2. 北部湾大学 广西北部湾海洋环境变化与灾害研究重点实验室 广西 钦州 535011;
3. 江苏师范大学地理测绘与城乡规划学院 江苏 徐州 221116
2. Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China;
3. School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China
磷作为海洋浮游植物生长最重要的营养元素,其生物地球化学循环过程对海洋初级生产力具有重要的调控作用(Duhamel et al, 2021; 吴傲琳等, 2024)。然而,过量的磷会导致水体富营养化,引发藻类大量繁殖,诱发有害藻华,影响海洋生态平衡(Conley et al, 2009)。沉积物–水界面是底层沉积物与上覆水、水动力条件以及吸附、解吸和氧化还原反应等物理和化学过程之间物质交换的重要通道,为营养物质的迁移转化提供了外部条件(Li et al, 2023; Varma et al, 2024)。沉积物对磷的吸附与解吸行为直接影响水体中磷的含量变化和富营养化程度(Cao et al, 2017)。沉积物通过对磷的吸附/解吸过程充当磷的源或汇,对海洋中磷循环过程发挥着举足轻重的作用(Andrieux-Loyer et al, 2023)。入海河口区作为河流与海洋的咸淡水交汇区,对沉积物–水界面磷循环过程产生显著影响,进而影响其富营养化水平(黄慧倩等, 2023)。因此,研究入海河口区沉积物对磷的吸附行为特征对近海环境污染防控治理与蓝色海湾建设具有重要的理论和现实意义。
沉积物不同形态磷具有不同的地球化学特征,是影响沉积物–水界面磷交换过程的重要因素之一(Zhang et al, 2022)。相比总磷(TP),各形态磷特征可更为具体地评估沉积物中不同形态磷的释放潜能(Lin P et al, 2024)。因此,对沉积物中不同形态磷生物地球化学特征的研究备受关注。目前,以连续提取法(SEDEX)对沉积物中不同形态磷进行分级最具代表性,通常分为弱吸附态磷(Ex-P)、铁结合态磷(Fe-P)、自生磷灰石磷(Ca-P)、碎屑磷(De-P)及有机磷(OP) (Ruttenberg, 1992; Yang et al, 2016; Rahman et al, 2024),这对于研究海洋沉积物磷的生物地球化学循环,尤其是研究近岸河口海湾沉积物磷形态具有重要意义。此外,沉积物特性(例如粒径、黏土矿物和有机质含量等)以及盐度也是对沉积物磷吸附最为关键的影响因素(朱佳美等, 2016; 王贺等, 2019)。
亚热带入海河口区柱状沉积物对磷的吸附行为特征迄今尚未见相关报道。钦州湾内湾(茅尾海)位于广西北部湾最北部,属于典型的亚热带半封闭式海湾,也是我国南方最大的天然蚝苗采苗和人工养殖基地(杨斌等, 2017)。近年来,钦江、茅岭江作为主要入海河流携带大量营养物质进入茅尾海,导致该河口海湾富营养化趋势加重,且存在潜在的磷限制现象(杨斌等, 2015)。研究发现,陆地径流、粒度及沉积环境是控制茅尾海入海河口区表层沉积物各形态磷含量、分布的重要因素,且具有较强的释磷潜力(Yang et al, 2019; 徐程等, 2021),但尚缺乏对柱状沉积物磷的吸附行为特征以及环境因子对沉积物磷吸附影响的研究,相应的磷吸附前后沉积物磷形态变化也尚不清楚。为此,本研究以钦江和茅岭江入海河口区柱状沉积物为例,通过吸附动力学和吸附热力学实验,探究沉积物特性和盐度变化对沉积物磷吸附的影响,结合SEDEX法分析沉积物吸附前后不同形态磷含量变化,阐明沉积物磷吸附机制,为深入认识入海河口区沉积物内源磷释放过程及迁移转化机制提供科学依据。
1 材料与方法 1.1 采样及前处理2021年7月对茅尾海两个主要入海河口区(茅岭江入海河口区A1站位和钦江入海河口区A2站位)进行现场采样调查(图 1)。采用重力采样器采集柱状沉积物样品,并对柱状样每隔1 cm进行分层,所有样品冷冻保存,使用前进行冷冻干燥机干燥后研磨过200目筛,装于聚乙烯袋中备用。采用虹吸法采集上覆水双样,经0.45 µm孔径的GF/F滤膜过滤,采用分光光度法测定磷酸盐浓度(Hansen et al, 1999)。天然海水(NSW)取自广西钦州市钦州湾外海海域,陈化3个月以上,经GF/F滤膜过滤后调pH至8.0后使用,陈化后海水中溶解无机磷(DIP)浓度 < 0.001 mg/L,以保证不影响实验结果。
![]() |
图 1 研究区域及茅尾海采样站位图 Fig.1 Study area and sampling stations in the Maowei Sea |
称取(500.0±0.2) mg研磨后过200目(74 μm)筛的一系列沉积物样品于100 mL具塞磨口玻璃锥形瓶中,分别加入40 mL由天然海水配制的标准磷酸盐溶液(初始浓度为1.0 mg/L),在(25±1) ℃恒温水浴振荡器中以转速200 r/min振荡,定时取25 mL样品,以转速4 000 r/min离心,上清液测定磷酸盐浓度,测定方法与上覆水磷酸盐浓度的测定方法相同。磷在t时间段内的吸附量Qt (mg/g)由吸附前后磷含量差值获取,以确定达到平衡吸附所需时间。样品均取2组平行样,相对标准偏差 < 5%。
