



# **PROGRESS IN FISHERY SCIENCES**



第37卷 VOL.37 第4期 NO.4



中国水产科学研究院黄海水产研究所 中国水产学会



# 渔业科学进展

## YUYE KEXUE JINZHAN

## 第37卷 第4期

## 2016年8月

中国科技核心期刊 中 文 核 心 期 刊 全国优秀农业期刊 中国科学引文数据库(CSCD)核心库来源期刊 中国科技论文统计源核心期刊 RCCSE 中国权威学术期刊 中国期刊全文数据库(CNKI)、万方数据、 中文科技期刊数据库(维普网)收录期刊 中国海洋文献数据库(CODS)来源期刊 英国《动物学记录》(ZR)收录期刊 《刘桥科学文摘》(CSA)收录期刊 《乌利希期刊指南》(UPD)收录期刊

《开放获取期刊指南》(DOAJ)收录期刊

## 目 录

| 渤海生太环培监测去                      | 黥研空论                | $\dot{\nabla}$           |            |                                        |                   |                                       |                                           |                                                 |                  |                                        |              |                                            |                     |                              |                                       |             |       |
|--------------------------------|---------------------|--------------------------|------------|----------------------------------------|-------------------|---------------------------------------|-------------------------------------------|-------------------------------------------------|------------------|----------------------------------------|--------------|--------------------------------------------|---------------------|------------------------------|---------------------------------------|-------------|-------|
| 渤海中部海域低氧区                      | <b>巡听九叱</b><br>的发生证 | 又<br>!录·.∕······         |            |                                        |                   |                                       |                                           |                                                 |                  |                                        |              |                                            |                     |                              |                                       |             |       |
| 江涛                             | 徐勇                  | 刘传霞                      | 张          | 艳                                      | 丁建                | 东生                                    | 孙雪                                        | 「梅                                              | 陈郹               | <b></b> 裂法                             | 陈碧           | 鹃                                          | 赵                   | 俊                            | 曲克                                    | 明           | (1)   |
| <b>渤海中部浮游动物的</b>               | 生态特征<br>··徐东会       | :<br>▲<br>小雪梅            | <br>陈琴     | <br>흳諂                                 | 夏                 | ······<br>斌                           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    | <br>F 国                                         | <br>赵            |                                        | ······<br>汀  | <br>涛                                      | 刘佳                  |                              | <br>曲克                                |             | (7)   |
| 渤海中部网采浮游植                      | 物种类组                | [成和季节                    | 变化         | · · · · · ·                            | ~<br>             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | لد خبر<br>                                | цара<br>                                        | ·····            | ······································ | ·····        | ···,<br>                                   | ······              | ······                       | ייייייייייייייייייייייייייייייייייייי | ·····       | (,)   |
| 近年渤海中部海域活                      | …                   | 依乐会<br>的时空变              | 夏<br>化特    | 泟↓                                     | L                 | 上国<br>                                | 更<br>一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一 | <b></b> 1.明                                     | <u>ұ</u> Г.      | _ )<br>                                | 赵<br>        | · 佼                                        | )<br>除养<br>         | <b>≷</b> 法                   | 陈碧                                    | }鹃<br>      | (19)  |
|                                | ·· 陈聚法              | 赵俊                       | 过          | 锋                                      | 曲                 | 克明                                    | 崔正                                        | E国                                              | 孙雪               | 「梅                                     | 朱廷           | 勧                                          | 丁弃                  | 宝生                           | 刘传                                    | 霞           | (28)  |
| 基于欧拉-拉格朗日万                     | 「法的杲沼               | 証沺爭砹≯<br>…丁东生            | て然れ<br>三星  | 鱼业货<br>招寨                              | こ 源 打<br>広 乳      | 〕天评<br>曽鹍                             | ·佰万<br>崔『                                 | 法案<br>F国                                        | /例研<br>  赵       | 究┢                                     | 刘传           | <br>テ霄                                     | <br>张加              | <br>1志                       | <br>曲克                                |             | (36)  |
| 渤海中部 COD 的时空                   | 它分布特征               | 征及其对管                    | <b>富营</b>  | 养化的                                    | 的贡献               | 就分析                                   | f <b>f</b>                                | <br>                                            | ······<br>······ | ······                                 | ·····        | ······                                     | ے ( یہ و<br>ایر ایر | <br>                         | <b>ير پي</b> ر<br>                    | ·····       | (30)  |
