧化物,大量的超氧化物会造成副溶血弧菌DNA损伤和ATP水平下降,进而引起副溶血弧菌细胞壁和细胞膜损伤、细菌死亡(Shareena Dasari et al, 2015; Lee et al, 2018)。研究还发现,金属纳米颗粒对副溶血弧菌的生长抑制作用也与金属纳米颗粒的种类有关(朱小山等, 2008; 王壮等, 2021)。由于TiO2 NPs是一种惰性物质,其溶解速率非常低且在水介质中不能释放金属离子,它的抗菌活性主要通过接触、渗透或吸附在细菌表面并破坏细菌细胞壁而产生(Priyanka et al, 2016; Ammendolia et al, 2022)。与溶解性较好的金属纳米颗粒(如Au NPs、Ag NPs等)相比,TiO2 NPs对副溶血弧菌的毒性偏弱,因此,Au NPs、Ag NPs和Ag2O NPs对副溶血弧菌的毒性强于TiO2 NPs。

2.3 金属纳米颗粒对枯草芽孢杆菌和副溶血弧菌的EC20值结果

在生态风险评估和生态毒理学中,通常使用2个测量终点来总结毒性:无观察效应浓度(NOEC)和x%有效浓度(ECx)(Beasley et al, 2015)。然而,由于NOEC只是一个实验设计浓度,不能构造置信区间,经济合作与发展组织推荐应用低ECx模拟NOEC作为生态安全暴露基准浓度(Isnard et al, 2001; 施文杰等, 2019)。EC20值是一种与环境相关的浓度,是指与对照相比,在给定的暴露期内溶解在介质中的目标物质(本研究中为金属纳米颗粒)使20%的受试生物表现出响应(如:生长、繁殖等)的浓度(戚钱菊, 2022),在已有的研究中,EC20常用于各种污染物的环境风险评估(Liu et al, 2019; Gao et al, 2022)。本研究通过绘制金属纳米颗粒对细菌的剂量–抑制曲线(图 56),计算出金属纳米颗粒对枯草芽孢杆菌和副溶血弧菌的12 h-EC20值。从图 6可以看出,本研究浓度范围内ZnO NPs和Fe2O3 NPs对副溶血弧菌的生长表现出促进作用,与图 4中金属纳米颗粒对副溶血弧菌的生长抑制结果相一致。由表 3可知,Ag NPs对副溶血弧菌和芽孢杆菌的生长抑制作用最强,其对2种菌的12 h-EC20值分别为0.16 mg/L和0.03 mg/L。覃春丽等的研究结果也表明,与其他金属纳米材料(ZnO NPs、TiO2 NPs等)相比,Ag NPs对假单胞菌(Pseudomonasadaceae)、大肠杆菌等的EC20值更低,毒性作用更强(覃春丽, 2012; Barros et al, 2019; 段颖, 2021)。

图 5 金属纳米颗粒对枯草芽孢杆菌的12 h剂量–抑制曲线 Fig.5 The dose-inhibition curves of metal nanoparticles on B. subtilis
图 6 金属纳米颗粒对副溶血弧菌毒性的12 h剂量–抑制曲线 Fig.6 The dose-inhibition curves of metal nanoparticles on V. parahaemolyticus
表 3 枯草芽孢杆菌和副溶血弧菌12 h-EC20 Tab.3 The EC20 values of B. subtilis and V. parahaemolyticus on 12 h /(mg/L)

目前,根据实验室毒性实验得出的急性x%致死/有效/抑制浓度(LCx/ECx/ICx)或慢性无观察效应浓度(NOEC)的毒性终点,已经开发出物种敏感性分布(SSD)等方法来评估不同污染物的潜在环境风险(Gottschalk et al, 2013; Feng et al, 2022)。同时,我国国家生态环境标准中用于污染物潜在环境风险评估的物种主要为藻类、鱼类和虾蟹类等,且已有的研究中,对污染物的环境安全阈值评估的数据(LCx/ECx /ICx)也主要来源于植物和动物(Gambardella et al, 2015; Fazelian et al, 2019)。然而,Xu等(2015)报告表明,评估某种有毒污染物对生态系统的生态风险时,需选择代表不同营养级分类群的物种。微生物作为营养级中的分解者,其在生态系统中扮演着不可或缺的角色,然而,当前用于污染物潜在环境风险评估的研究对象多聚焦于生产者和消费者,而对分解者关注不足。因此,建议研究人员在未来的研究过程中加强污染物对分解者毒性效应的关注,本研究结果也将为我国构建更完善的风险评估系统提供理论支撑。

3 结论

本研究通过新型的自动化表型方法——非接触式电导率传感器(CCS)法研究常见6种金属纳米颗粒对枯草芽孢杆菌和副溶血弧菌的生长毒性,结果表明,Au NPs、Ag NPs、Ag2O NPs、ZnO NPs、Fe2O3 NPs和TiO2 NPs对枯草芽孢杆菌的生长均具有抑制作用,当其浓度分别为1.50、0.04、2.00、2.00、60.00和5.00 mg/L时,枯草芽孢杆菌的生长开始受到抑制(P < 0.05);只有4种金属纳米颗粒(Au NPs、Ag NPs、Ag2O NPs和TiO2 NPs)对副溶血弧菌的生长具有抑制作用,当其浓度分别为2.00、2.56、4.00和10.00 mg/L时,副溶血弧菌的生长开始受到抑制(P < 0.05);在本实验设定浓度范围内,ZnO NPs (1.00~128.00 mg/L)和Fe2O3 NPs (60.00~140.00 mg/L)对副溶血弧菌的生长表现出促进作用。传统污染物环境风险评估方法中关注的主要物种是生产者和分解者,忽略了污染物对生态系统中重要的分解者的影响,本研究通过CCS法快速获取金属纳米颗粒对海洋生态系统中的分解者(枯草芽孢杆菌和副溶血弧菌)的生长抑制EC20值,该结果可为我国全面系统的构建金属纳米材料在海洋生态系统中的环境风险评估提供理论依据。

参考文献
AMMENDOLIA M G, BERARDIS B D. Nanoparticle impact on the bacterial adaptation: Focus on nano-titania. Nanomaterials, 2022, 12(20): 3616
BAKER-AUSTIN C, TRINANES J, GONZALEZ-ESCALONA N, et al. Non-cholera vibrios: The microbial barometer of climate change. Trends in Microbiology, 2017, 25(1): 76-84
BARROS D, PRADHAN A, MENDES V M, et al. Proteomics and antioxidant enzymes reveal different mechanisms of toxicity induced by ionic and nanoparticulate silver in bacteria. Environmental Science Nano, 2019, 6(4): 1207-1218