1.3 等温吸附实验称取经研磨后过200目(74 μm)筛的一系列沉积物样品(500.0±0.2) mg于100 mL具塞磨口玻璃锥形瓶中,加入40 mL由天然海水配制的标准磷酸盐溶液,其初始浓度分别为0.01、0.02、0.05、0.1、0.2、0.5、1.0、2.0、3.0、4.0 mg/L,在(25±1) ℃恒温水浴振荡器中以转速200 r/min振荡24 h,后续测定与吸附动力学实验相同,吸附等温线由沉积物磷的吸附/解吸量进行绘制。通过对等温吸附实验数据进行处理,计算沉积物磷的吸附/解吸平衡质量浓度(EPC0),根据上覆水磷浓度与EPC0对比,判断沉积物充当磷的“源”还是“汇”。样品均取2组平行样,相对标准偏差 < 5%。
1.4 粒径影响称取并分别过40目(420 μm)、60目(250 μm)、100目(150 μm)和200目(74 μm)筛的一系列沉积物样品进行等温吸附对比实验。样品均取平行样,相对标准偏差 < 5%。
1.5 盐度影响分别使用钦州湾外海海域陈化后的天然海水(NSW)以及用Milli-Q水与陈化后的天然海水按体积比稀释1/4的天然海水(1/4 NSW)作为吸附介质,调节pH为8.00±0.03,进行等温吸附实验。样品均取平行样,相对标准偏差 < 5%。
1.6 沉积物磷形态提取采用磷吸附动力学实验研究前后的沉积物样品,通过改进后的SEDEX方法对磷吸附前后沉积物样品中Ex-P、Fe-P、Ca-P、De-P和OP含量进行提取分析,相对标准偏差分别为1.0%、2.4%、3.7%、1.5%和2.8% (Yang et al, 2016)。改进后的SEDEX方法采用氢氧化镁共沉淀法对Fe-P进行测定,以避免柠檬酸盐–连二亚硫酸盐–碳酸氢盐(CDB)试剂对钼酸盐络合物还原的干扰,同时为了避免原先SEDEX方法提取OP含量可能被低估(Ruttenberg, 1992),OP由单步提取法测定的TP和无机磷(IP)含量的差值获得(Slomp et al, 1996)。使用分光光度法测定提取液中的磷酸盐浓度,沉积物中的磷含量以干重(μmol/g)表示。
1.7 数据处理使用Excel 2019和Origin 2024软件绘制吸附动力学曲线和等温吸附曲线,并对数据进行分析拟合。使用Ocean Data View 4软件进行站位图的绘制处理。使用SPSS 26进行相关性分析等。
2 结果与讨论 2.1 吸附动力学A1站位表层沉积物对磷的吸附动力学曲线见图 2,该站位沉积物磷动力学吸附过程明显分为快慢两段,在0~6 h对磷的吸附较快,12 h后吸附量几乎不随时间的增加而增加,这可能是由于沉积物在吸附前期过程中磷酸盐占据了主要的吸附点(黄慧倩等, 2023),而在后期过程中随着吸附点的递减,吸附速率下降,此时认为沉积物对磷的吸附已达到饱和状态(黄威等, 2020)。为了确保不同的站位沉积物对磷的吸附达到充足平衡,反应平衡时间确定为24 h。
![]() |
图 2 A1站位沉积物对磷的吸附动力学曲线(曲线为快慢二段一级动力学方程拟合曲线) Fig.2 Kinetic curve of phosphorus adsorption from sediment at station A1 (The curve is the fast and slow two-stage first level kinetic equation fitting curve) |
本研究采用快慢二段一级动力学方程(1)(朱佳美等, 2016; 王贺等, 2019)对动力学吸附结果进行拟合,结果见表 1。
$ {Q_t} = - {Q_{\text{e}}}{F_1}\exp ( - {k_1}t) - {Q_{\text{e}}}{F_2}\exp ( - {k_2}t) + {Q_{\text{e}}} $ | (1) |
![]() |
表 1 A1站位沉积物对磷的吸附动力学拟合参数 Tab.1 Adsorption kinetic fitting parameters of phosphorus onto the sediments at site A1 |
式中,Qt为不同振荡时间t(h)时刻对磷的吸附量(mg/g);Qe为沉积物对磷的平衡吸附量(mg/g);F1为快速吸附阶段所占的质量分率;F2为慢速吸附阶段所占的质量分率;k1为快吸附速率常数(h–1);k2为慢吸附速率常数(h–1);t为振荡时间(h)。
根据拟合得到的相关系数r2,拟合参数Qe与平衡吸附量的实验值(Qe, exp)接近,表明沉积物对磷的吸附动力学过程可用快慢二段一级动力学方程进行描述。在快速吸附过程中,当初始磷浓度较低时,磷会从沉积物中释放出来,随着初始磷浓度的增加,沉积物会开始吸附溶液中的磷,磷在沉积物和磷溶液中的浓度梯度变大,导致磷的吸附量在F1较大,这是由于在沉积物对磷的快速吸附过程中以范德华力为主的物理吸附作用(王贺等, 2019)。
2.2 吸附热力学本研究采用Langmuir交叉型模型(2)(朱佳美等, 2016)对A1和A2两个站位不同深度沉积物上磷的吸附等温线进行拟合(图 3),具体拟合参数如表 2所示。
$ {Q_{\text{e}}} = \frac{{{Q_{\text{m}}}{K_{\text{L}}}({C_{\text{e}}} - {\text{EP}}{{\text{C}}_0})}}{{(1 + {K_{\text{L}}}{C_{\text{e}}})(1 + {K_{\text{L}}}{\text{EP}}{{\text{C}}_0})}} $ | (2) |
![]() |