| 张 艳<br>渤海中部海域沉积物               | 学秋分<br>中 Hg 的       | 赵 佼<br>校正及其 <sup>5</sup> | 〔査<br>◇回   | 上国<br>分布约                              | 同<br>時征           | り宝<br>                                | 关开<br>                                    | Ĕ新<br>                                          | 」<br>            | ト生<br>                                 | 过<br>        | ¥                                          | 秋                   | ₹筤<br>                       | 田兌                                    | 」明<br>      | (43)  |
| 杨茜夏斌                           | 杨庶                  | 孙耀                       | 周          | 明莹                                     | 朱子                | 建新                                    | 过                                         | 锋                                               | 刘传               | 专食                                     | 曲克           | 可明                                         | 赵                   | 俊                            | 崔正                                    | 国           | (49)  |
| 渤海中部海域水体中                      | Hg As               | 的时空分<br>杨 茜              | 布特<br>夏    | 征 <b>≯</b> …<br>斌                      | 孙                 |                                       | <br>陈羽                                    | 。<br>法                                          | <br>张            | ······<br>拖                            |              | .<br>T明                                    | <br>赵               | 。                            | <br>崔正                                |             | (54)  |
| 19-3 油田溢油对辽东                   | 湾浮游植                | i物群落的                    | 影响         |                                        | 1.1.              | <i>у</i> е<br>                        |                                           |                                                 | ·宋广              | 军                                      | 李            | 爱                                          | 吴金                  | È浩                           | 王石                                    | 会           | (60)  |
| 逢来 19-3 溢油后来州                  | 湾浮游和                | 直物群洛约                    | 5构·≱<br>程  |                                        | Ŧ                 | <br>日雷                                | <br>马う                                    | <br>亡庄                                          | ······<br>何存     | <br>圭龙                                 | <br>刘[受      | ······<br>§茁                               |                     | <br>sബ                       |                                       | ·····<br>ī莁 | (67)  |
| 2013 年春季莱州湾海                   | 域理化环                | 境及水质                     | 状况         | 分析                                     | 1. 起              | 玉庭                                    | 苏                                         | 博                                               | 李                | 佳蕙                                     | 王王           | 立明                                         | 齐列                  | 正民                           | 孙                                     | 珊           | (74)  |
| 研究论文                           |                     |                          |            |                                        |                   |                                       |                                           |                                                 |                  |                                        |              |                                            |                     |                              |                                       |             |       |
| 盐度对云纹石斑鱼(E                     | pinehelus           | moara 🎬                  | )×鞯        | 带石                                     | 斑鱼                | (Epir                                 | iehel                                     | us lar                                          | iceol            | atus                                   | ♂)受          | 精卵                                         | 孵化                  | 的影                           | 响及                                    | 杂交          |       |
| 仔稚幼鱼形态发育<br>长牡蛎(Crassostreage) | 「观察 ≸…<br>iaas)壱審   | ······<br>中演生长           | <br>法      |                                        | …张梦<br>溃 <i>佳</i> | 梦淇<br>名样                              | 陈姓及                                       | 超<br>書佳約                                        | 李炎<br>吉林山        | ≷璐<br>勧微⁻                              | −11.<br>口星≉  | ∮迪<br>≂戸4                                  | 刘<br>ት析,            | ┩                            | ~<br>翟介                               | •明<br>      | (81)  |
|                                |                     | KELK                     | <u>е</u> н | ит r <del>т</del>                      | …张                | <i>家</i> 良                            | 王)                                        | 三年                                              | 冯韩               | 色微                                     | 杨建           | 転                                          | 唐海                  | 爭田                           | 纪仁                                    | :平          | (90)  |