BEASLEY A, BELANGER S E, BRILL J L, et al. Evaluation and comparison of the relationship between NOEC and EC10 or EC20 values in chronic Daphnia toxicity testing. Environmental Toxicology and Chemistry, 2015, 34(10): 2378-2384
CAVALU S, SIMON V, GOLLER G, et al. Bioactivity and antimicrobial properties of PMMA/Ag2O acrylic bone cement collagen coated. Digest Journal of Nanomaterials and Biostructures, 2011, 6(2): 779-790
CHEN J X, WANG Z S, SHAO Z Z. Responses of common marine bacteria to nano titanium dioxide. Journal of Xiamen University (Natural Science), 2018, 57(3): 329-336 [陈嘉祥, 王兆守, 邵宗泽. 常见海洋细菌对纳米二氧化钛的响应. 厦门大学学报(自然科学版), 2018, 57(3): 329-336]
CHEN X Y. Study on the degradation of hydrocarbon compounds by microbes isolated from nearshore zone. Master´s Thesis of Shanghai Jiao Tong University, 2019 [程晓宇. 近海海域微生物降解烃类化合物的研究. 上海交通大学硕士研究生学位论文, 2019]
CORNELIS P, DINGEMANS J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Frontiers in Cellular and Infection Microbiology, 2013, 3: 75
DING Y D, HUANG C L, ZHU L, et al. A review on toxic effects of engineered nanoparticles on marine fishery organisms and their impact on quality and safety of seafood. Asian Journal of Ecotoxicology, 2020, 15(6): 57-71 [丁怡丹, 黄翠玲, 朱琳, 等. 人工纳米颗粒对海洋渔业生物的毒性效应及水产品质量安全影响研究进展. 生态毒理学报, 2020, 15(6): 57-71]
DUAN Y. Effects of silver nanoparticles and various forms of silver on nitrogen removel of denitrifier Pseudomonas stutzeri and their toxicity mechanisms. Master´s Thesis of Nanjing Agricultural University, 2021 [段颖. 纳米银及不同形态银对反硝化细菌Pseudomonas stutzeri脱氮性能影响及毒性机制探究. 南京农业大学硕士研究生学位论文, 2021]
FAN L, SONG J, HILDEBRAND P D, et al. Interaction of ozone and negative air ions to control micro-organisms. Journal of Applied Microbiology, 2002, 93(1): 144-148 DOI:10.1046/j.1365-2672.2002.01683.x
FAZELIAN N, MOVAFEGHI A, YOUSEFZADI M, et al. Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata. Environmental Science and Pollution Research, 2019, 26: 17499-17511
FENG Q Y, LIU Y P, HUANG J, et al. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Scientific Reports, 2018, 8(1): 2082
FENG S L, ZHU L, ZHAO X G, et al. Ecological risk assessment of metallic nanoparticles on the marine environments: Species sensitivity distributions analysis. Frontiers in Marine Science, 2022, 9: 985195
GAMBARDELLA C, COSTA E, PIAZZA V, et al. Effect of silver nanoparticles on marine organisms belonging to different trophic levels. Marine Environmental Research, 2015, 111: 41-49
GAO Z, YU H R, LI M Y, et al. A battery of baseline toxicity bioassays directed evaluation of plastic leachates—Towards the establishment of bioanalytical monitoring tools for plastics. Science of the Total Environment, 2022, 828: 154387
GOTTSCHALK F, NOWACK B. A probabilistic method for species sensitivity distributions taking into account the inherent uncertainty and variability of effects to estimate environmental risk. Integrated Environmental Assessment and Management, 2013, 9(1): 79-86