图 3 A1和A2站位不同深度沉积物磷的吸附等温曲线(线为Langmuir交叉型吸附等温式拟合曲线) Fig.3 Phosphorus isothermal adsorption curves of different depths in core sediments at sites A1 and A2 (line: Langmuir crossover model fitting) |
![]() |
表 2 A1和A2站位不同深度沉积物对磷的吸附拟合参数 Tab.2 Adsorption fitting parameters for phosphorus at different depths in core sediments at sites A1 and A2 |
式中,Qe为沉积物对磷的吸附量(mg/g);Qm为沉积物对磷的最大理论吸附容量(mg/g);KL为Langmuir吸附常数(L/mg);Ce为吸附后磷酸盐溶液平衡质量浓度(mg/L);EPC0为沉积物对磷的吸附/解吸平衡浓度(mg/L)。
原先结合在沉积物上可被解吸的磷(NAP,mg/L)见公式(3)(朱佳美等, 2016):
$ {\text{NAP}} = \frac{{{Q_m}{K_{\text{L}}}{\text{EP}}{{\text{C}}_0}}}{{1 + {K_{\text{L}}}{\text{EP}}{{\text{C}}_0}}} $ | (3) |
由图 3可知,当磷初始浓度低于0.05 mg/L条件下,2个站点不同深度的沉积物均呈现磷解吸现象,这是由于当存在于天然沉积物中的NAP浓度低于EPC0时,沉积物中的这部分磷就会发生内源磷的释放过程,导致水体富营养化进一步加剧(黄慧倩等, 2023)。
研究表明,沉积物本底吸附态磷(NAP)含量与其沉积物磷形态中的可交换态/弱吸附态磷(Ex-P)含量呈相对应的关系(Cao et al, 2017)。以A1站位表层沉积物为例,Langmuir交叉型模型拟合获得的NAP含量为0.015 mg/g (表 2),沉积物中Ex-P含量为0.013 mg/g,表明二者之间也呈相对应的关系。茅尾海主要入海河口区表层沉积物中Ex-P含量范围为0.008~0.078 mg/g (徐程等, 2021)。通过A1和A2站位不同深度沉积物对磷的拟合参数比较(表 2)可知,相同站位不同深度的沉积物对磷的吸附能力呈现一定的差异性。此外,Qm反映沉积物对磷的吸附能力,是沉积物磷库容的重要标志(Bai et al, 2017)。本研究沉积物中磷的吸附容量在所研究的深度范围内呈现两种截然不同的变化趋势:(1)随深度的增加,Qm基本保持不变,如A2站;(2)随着深度的增加,Qm总体呈上升趋势,如A1站,推测这可能与不同深度沉积物自身的特性本质有关(王贺等, 2019)。
由图 4可见,本底吸附态磷(NAP)在A1和A2站位沉积物表层段呈现相对较高的含量,随着深度的增加,其含量呈明显的下降趋势,随后含量变化减弱。由于沉积物有机质在矿化过程中可将有机磷(OP)降解为溶解无机磷(DIP),在浓度梯度作用下由高浓度间隙水中的磷酸盐向低浓度上覆水中扩散迁移,参与磷的再循环过程(Yang et al, 2017; Lin Z et al, 2024)。这部分磷以可交换态的形式被沉积物吸附,进而对表层NAP含量富集产生贡献(王贺等, 2019)。此外,沉积物磷形态也会受有氧厌氧环境的变化而发生迁移转化,沉积柱在早期成岩作用下沉积环境随深度和有机质氧化降解处于还原状态,沉积物中与铁氧化物或氢氧化物结合的磷会因发生还原反应导致磷的释放(Lin P et al, 2024),但随着深度的进一步增加,沉积柱矿化作用减弱,这可能是由于Fe-P释放能力变缓进而导致NAP随深度增加而递减(Yang et al, 2016; 王贺等, 2019)。研究显示,NAP与EPC0之间存在明显的正相关关系(安文超等, 2008),本研究发现钦江入海河口区A2站位沉积柱NAP与EPC0呈显著正相关(r= 0.875, P < 0.01),且高含量NAP表层段的EPC0浓度相应也高,表明该入海河口区释放磷的风险较大(刘敏等, 2002)。由表 2可知,表层EPC0浓度A1站位(0.169 mg/L)和A2站位(0.168 mg/L)均显著高于相应站位的上覆水磷浓度(A1站位:0.047 mg/L;A2站位:0.085 mg/L),表明该入海河口区表层沉积物充当磷源的作用,这与黄慧倩等(2023)的研究结论一致。通常KL与吸附能力密切相关(王贺等, 2019),2个站位KL随深度均呈下降趋势,表明沉积物在表层段对磷的吸附能力要高于底层段。
![]() |
图 4 A1和A2站位沉积物最大理论吸附容量(Qm)、本底吸附态磷(NAP)、沉积物对磷的吸附/解吸平衡浓度(EPC0)和Langmuir吸附常数(KL)垂直分布 Fig.4 Vertical distributions of P maximum sorption capacity(Qm), native adsorbed P (NAP), equilibrium P concentration (EPC0), and Langmuir adsorption coefficient (KL) in core sediments at sites A1 and A2 |
由磷在不同粒径的沉积物中等温吸附线可知,A1和A2两个站位表层沉积物对磷的吸附容量(Qe)均呈现出200目 > 100目 > 60目 > 40目(图 5),表明颗粒物粒径越小,比表面积越大,吸附磷酸盐的位点越多,能提供磷的吸附量就越大(Wang et al, 2006; Fan et al, 2013)。由此可见,相同质量的沉积物粒径越小,相对应磷的吸附量就越大。