| 日本枪乌贼(Loligo ja                | ponica)不            | 同温度冻                     | 藏过         | 程中                                     | 的品                | 质变                                    | 化…≯<br>曲                                  | <br>–                                           | <br>工 辰          | <br>計工                                 | ······<br>¥‡ |                                            | <br>जेग             |                              | <br>子l 工                              | <br>: 111   | (07)  |
| 中草药复合微生态制                      | 剂对吉富                | 罗非鱼(0                    | reoci      | hrom                                   | is nil            | oticus                                | …<br>雪<br>()生长                            | 未していた。                                          | エル<br>ら道菌        | 、玉<br>旬群及                              | 必<br>抗病      | 运<br>同力的                                   | <i>N</i> ]<br> 影响   | ·供<br>]· <mark>↓</mark> ···· | 入门工                                   |             | (97)  |
| ヨロ北海千組(の                       |                     |                          | …汤孕        | 菊芬<br>い                                | 黄                 | 瑜                                     | 蔡                                         | 佳                                               | 后金               | と珠<br>レデョ                              | 孙廷           | 毕                                          | 徐中                  | 文                            | 简纪                                    | 【常          | (104) |
| 匀起干俏 占 翊(Cynog                 | lossus ser          | <i>nilaevis</i> G        | unthe      | :r)))))))))))))))))))))))))))))))))))) | 田人フ               | 究候タ<br>                               | ΈЦΗ                                       | う<br>仲 ジ<br>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | ビルク<br>          | L)内日                                   | ≱柄 ╹<br>· 粟子 | ≤ <u>丹</u>                                 | 李                   | 晋                            | 史成                                    | <br>記银      | (110) |
| 半滑舌鳎(Cynoglossu                | s semilae           | vis) Nramp               | ,基因        | 国克隆                                    | 全与表               | 長达分                                   | 析及                                        | SNE                                             | <b>)</b> 筛ì      | 先.                                     | <br>ғ. уг    |                                            |                     |                              |                                       | ·····       | (110) |
| 同步检测7种角类病                      |                     |                          | 重 Pe       | CR(A                                   | rm-F              | PCR)                                  | …邢兮<br>方法自                                | むし<br>内建す                                       | 一員町<br>行和月       | ≇冴<br>お用−                              | 张才<br>       | 〈珍                                         | 重芯<br>              | 、典<br>                       | 陈松                                    | <b>:</b> 孙: | (116) |
|                                |                     |                          | =          |                                        |                   | ·····                                 | • 王刖                                      | 生强                                              | 耿作               | 韦光                                     | 史成           | <b>え</b> 银                                 | 李                   | 晋                            | 粟子                                    | ·丹          | (128) |
| 对虲白斑综合征病毒                      | 囊膜蛋白                | 「VP28 和                  | VP20       | 6的5                                    | 半赤曹<br>… 耿 /      | 庨母绯<br>小雪                             | 1成生<br>モノ                                 | し分泌<br>「「雷                                      | 》表过<br>周         | 5 <b>.∕∕</b> …<br>怡                    | ~~~~~        | ·······<br>· • • • • • • • • • • • • • • • | ······<br>张√        | <br>r 丘                      |                                       | <br>[       | (135) |
| 2014年中国不同地区                    | 对虾白斑                | E综合征病                    | 青毒 C       | ORF1                                   | 4/15              | ,<br>和 OI                             | RF23                                      | /24                                             | 快失区              | マ序列                                    | 山比较          | ζ                                          | ·····               | ····                         | ×/۸×<br>                              |             | (155) |
| 中国明对虾(Fannaror                 | onaous o            | hinonsis) c              |            |                                        | ]仝¥               | - cDN                                 | 14 古                                      | 隆乃                                              | ·孙亲<br>细如        | 新颖<br>日分布                              | 刘月           | 慧                                          | 万時                  | €媛<br>                       | <br>                                  |             | (140) |
|                                |                     |                          | c          | · 坐凸                                   | a 工 い             |                                       |                                           | 小生/人                                            | ·王修              | 》<br>多芳                                | 刘庆           | 慧                                          | 吴                   | 垠                            | 黄                                     | 倢           | (147) |