HAN Z R, MIAO A J. Environmental behavior of metal nanoparticles and their interactions with planktonic algae: A review. Environmental Chemistry, 2023, 42(5): 1466-1483 [韩泽蓉, 缪爱军. 金属纳米颗粒的环境行为及其与藻类的相互作用概述. 环境化学, 2023, 42(5): 1466-1483]
HOOD M I, SKAAR E P. Nutritional immunity: transition metals at the pathogen-host interface. Nature Reviews Microbiology, 2012, 10(8): 525-537
HUA W F, WANG D L, GAO Y, et al. Effect of the typical metal oxide nanoparticles on the toxicity of the Selenastrum capricornutum. Journal of Safety and Environment, 2014, 14(4): 307-311 [花文凤, 王大力, 高雅, 等. 纳米金属氧化物对羊角月牙藻的毒性研究. 安全与环境学报, 2014, 14(4): 307-311]
ISNARD P, FLAMMARION P, ROMAN G, et al. Statistical analysis of regulatory ecotoxicity tests. Chemosphere, 2001, 45(4/5): 659-69
ISWARYA V, MANIVANNAN J, DE A, et al. Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels. Environmental Science and Pollution Research, 2016, 23(5): 4844-4858 DOI:10.1007/s11356-015-5683-0
JIANG X Y, ZHANG X Z, YANG Q Q, et al. A comparative study of microbial growth sensor and broth microdilution for antibiotic susceptibility testing. Progress in Fishery Sciences, 2021, 42(1): 38-46 [姜晓瑜, 张旭志, 杨倩倩, 等. 微生物生长传感器药敏试验方法与微量肉汤稀释法的对比研究. 渔业科学进展, 2021, 42(1): 38-46 DOI:10.19663/j.issn2095-9869.20191023001]
KLAINE S J, ALVAREZ P J J, BATLEY G E, et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 2008, 27(9): 1825-1851 DOI:10.1897/08-090.1
LEE H, LEE D G. Gold nanoparticles induce a reactive oxygen species-independent apoptotic pathway in Escherichia coli. Colloids and Surfaces B: Biointerfaces, 2018, 167: 1-7 DOI:10.1016/j.colsurfb.2018.03.049
LI G X, LIU X, WANG H, et al. Detection, distribution and environmental risk of metal-based nanoparticles in a coastal bay. Water Research, 2023, 242(Suppl C): 120242
LI Y Q, XIE T C, ZHAO S J, et al. Research progress on antibiotic resistance of Gram-negative bacterium in animal derived food. Journal of Food Safety and Quality, 2024, 15(10): 1-7 [李永强, 解廷宸, 赵仕杰, 等. 动物源食品中革兰氏阴性菌耐药性研究进展. 食品安全质量检测学报, 2024, 15(10): 1-7]
LIN D H, JI J, TIAN X L, et al. Environmental behavior and toxicity of engineered nanomaterials. Chinese Science Bulletin (Chinese Ver), 2009, 54(23): 3590-3604 [林道辉, 冀静, 田小利, 等. 纳米材料的环境行为与生物毒性. 科学通报, 2009, 54(23): 3590-3604]
LIU C, WANG W G, WANG S F. Siderophore-antibiotic conjugates: Applications of the 'Trojan horse' strategy in anti-Gram negative bacteria infection. Acta Chimica Sinica, 2024, 82(10): 1086-1108 [刘畅, 王文贵, 王守锋. 铁载体-抗生素偶联物: "特洛伊木马"策略在抗革兰氏阴性菌感染中的应用. 化学学报, 2024, 82(10): 1086-1108]
LIU F T, FAN H N, SHENG L X, et al. Iron acquisition by bacterial and adaptive immune responses. Microbiology China, 2019, 46(12): 3432-3439 [刘芳彤, 樊浩楠, 沈立新, 等. 细菌铁离子摄取系统与宿主免疫. 微生物学通报, 2019, 46(12): 3432-3439]
LIU J Y, HURT R H. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environmental Science and Technology, 2010, 44(6): 2169-2175 DOI:10.1021/es9035557