![]() |
图 5 磷在不同粒径的沉积物中的等温吸附线 Fig.5 Isothermal adsorption lines of phosphorus in sediments with different grain sizes |
此外,作为沉积物重要的组成部分,黏土矿物及有机质含量在沉积物吸附磷的过程中也发挥着相当重要的作用(Wang et al, 2006; Jalali et al, 2013)。研究显示,细颗粒物(黏土和粉砂)含量越高越有利于磷的吸附,反之,粗颗粒物(砂质)含量越高,越不利于磷的吸附(黄慧倩等, 2023)。由图 6可见,A2站位柱状样沉积物粒度以粉砂细颗粒物为主,含量范围在58.9%~79.6%之间,其垂向分布与Qm基本保持不变(图 4),表明细颗粒物主要影响着磷的吸附。A1站位柱状样沉积物粒度以砂为主,且TOC含量垂直分布总体呈由表层至底层逐渐降低的趋势(图 6),但Qm总体呈上升趋势,可能一方面是由于早期成岩过程中有机质快速降解导致上层沉积物磷的释放(Yang et al, 2017),另一方面随着深度增加,有机质降解作用减弱,能与铁、铝形成有机无机复合体的腐殖质抑制铁铝氧化物结晶,进而增强对磷的吸附(Wang et al, 2011),同时,有机质还可通过释放H+导致沉积物表面基团质子化增加对磷的吸附(赵海超等, 2014)。
![]() |
图 6 A1和A2站位不同深度沉积物粒度和总有机碳含量 Fig.6 Contents of grain size and total organic carbon at different depths in core sediments at sites A1 and A2 |
研究显示,盐度变化对潮滩湿地及亚热带海湾沉积物对磷的吸附会产生重要影响(Sundareshwar et al, 1999; 黄慧倩等, 2023)。本研究模拟高盐度(NSW)与低盐度(1/4 NSW)对A1站位和A2站位柱状样中的表、底层沉积物对磷的吸附量变化,以探究盐度变化对磷吸附的影响,结果如图 7所示。随盐度的增大,A1和A2站位柱状样中表层和底层沉积物磷的吸附量均呈递减变化,这与在我国东海陆架海域柱状沉积物的研究结果相一致(王贺等, 2019)。海水介质中Cl−、CO32−、SO42−等阴离子含量会随盐度的增大而增加,PO43−与其产生吸附竞争,导致沉积物对磷的吸附能力减弱(石晓勇等, 1999; 安敏等, 2009)。因此,盐度增加不利于沉积物对磷的吸附,盐度降低促进磷在沉积物上的吸附。茅岭江和钦江是茅尾海主要的两条入海河流,因此,茅尾海主要入海河口区受河流冲淡水的影响显著,全年盐度变化范围在1.45~13.36之间(杨斌等, 2012),表明茅尾海入海河口区的盐度能够促进沉积物对磷的吸附,这在一定程度上对该区域的水体富营养化水平具有调节作用。
![]() |
图 7 不同盐度介质下A1和A2站位沉积物对磷的吸附等温线 Fig.7 Phosphorus adsorption isotherms on sediments at sites A1 and A2 from different salinity |
由图 8可见,A1和A2站位表层沉积物吸附前后Ca-P、De-P和OP含量变化很小,且以Ca-P为主要的磷存在形式。Ca-P主要来源于自生磷灰石、碳酸盐氟磷灰石及生物骨骼等矿物(Ruttenberg, 1992),其性质通常较为稳定,不易从沉积物中溶解释放出来(Saha et al, 2023)。De-P主要来自于流域岩石风化侵蚀产物晶体碎屑(Ruttenberg, 1992),基于其在沉积物成岩过程中保持稳定且主要来自陆源,可作为指示洪水历史事件的重要指标(Meng et al, 2015)。OP主要来自陆源输入和食物网等生物过程,其含量受控于陆地排放的物质和浮游生物的排泄物或死亡残体(Ke et al, 2022)。
![]() |
图 8 不同站位沉积物吸附前后磷形态含量变化 Fig.8 Variations in contents of phosphorus speciation before and after adsorption in sediments at different sites |
吸附前沉积物A1站的Ex-P和Fe-P含量分别为0.99 µmol/g和2.23 µmol/g,A2站分别为1.12 µmol/g和4.98 µmol/g,吸附后沉积物A1和A2两个站位的Ex-P含量(4.16 µmol/g和6.21 µmol/g)和Fe-P含量(4.74 µmol/g和8.52 µmol/g)均呈现显著的上升趋势(图 8),尤其是Ex-P的增长幅度最大,表明Ex-P是沉积物吸附前后含量变化最大的形态磷,Fe-P次之。Ex-P主要指的是沉积物中的可交换态/弱吸附态磷,是吸附在颗粒物表面最不稳定的活性磷(张小勇等, 2013)。Ex-P可在水动力扰动等物理作用下释放至水体中直接被生物利用(Yang et al, 2019)。Ex-P的吸附过程主要通过物理吸附机制实现,可在短时间内达到吸附平衡,是可逆性吸附(Kang et al, 2017)。Fe-P受沉积物中的氧化还原环境影响较大,在有氧环境下铁氧化物易于结合磷被认为是磷的“汇”,但在厌氧环境下铁氧化物还原释放结合的磷而成为磷的“源”,相对于其他自生矿结合磷更容易转化,被认为是暂时性的磷汇(Slomp et al, 2013)。Fe-P吸附过程主要通过化学吸附机制实现,达到吸附平衡过程较慢,是不可逆性吸附(朱佳美等, 2016)。由此可见,茅尾海入海河口区沉积物对磷的吸附过程主要为物理吸附,其次为化学吸附,物理过程很可能容易导致该区域沉积物再次释放出磷。