期刊基本参数: CN37-1466/S \* 1980 \* b \* A4 \* 152 \* zh+en \* p \* ¥30.00 \* 800 \* 24 \* 2016-08

# **PROGRESS IN FISHERY SCIENCES**

# CONTENTS

# Vol.37 No.4 August 2016

| Report on the Occurrence of Hypoxia in the Central Bohai SeaJIANG Tao, XU Yong,                                                                                                                                                         |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| LIU Chuanxia, ZHANG Yan, DING Dongsheng, SUN Xuemei, CHEN Jufa, CHEN Bijuan, ZHAO Jun, QU Keming                                                                                                                                        |     |
| The Ecological Characteristics of Zooplankton in the Central Bohai Sea                                                                                                                                                                  |     |
| XU Donghui, SUN Xuemei, CHEN Bijuan, XIA Bin, CUI Zhengguo, ZHAO Jun, JIANG Tao, LIU Chuanxia, QU Keming                                                                                                                                |     |
| Species Composition and Seasonal Variation of Netz-Phytoplankton in the Central Bohai Sea                                                                                                                                               |     |
| SUN Xuemei, XU Donghui, XIA Bin, CUI Zhengguo, QU Keming, JIANG Tao, ZHAO Jun, CHEN Jufa, CHEN Bijuan                                                                                                                                   | (   |
| Recent Temporal and Spatial Variation in Active Phosphate Concentration in Seawater of the Central Bohai Sea                                                                                                                            |     |
| ······ CHEN Jufa, ZHAO Jun,                                                                                                                                                                                                             |     |
| GUO Feng, QU Keming, CUI Zhengguo, SUN Xuemei, ZHU Jianxin, DING Dongsheng, LIU Chuanxia<br>Evaluation of the Natural Fishery Resources Loss Caused by an Oil Spill Accident in the Central Bohai Sea Based on<br>Euler-Lagrange Method | (2  |
| MA Shaosai, CHEN Bijuan, CUI Zhengguo, ZHAO Jun, LIU Chuanxia, ZHANG Xuzhi, QU Keming                                                                                                                                                   | (   |
| Temporal and Spatial Distribution of COD and Its Source and Contribution to Eutrophication in the Central Bohai Sea                                                                                                                     |     |
| ZHAO Jun, CUI Zhengguo, ZHOU Mingying, ZHU Jianxin, DING Dongsheng, GUO Feng, LIU Chuanxia, QU Keming                                                                                                                                   | (4  |
| Normalization and Spatial Distribution of Mercury in the Sediments and Seawater of the Central Bohai Sea                                                                                                                                |     |
| SUN Vao, ZHOU Mingwing, ZHU Jianxin, GUO Feng, LIU Chuanxia, OU Keming, ZHAO Jun, CUI Zhengguo                                                                                                                                          | 6   |
| The Temporal and Spatial Distribution of Mercury and Arsenic in the Central Bohai Sea                                                                                                                                                   | C   |
| ······YANG Qian, XIA Bin, SUN Yao, CHEN Jufa, ZHANG Yan, QU Keming, ZHAO Jun, CUI Zhengguo                                                                                                                                              | (:  |
| Influence of 19-3 Oil Spill Accident on Phytoplankton Community in the Liaodong Bay                                                                                                                                                     |     |
| SONG Guangjun, LI Ai, WU Jinhao, WANG Zhaohui                                                                                                                                                                                           | (6  |
| The Structure of the Phytoplankton Community in the Laizhou Bay After the Oil Spills in Penglai 19-3 Oilfield                                                                                                                           |     |
| ······ CHENG Ling, WANG Yuexia, MA Yuanqing, HE Jianlong, LIU Aiying, SONG Xiukai, YOU Liping                                                                                                                                           | ((  |
| Evaluation of Physicochemical Environment and Water Quality in the Laizhou Bay in Spring of 2013                                                                                                                                        |     |
| ZHAO Yuting, SU Bo, LI Jiahui, WANG Liming, QI Yanmin, SUN Shan                                                                                                                                                                         | (   |
| Effects of Salinity on the Hatching of the Fertilized Eggs of <i>Epinephelus moara</i> $(\stackrel{\bigcirc}{+})$ × <i>Epinephelus lanceolatus</i> $(\stackrel{\bigcirc}{-})$ and the                                                   |     |
| Observation of the Morphological Development of Larvae, Juvenile and Young Fish                                                                                                                                                         |     |
| ZHANG Mengqi, CHEN Chao, LI Yanlu, KONG Xiangdi, LIU Li, ZHAI Jieming                                                                                                                                                                   | (8  |
| Assessment of Genetic Variability and Microsatellite Analysis of Pacific Oyster ( <i>Crassostrea gigas</i> ) After Artificial Selection                                                                                                 |     |
| of the Shell Width                                                                                                                                                                                                                      | (9  |
| Qualitative Changes of Squid ( <i>Loligo japonica</i> ) Under Different Frozen Storage Temperatures                                                                                                                                     | 0   |
| CAO Rong, WANG Fengyu, ZHAO Ling, LIU QI, LIU Yuchuan                                                                                                                                                                                   | (5  |
| Effects of a Compound Problotics Combined with Chinese Herbal Medicine on Growth Performance, Intestinal Flora and                                                                                                                      |     |
| Resistance to Diseases of GIF1 Strain of Nile Thapla ( <i>Oreochromis mionicus</i> )                                                                                                                                                    | (1) |
| Proliminary Study on Massive Mortality of Hatabary Pagrad Half Smooth Tangua Sala, Cumaglassus samilgavia, Associated                                                                                                                   | (1) |
| with Viral Nervoys Nearoois                                                                                                                                                                                                             | (1) |
| With Vital Netvous Nectors and SNP Screening of Natural Peristance Associated Macrophage Protein (Nramp) Gene                                                                                                                           | (1. |
| cDNA from Half Smooth Tongue Sole (Cynoglossys semilaevic)                                                                                                                                                                              |     |
| ······································                                                                                                                                                                                                  | (1) |
| Amplicon Rescue Multinlex PCR (Arm-PCR): a Novel Tool for Simultaneous Detection of Seven Types of Fish Viruses                                                                                                                         | (1  |
| WANG Shengajang GENG Weiguang SHI Chengyin LI Jin SHI Zidan                                                                                                                                                                             | (1' |
| Secretive Expression of White Spot Syndrome Virus Envelope Proteins VP28 and VP26 in <i>Pichia pastoris</i> Induced by                                                                                                                  | (14 |
| Constitutive Promoter                                                                                                                                                                                                                   | (1' |
| Comparison of the Missing Sequences of ORF14/15 and ORF23/24 of WSSV from Different Regions of China in 2014                                                                                                                            | (   |
| SUN Xinving, LIU Oinghui, WAN Xiaovuan, HUANG Jie                                                                                                                                                                                       | (14 |
| cDNA Cloning of Coat-Epsilon Gene and Its Tissue Distribution in <i>Fenneropenaeus chinensis</i>                                                                                                                                        |     |
| WANG Xiufang, LIU Qinghui, WU Yin, HUANG Jie                                                                                                                                                                                            | (14 |
|                                                                                                                                                                                                                                         | -   |