LIU Q, TANG X X, WANG Y, et al. ROS changes are responsible for tributyl phosphate (TBP)-induced toxicity in the alga Phaeodactylum tricornutum. Aquatic Toxicology, 2019, 208: 168-178 DOI:10.1016/j.aquatox.2019.01.012
LIU Y L, WU L. Advances in antibacterial mechanism of gold nanoparticles. Hans Journal of Biomedicine, 2023, 13(2): 145-150 [刘玉琳, 吴亮. 金纳米颗粒的抗菌机制研究进展. 生物医学, 2023, 13(2): 145-150]
MIAO L Z, WANG P F, HOU J, et al. Research progress on toxicity of metallic nanomaterials to different microbial aggregates. Water Resources Protection, 2019, 35(1): 73–78, 94 [苗令占, 王沛芳, 侯俊, 等. 金属纳米材料对不同微生物聚集体的毒性研究进展. 水资源保护, 2019, 35(1): 73–78, 94]
NAQVI S, SAMIM M, ABDIN M, et al. Concentration- dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. International Journal of Nanomedicine, 2010, 5: 983-989
PRIYANKA K P, SUKIRTHA T H, BALAKRISHNA K M, et al. Microbicidal activity of TiO2 nanoparticles synthesised by sol-gel method. IET Nanobiotechnology, 2016, 10(2): 81-86
QI Q J. Toxic effects and mechanisms of zinc oxide nanoparticles on Daphnia magna. Master´s Thesis of Northwest University, 2022 [戚钱菊. 氧化锌纳米颗粒对大型溞的毒性效应及作用机制. 西北大学硕士研究生学位论文, 2022]
QIN C L. The biological effect of nanomaterials on bacteria. Master´s Thesis of Tianjin University of Technology, 2012 [覃春丽. 纳米材料对细菌的生物效应研究. 天津理工大学硕士研究生学位论文, 2012]
RONG X Y, HAN R, ZHANG D G, et al. Effect of ZnO nano particles on bacterial community in coastal wetlands. Journal of Hohai University (Natural Sciences), 2023, 51(1): 43-51 [荣馨宇, 韩蕊, 张殿光, 等. 纳米氧化锌颗粒对滨海湿地微生物群落的影响. 河海大学学报(自然科学版), 2023, 51(1): 43-51]
SANCHÍS J, JIMÉNEZ-LAMANA J, ABAD E, et al. Occurrence of cerium-, titanium-, and silver-bearing nanoparticles in the Besὸs and Ebro Rivers. Environmental Science and Technology, 2020, 54(7): 3969-3978 DOI:10.1021/acs.est.9b05996
SENGUL A B, ASMATULU E. Toxicity of metal and metal oxide nanoparticles: A review. Environmental Chemistry Letters, 2020, 18(5): 1659-1683
SHAREENA DASARI TP, ZHANG Y, YU H. Antibacterial activity and cytotoxicity of gold (Ⅰ) and (Ⅲ) ions and gold nanoparticles. Biochemistry and Pharmacology (Los Angel), 2015, 4(6): doi: 10.4172/2167-0501.1000199
SHI W J, WANG C Y, YANG R. Effects of norfloxacin on Dunaliella salina, Nitzschia closterium f. Minutissima and Chlorella vulgaris. Marine Environmental Science, 2019, 38(1): 1-6 [施文杰, 王长友, 杨锐. 诺氟沙星对盐生杜氏藻、新月菱形藻和小球藻的生态毒性效应. 海洋环境科学, 2019, 38(1): 1-6]
TOU F Y, WU J Y, FU J Q, et al. Titanium and zinc-containing nanoparticles in estuarine sediments: Occurrence and their environmental implications. Science of the Total Environment, 2021, 754: 142388
TRAN N, MIR A, MALLIK D, et al. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. International Journal of Nanomedicine, 2010, 5: 277-283
WANG D L, YU J Q, GAO Y, et al. Research advance review on the toxicity of nanoparticles to bacteria. Journal of Safety and Environment, 2012, 12(1): 5-10 [王大力, 郁建桥, 高雅, 等. 金属和氧化物纳米颗粒对细菌毒性的研究进展. 安全与环境学报, 2012, 12(1): 5-10]
WANG Y N. The environmental behavior and bacterial toxicity of silver nanoparticles in marine systems. Master´s Thesis of Xiamen University, 2020 [王奕娜. 纳米银海水环境行为及其对海洋细菌的毒性效应与机制研究. 厦门大学硕士研究生学位论文, 2020]