3 结论茅尾海入海河口区沉积物对磷的吸附符合快慢二段一级动力学方程,沉积物反应平衡时间为24 h。沉积物对磷等温吸附符合Langmuir交叉型模型。相同站位不同深度的沉积物对磷的吸附能力呈现一定的差异性,当磷初始浓度低于0.05 mg/L时,2个站点不同深度的沉积物均呈现磷解吸现象,表明沉积物中这部分磷会发生内源磷的释放过程,导致该河口区水体富营养化进一步加剧。沉积物粒径变小有利于磷在沉积物上的吸附,盐度降低促进磷在沉积物上的吸附。沉积物Ex-P和Fe-P含量在吸附后比吸附前明显增加,尤其是Ex-P增长幅度最大,物理吸附和化学吸附同时存在于沉积物对磷的吸附过程中,其中以物理吸附为主,物理过程对茅尾海入海河口区沉积物可能存在再次释放磷的风险。因此,对茅尾海入海河口区进行航道疏浚工程等方面应加以防范沉积物内源磷释放对水环境污染的问题。
AN M, WEN W, SUN S J, et al. Effects of pH and salinity on phosphorus sorption and desorption in the surface sediments of the mainstream of the Haihe River. Acta Scientiae Circumstantiae, 2009, 29(12): 2616-2622 [安敏, 文威, 孙淑娟, 等. pH和盐度对海河干流表层沉积物吸附解吸磷(P)的影响. 环境科学学报, 2009, 29(12): 2616-2622 DOI:10.3321/j.issn:0253-2468.2009.12.021] |
AN W C, LI X M. Phosphate adsorption characteristics on surface sediments of Nansi Lake and its main inflow rivers. Environmental Science, 2008, 29(5): 1295-1302 [安文超, 李小明. 南四湖及主要入湖河流表层沉积物对磷酸盐的吸附特征. 环境科学, 2008, 29(5): 1295-1302 DOI:10.3321/j.issn:0250-3301.2008.05.025] |
ANDRIEUX-LOYER F, AMINOT A. Adsorption-desorption kinetics of phosphate between sediment and water in coastal areas. Estuarine, Coastal and Shelf Science, 2023, 292: 108453 |
BAI J H, YE X F, JIA J, et al. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions. Chemosphere, 2017, 188: 677-688 |
CAO X Y, LIU X Y, ZHU J M, et al. Characterization of phosphorus sorption on the sediments of Yangtze River Estuary and its adjacent areas. Marine Pollution Bulletin, 2017, 114(1): 277-284 |
CONLEY D J, PAERL H W, HOWARTH R W, et al. Controlling eutrophication: Nitrogen and phosphorus. Science, 2009, 323(5917): 1014-1015 DOI:10.1126/science.1167755 |
DUHAMEL S, DIAZ J M, ADAMS J C, et al. Phosphorus as an integral component of global marine biogeochemistry. Nature Geoscience, 2021, 14(6): 359-368 DOI:10.1038/s41561-021-00755-8 |
FAN J Y, HE X Y, WANG D Z. Experimental study on the effects of sediment size and porosity on contaminant adsorption/ desorption and interfacial diffusion characteristics. Journal of Hydrodynamics, 2013, 25(1): 20-26 DOI:10.1016/S1001-6058(13)60334-0 |
HANSEN H P, KOROLEFF F. Determination of nutrients. Weinheim, Germany: Wiley-VCH Verlag GmbH, 1999
|