DOI: 10.11758/yykxjz.20150618002

http://www.yykxjz.cn/

# **渤海中部海域低氧区的发生记录**\*

# 江 涛 徐 勇 刘传霞 张 艳 丁东生 孙雪梅 陈聚法 陈碧鹃 赵 俊 曲克明<sup>①</sup>

(农业部海洋渔业可持续发展重点实验室山东省渔业资源与生态环境重点实验室 中国水产科学研究院黄海水产研究所 青岛 266071)

**摘要** 2014 年 8 月对渤海中部海域的水文(温度、盐度)、化学(溶解氧 DO、营养盐和化学耗氧 量 COD)和生物要素(叶绿素 a Chl-a)的空间分布进行了调查。研究了该海域底层水体低氧(DO< 3.0 mg/L)的分布特征,深入分析了低氧区发生的关键因素。结果显示,底层水体 DO 浓度最小值为 2.30 mg/L,低氧面积达 1200 km<sup>2</sup>,呈西北-东南走向。调查海域的西部和西南海域呈现出明显的温 度层化,尤其在低氧区附近形成了一个表层与底层水体温度差( $\delta$ T)>5℃的区域, $\delta$ T 最高值达到 7.3℃。水体密度层化与温度层化特征相似,在低氧区附近形成了一个底表层密度差( $\delta$ p)>2 g/L 的等 值线闭合圈。温度层化是低氧产生的主要物理因素。表层水体 COD 高值区主要分布在调查海域 的西部,覆盖大部分的低氧海域。表层水体中的 Chl-a (> 4 µg/L)和 PO<sup>3</sup><sub>4</sub>-P (> 6 µg/L)浓度高值区主 要分布在调查海域的西南部,部分与低氧区重合。本研究可为探索渤海海域富营养化演变过程提供 借鉴。

关键词 渤海中部海域;溶解氧;低氧;富营养化 中图分类号 X83 文献标识码 A 文章编号 2095-9869(2016)04-0001-06

海洋中的溶解氧(DO)对生态系统来说极其重要, 大多数生命都需要溶解氧来维持。水体中的溶解氧浓 度过低,会对生态系统造成不良影响。有些鱼类在溶 解氧值低于3 mg/L 时就开始有所反应(Anderson *et al*, 2001),当水体中溶解氧值低于2 mg/L 时,底层拖网 的渔获量几乎为零,因为水中溶解氧低于此值后,鱼类 等游泳动物就开始转移栖息地(Rabalais *et al*, 2002)。