WANG Z, JIN S G, ZHANG F, et al. Single and joint toxicity of zinc oxide and titanium dioxide nanoparticles for freshwater algae. Journal of Agro-Environment Science, 2021, 40(10): 2095-2105 [王壮, 金世光, 张帆, 等. 氧化锌和二氧化钛纳米颗粒对淡水绿藻的单一及联合毒性研究. 农业环境科学学报, 2021, 40(10): 2095-2105]
XIE Y Z Y, YANG J C, ZHANG J J, et al. Activating the antibacterial effect of 4, 6-diamino-2-pyrimidinethiol-modified gold nanoparticles by reducing their sizes. Angewandte Chemie, 2020, 59(52): 23471-23475
XU F L, LI Y L, WANG Y, et al. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment. Ecological Indicators, 2015, 54: 227-237
XUN Z R, NI Y, SUN X Y, et al. Microbial structure and composition difference in different temperature zones and four oceans. Journal of Yantai University (Natural Science and Engineering Edition), 2024, 1-16 [寻卓然, 倪妍, 孙晓玥, 等. 四大洋及不同温度带海洋微生物组成结构和差异分析. 烟台大学学报(自然科学与工程版), 2024, 1-16]
YAN L Q. Whole genome sequencing, metabolic product mining, and preservation efficacy of Bacillus subtilis BBW1542 from marine. Master´s Thesis of Guangdong Ocean University, 2023 [鄢陆琪. 海洋枯草芽孢杆菌BBW1542全基因组测序、代谢产物挖掘及保鲜功效研究. 广东海洋大学硕士研究生学位论文, 2023]
YOON K Y, BYEON J H, PARK J H, et al. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. The Science of the Total Environment, 2007, 373(2/3): 572-575
ZHANG J J. Effect of Gram-positive bacteria on membrane formation and function of microbial community in microbial electrolytic cell. Master´s Thesis of Beijing Jiaotong University, 2022 [张静静. 革兰氏阳性菌对微生物电解池中微生物群落成膜及功能的影响研究. 北京交通大学硕士研究生学位论文, 2022]
ZHANG X Z, WANG X C, CHENG H R, et al. A universal automated method for determining the bacteriostatic activity of nanomaterials. Journal of Hazardous Materials, 2021, 413: 125320
ZHANG X Z, YANG Q Q, MA L Y, et al. Automatically showing microbial growth kinetics with a high-performance microbial growth analyzer. Biosensors and Bioelectronics, 2023, 239: 115626
ZHENG Y, WU K N, WANG L, et al. Transcriptome and sRNA analyses of the response of Bacillus subtilis to ammonia nitrogen. Progress in Fishery Sciences, 2021, 42(2): 147-154 [郑姚, 吴开年, 王利, 等. 枯草芽孢杆菌对氨氮应答的转录组及sRNA分析. 渔业科学进展, 2021, 42(2): 147-154 DOI:10.19663/j.issn2095-9869.20200205001]
ZHENG Y K, TANG M X, LIU S Y, et al. Antibacterial properties of small molecule-functionalized gold nanoparticles against Gram-negative multidrug-resistant bacteria. Acta Microbiologica Sinica, 2021, 61(2): 406-416 [郑有坤, 唐明秀, 刘淑云, 等. 小分子功能化的金纳米粒子对革兰氏阴性多药耐药细菌的抗菌特性. 微生物学报, 2021, 61(2): 406-416]
ZHOU Y. Research on the application of C4D technique to the parameter measurement of gas-liquid two-phase flow. Doctoral Dissertation of Zhejiang University, 2015 [周颖. 电容耦合式非接触电导测量技术在气液两相流参数测量中的应用研究. 浙江大学博士研究生学位论文, 2015]
ZHU X S, ZHU L, TIAN S Y, et al. Aquatic ecotoxicities of nanoscale TiO2, ZnO and Al2O3 water suspensions. Acta Ecologica Sinica, 2008, 28(8): 3507-3516 [朱小山, 朱琳, 田胜艳, 等. 三种金属氧化物纳米颗粒的水生态毒性. 生态学报, 2008, 28(8): 3507-3516]