HUANG H Q, HU H P, YANG B, et al. Phosphate adsorption and desorption characteristics of surface sediments of subtropical bay. Research of Environmental Sciences, 2023, 36(2): 363-372 [黄慧倩, 胡浩鹏, 杨斌, 等. 亚热带海湾表层沉积物对磷的吸附解析特征研究. 环境科学研究, 2023, 36(2): 363-372] |
HUANG W, LIU X, ZHAO L, et al. Release characteristics of phosphorus in sediment from Daihai Lake. Research of Environmental Sciences, 2020, 33(9): 2094-2102 [黄威, 刘星, 赵丽, 等. 岱海沉积物内源磷释放特征的研究. 环境科学研究, 2020, 33(9): 2094-2102] |
JALALI M, PEIKAM E N. Phosphorus sorption-desorption behaviour of river bed sediments in the Abshineh River, Hamedan, Iran, related to their composition. Environmental Monitoring and Assessment, 2013, 185(1): 537-552 DOI:10.1007/s10661-012-2573-5 |
KANG X M, SONG J M, YUAN H M, et al. Phosphorus speciation and its bioavailability in sediments of the Jiaozhou Bay. Estuarine, Coastal and Shelf Science, 2017, 188: 127-136 DOI:10.1016/j.ecss.2017.02.029 |
KE S, CHEN C, ZHANG P, et al. Phosphorus speciation and sedimentary phosphorus release in an urban bay (Dachan Bay, China) impacted by multiple anthropogenic perturbations. Marine Pollution Bulletin, 2022, 185: 114310 DOI:10.1016/j.marpolbul.2022.114310 |
LI H, CAI Y Y, SONG C L, et al. Comparison of phosphorus migration and transformation characteristics in sediments of lakes within the Yangtze River basin and reservoirs on the Wujiang River. Journal of Soils and Sediments, 2023, 24(2): 991-1001 |
LIN P, KLUMP J V, GUO L. Chemical speciation, reactivity, and long-term burial of sedimentary phosphorus in Green Bay, a seasonally hypoxia-influenced freshwater estuary. Science of the Total Environment, 2024, 948: 174957 |
LIN Z, LIU L, LIAN E, et al. Preferential remineralization of phosphorus from organic matter in river-dominated coastal sediments. Science of the Total Environment, 2024, 921: 170935 |
LIU M, HOU L J, XU S Y, et al. Phosphate adsorption characteristics of tidal flat surface sediments and its environmental effect from the Yangtze Estuary. Acta Geographica Sinica, 2002, 57(4): 397-406 [刘敏, 侯立军, 许世远, 等. 长江河口潮滩表层沉积物对磷酸盐的吸附特征. 地理学报, 2002, 57(4): 397-406] |
MENG J, YAO P, BIANCHI T S, et al. Detrital phosphorus as a proxy of flooding events in the Changjiang River Basin. Science of the Total Environment, 2015, 517: 22-30 |
RAHMAN M S S, ONODERA S I, SAITO M, et al. Phosphorus speciation in coastal sediment of Osaka Bay: Relation to anthropogenic phosphorus loading. Environmental Research Letters, 2024, 19: 094020 |