通常情况下,底栖动物能很快地摄食上层水中沉 降下来的有机物,因此,不会堆积过多的有机物被细菌 分解,底层水体较少出现低氧状态(本研究将 DO< 3.0 mg/L 定义为低氧)。但如果上层水体集中了高密度 的藻类,其大量死亡后向底层转移,有机物在底层腐 烂过程中会消耗大量的氧(Rabalais *et al*, 2002)。所以, 在某些水体交换差的海域,由于底层溶解氧的大量损 耗,产生了低氧区。海洋水体发生低氧,可能同时伴 随着有毒气体(如 H<sub>2</sub>S 等)的产生,引起底栖生物的大量死亡。海域的第 1 次低氧环境对底栖大型生物的破坏尤为严重,它可以使经过多年才建立起来的底栖生态系统严重受损(林荣根等, 1997)。

渤海是中国最大的内海。随着环渤海地区经济的 快速发展和城市规模的扩大,污染物的入海通量也不 断增加,渤海的生态环境正面临着巨大压力,富营养化 日益严重,赤潮灾害时有发生(张志锋等,2012)。但迄 今为止,仅在大辽河口出现过小面积的低氧区(李艳云 等,2006)。本研究于2014年8月对渤海中部海域进 行调查,发现该海域存在一定面积的低氧区,这是渤 海中部海域低氧区的首次发现。本研究通过综合分析 水文、化学和生物因素,阐明该海域低氧区的分布特 征和发生机制,为今后对渤海的科学研究和管理提供 借鉴。

① 通讯作者:曲克明,研究员, E-mail: qukm@ysfri.ac.cn 收稿日期: 2015-06-18,收修改稿日期: 2015-07-21

<sup>\*</sup> 农业部专项"渤海生态环境监测评估"(13-Q52201302)和黄海水产研究所级基本科研业务费项目(20603022015002) 共同资助。江 涛, E-mail: jiangtao@ysfri.ac.cn

## 1 材料与方法

#### 1.1 调查海域与采样方法

调查海域位于渤海中部,共设40个站位(图1), 采样时间为2014年8月28-30日。调查海域水深为 20-31m,最大水深海域分布于东部至中部。水体采 样分为3层:表层(0.5m)、中层(10m)和底层(离底 1m)。水体温度、盐度和溶解氧采用溶解氧传感器(型 号:YSI556,美国YSI公司)现场测定。YSI溶解氧 传感器在每天使用前,采用水饱和空气法进行标定。



#### 1.2 样品分析测定

水体的 COD 测定采用碱性高锰酸钾法,参照海 洋调查规范(GB/T12763.6-2007)(2008)。用于营养盐 和叶绿素 *a* (Chl-*a*)测定的水样,经 0.45 µm GF/F 玻璃 纤维膜现场过滤后,置于-20℃冰箱保存,冷藏运至 实验室测定。营养盐(磷酸盐、硝酸盐、亚硝酸盐和 铵盐)分析方法参照海洋调查规范(GB/T12763.6-2007)(2008)进行。Chl-*a*采用分光光度法测定。总溶 解无机氮(DIN)为 NO<sub>3</sub><sup>-</sup>-N、NO<sub>2</sub><sup>-</sup>-N、NH<sup>4</sup><sub>4</sub>-N 三者之和。

## 2 结果与分析

#### 2.1 水文特征

调查海域表层水温为 24.1–25.9℃,东部水温较低,西部水温较高,最高温度出现在 517 站位(图 2-A),为 25.9℃。在中层水体中,低温水团出现在调查海域的东南部,与表层低温呈现出一定的重叠;在西部水体中存在 1 个冷水团,位于 517 站位(18.7℃,为中层水体最低水温)(图 2-B)。在底层水体中,西部区域(517 站位附近)的低温水团面积进一步扩大(图 2-C)。中层和底层水体中的高温水团均出现在调查海域的北部。

调查海域盐度变化范围很小,全部水层的水体盐度为 29.5-30.7 (图 2-D-图 2-F)。受黄河径流的影响,盐度 低值区位于调查海域的西南部和南部,高值区位于调 查海域的中东部。

#### 2.2 水体层化特征

在调查海域的中北部,表底层温度差( $\delta$ T,表层 温度减底层温度)、盐度差( $\delta$ S,底层盐度减表层盐度) 和密度差( $\delta$ ρ,底层密度减表层密度)都非常小(图 3-A-图 3-C)。这表明,该海域表底层水体对流强烈。东部 和西部海域  $\delta$ T则相对较高,尤其在西部海域形成了 1 个  $\delta$ T>5℃的区域, $\delta$ T 最高值达到 7.3℃(517 站位)。 在西部海域存在  $\delta$ S>0.5 的区域,在调查海域的东南 部也存在小面积  $\delta$ S>0.5 的区域。表底层密度差与温 度差分布特征相似,在西部海域存在 1 个  $\delta$ ρ>1.5 的 区域,表明该海域具有较强的密度层化。

#### 2.3 低氧区分布特征

表层水体 DO 浓度较高,为 6.53-8.56 mg/L,呈现 出从东北向西南逐渐增大的变化趋势(图 3-D)。与此相 反,底层水体 DO 呈现出从东北至西南逐渐降低的趋 势。底层水体低氧区主要分布于调查海域西南部,呈 西北-东南走向,并可能继续向西北方向蔓延(超出本 次调查海域范围)(图 3-F)。底层水体 DO 浓度最小值为 2.30 mg/L,出现在 527 站位;低氧区面积为 1200 km<sup>2</sup>。 调查海域的西南部 DO 普遍偏低,DO<4.0 mg/L 的面 积超过 1800 km<sup>2</sup>。调查海域中层 DO 浓度明显高于底 层,DO 浓度分布趋势也表现为从东北向西南递减的 趋势(图 3-E)。在中层,517、527 站位 DO 浓度低于 3.0 mg/L,分别为 2.70、2.87 mg/L。

#### 2.4 化学要素分布特征

表层水体的 COD 高值区主要分布在调查海域的 西部(图 4-A),低氧海域表层水体 COD 大于或接近 0.9 mg/L,明显高于周边海域。表层水体 Chl-a 浓度 高值区主要分布在调查海域的西南部和东北部 (图 4-B)。其中,西南部海域的 Chl-a 浓度高值区部 分与低氧区重叠。PO<sub>4</sub><sup>3-</sup>-P 浓度高值区(>6 μg/L)主要分 布在西南部海域低氧区附近,次高值区分布于东南部 (图 4-C)。DIN 浓度高值区出现在南部海域(图 4-D), 低氧区发生海域浓度较低(<100 μg/L)。

## 3 讨论

低氧现象形成的原因主要有两种,天然存在的和 在人类活动影响下形成的低氧区。前者主要分布在相





对较深的大洋海域,在上升流的影响下形成密度跃 层,导致底部缺氧(如太平洋东岸、大西洋和印度洋 北部海域)(Helly et al, 2004);后者是在人类活动的影 响下,水体出现富营养化,表层水体滋生的大量浮游 植物在衰亡后沉降到水底,腐败过程中消耗水体中的 氧,从而为低氧区的形成奠定生物因素基础,在物理 条件成熟的情况下形成低氧区。相对来讲,后者受到 更大的关注。

近几十年来,我国沿海富营养化程度日益加剧, 赤潮暴发频率剧增。我国海域的低氧现象时有发生, 主要分布在河口和封闭海湾,例如长江口及其邻近 海域(Wei et al, 2007)、大辽河口(李艳云等, 2006)、大 亚湾(彭云辉等, 1996)等。我国沿海低氧区主要发生 在富营养化严重的海域,且有很强季节性,在温度较 高时形成长时间的水体层化后,底层水体才会发生低氧。

海洋低氧区的发生受多种因素的影响,包括盐度 层化(主要是上层冲淡水)、温度层化、富营养化、风 速风向、地貌地形、海流和潮汐等(Rabalais *et al*, 2002)。夏季是黄海冷水团势力最强盛的时期(林霄沛 等,2002),黄海冷水团通过渤海海峡北部进入渤海后 分为两支。南支向西延伸至渤海南部洼地(本调查海 域的中部,38.4°-38.8°N),从而维持春、夏季渤海