RUTTENBERG K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography, 1992, 37(7): 1460-1482 |
SAHA A, VIJAYKUMAR M E, DAS B K, et al. Geochemical distribution and forms of phosphorus in the surface sediment of Netravathi-Gurupur estuary, southwestern coast of India. Marine Pollution Bulletin, 2023, 187: 114543 |
SHI X Y, SHI Z L. Discussion of phosphate buffer mechanism in Huanghe River Estuary. Oceanologia et Limnologia Sinica, 1999, 30(2): 192-198 [石晓勇, 史致丽. 黄河口磷酸盐缓冲机制的探讨. 海洋与湖沼, 1999, 30(2): 192-198] |
SLOMP C P, EPPING E H G, HELDER W, et al. A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments. Journal of Marine Research, 1996, 54(6): 1179-1205 |
SLOMP C P, MORT H P, JILBERT T, et al. Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane. PLoS One, 2013, 8: e62386 |
SUNDARESHWAR P V, MORRIS J T. Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient. Limnology and Oceanography, 1999, 44(7): 1693-1701 |
VARMA K, JHA P K. Phosphorus distribution in the water and sediments of the Ganga and Yamuna Rivers, Uttar Pradesh, India: Insights into pollution sources, bioavailability, and eutrophication implications. Environmental Monitoring and Assessment, 2024, 196(4): 336 |
WANG H, LU M, LI L, et al. Behaviors of phosphorus sorption on the core sediemnts in eastern continental shelf sea of China. Transactions of Oceanology and Limnology, 2019(4): 72-80 [王贺, 路敏, 李苓, 等. 中国东海陆架海域柱状沉积物对磷的吸附行为. 海洋湖沼通报, 2019(4): 72-80] |
WANG S R, JIN X C, BU Q Y, et al. Effects of particle size, organic matter and ionic strength on the phosphate sorption in different trophic lake sediments. Journal of Hazardous Materials, 2006, 128(2/3): 95-105 |
WANG S R, YI W L, YANG S W, et al. Effects of light fraction organic matter removal on phosphate adsorption by lake sediments. Applied Geochemistry, 2011, 26(3): 286-292 |
WU A L, ZHONG Z H, YU S, et al. Evolution of nutrient salt structure in the Yellow River estuary in the last 20 years and current status. Progress in Fishery Sciences, 2024, 45(2): 1-13 [吴傲琳, 钟正浩, 于松, 等. 近20年黄河口营养盐结构演变及现状研究. 渔业科学进展, 2024, 45(2): 1-13] |
XU C, YANG B, MO X R, et al. Forms and characteristics of phosphorus in surface sediment from estuary areas in the Maowei Sea. Marine Environmental Science, 2021, 40(2): 250-257 [徐程, 杨斌, 莫小荣, 等. 茅尾海入海河口区表层沉积物磷形态特征研究. 海洋环境科学, 2021, 40(2): 250-257] |
YANG B, FANG H Y, XU L L, et al. Spatio-temporal variation characteristics and driving factors of water pollution in Qinzhou Bay. Marine Environmental Science, 2017, 36(6): 877-883 [杨斌, 方怀义, 许丽莉, 等. 钦州湾水质污染时空变化特征及驱动因素. 海洋环境科学, 2017, 36(6): 877-883] |
YANG B, LIU S M, WU Y, et al. Phosphorus speciation and availability in sediments off the eastern coast of Hainan Island, South China Sea. Continental Shelf Research, 2016, 118: 111-127 |
YANG B, SONG G D, LIU S M, et al. Phosphorus recycling and burial in core sediments of the East China Sea. Marine Chemistry, 2017, 192: 59-72 |
YANG B, ZHANG C X, ZHONG Q P, et al. Temporal and spatial variations of temperature, salinity and pH of surface seawater in the Qinzhou Bay, Guangxi, China. Journal of Qinzhou University, 2012, 27(3): 1-5 [杨斌, 张晨晓, 钟秋平, 等. 钦州湾表层海水温度盐度及pH值时空变化. 钦州学院学报, 2012, 27(3): 1-5] |
YANG B, ZHONG Q P, ZHANG C X, et al. Spatio-temporal variations of chlorophyll a and primary productivity and its influence factors in Qinzhou Bay. Acta Scientiae Circumstantiae, 2015, 35(5): 1333-1340 [杨斌, 钟秋平, 张晨晓, 等. 钦州湾叶绿素a和初级生产力时空变化及其影响因素. 环境科学学报, 2015, 35(5): 1333-1340] |
YANG B, ZHOU J B, LU D L, et al. Phosphorus chemical speciation and seasonal variations in surface sediments of the Maowei Sea, northern Beibu Gulf. Marine Pollution Bulletin, 2019, 141: 61-69 |
ZHANG H, XIN M, WANG B D, et al. Spatiotemporal variations in phosphorus concentrations in the water and sediment of Jiaozhou Bay and sediment phosphorus release potential. Science of the Total Environment, 2022, 806: 150540 |
ZHANG X Y, YANG Q, SUN Y, et al. Forms and bioavailability of phosphorus in sediment cores of culture zones in Sanggou Bay. Progress in Fishery Sciences, 2013, 34(2): 36-44 [张小勇, 杨茜, 孙耀, 等. 桑沟湾养殖海域柱状沉积物中磷的赋存形态和生物有效性. 渔业科学进展, 2013, 34(2): 36-44] |
ZHAO H C, WANG S R, ZHANG L, et al. Effect of OM content and constituents on phosphorus adsorption-release of the sediment from Erhai Lake. Acta Scientiae Circumstantiae, 2014, 34(9): 2346-2354 [赵海超, 王圣瑞, 张莉, 等. 有机质含量及其组分对洱海沉积物磷吸附–释放影响. 环境科学学报, 2014, 34(9): 2346-2354] |
ZHU J M, CAO X Y, LIU S M, et al. Surface property and sorption characteristics of phosphorus onto surface sediments in Sanggou Bay. Environmental Science, 2016, 37(2): 558-564 [朱佳美, 曹晓燕, 刘素美, 等. 桑沟湾表层沉积物性质及对磷的吸附特征. 环境科学, 2016, 37(2): 558-564] |