南部洼地冷水团的持续存在(周锋等,2009)。低氧区 所处的位置恰好是渤海南部洼地的西部,地形呈上 升趋势,冷水团的前端存在小规模的上升流(图 2-B, 517 站位中层的 21℃等值线闭合圈)。但黄海冷水团 侵入流量不大(林霄沛等,2002)。从本研究来看,小于 20℃的冷水团难以到达中层(图 2-B),所以更难对表 层水体的温度产生影响。而低氧区表层水体温度较 高,形成一个大于 25.5℃的高温水团,从而造成了较 强的水体温度层化。

在水体层化过程中,温度和盐度在不同的海域可 能具有不同的作用。在北墨西哥湾、切萨皮克湾和基 尔湾,温度和盐度具有同等重要的作用(Rabalais *et al*, 2002),但在纽约湾和长岛湾温度对于层化起到主要 作用(Falkowski et al, 1980; Welsh et al, 1991)。本研究 表明,渤海中部海域出现低氧区,也与温度层化有关。 另外,夏季海面风速很小,海面风应力对层化结构的 破坏作用在全年中最小(刘浩等, 2007),这也为低氧 的发生创造了气象条件。

海洋低氧区的产生除了具备物理条件(密度层化) 外,还要具备生物和化学条件。本研究结果显示,调 查海域的 COD、Chl-a 和 PO<sub>4</sub><sup>3-</sup>-P 浓度高值区主要分 布于低氧区及邻近海域(图 4), COD 反映了水体有机 污染程度,而 Chl-a 则反映了水体的浮游植物生物量。 周锋等(2009)研究表明,在7月中旬,渤海中部海域



Fig.4 Distribution of chemical factors in the surface water of the central Bohai Sea

跃层最厚,层化达到最强;8月下旬,跃层已明显减 弱。本研究调查时间为8月下旬,与周锋等(2009)研 究结果相似。处于调查海域北部的浅滩海域已无水体 层化,但调查海域的西南方(低氧海域)依然存在较强 的温跃层。由于水体中存在较多的有机质,加上长时 间的水体层化,为低氧区的生成奠定了基础。

渤海是我国富营养化程度最严重的海域之一。自 20世纪80年代以来,渤海水体溶解态无机氮浓度一 直呈现快速增加的趋势,但活性磷酸盐则无明显增 加,水体营养盐结构发生了较大变化。如 1982 年渤 海平均 N/P 值为 2.5, 到 1992 年和 1998 年分别升为 10.8、23.7, 更接近 Redfield 值(N/P 值为 16)(蒋红等, 2005)。自 20 世纪 90 年代以来,赤潮发生次数持续 增多,可能与氮浓度的升高和营养盐结构的变化有 关。虽然 20 世纪 90 年代中期以后, 渤海氮、磷浓度 呈现出下降的趋势,但赤潮发生次数依然居高不下。 2002年共发现赤潮 20次, 2004、2009年赤潮暴发面 积超过 5000 km<sup>2</sup> (张志锋等, 2012)。张志锋等(2012) 比较了 2004 年和 2008 年渤海全海域富营养化指数 (NOI)分布,认为近年来渤海近岸表层海水的 NOI 总 体呈显著上升趋势。值得关注的是, 崔毅等(1994)、 唐启升等(1997)、翟惟东等(2012)在夏季对渤海中

部海域的 DO 进行了多次调查,均没有发现低氧区的存在。本调查在渤海中部发现的低氧区面积达 1200 km<sup>2</sup>,最低 DO 浓度仅为 2.30 mg/L,底层水体 大面积低氧反映了渤海富营养化程度的进一步加 剧。在今后的研究中,有关渤海低氧区的发展趋势 值得关注。

**致谢** "振华轮"全体船员在调查过程中给予的帮助,费 聿涛、褚瑶瑶、古彬和隋琪等研究生参加了本次调查,在 此一并感谢。

## 参考文献

- 中华人民共和国国家质量监督检验检疫总局,中国国家标准 化管理会. GB/T12763.6-2007 海洋监测规范 第 6 部分: 海洋生物调查. 北京:中国标准出版社, 2008
- 刘浩,潘伟然. 渤海层化结构及潮汐锋面季节变化的数值研 究. 水科学进展,2007,18(3):398-403
- 李艳云, 王作敏. 大辽河口和辽东湾海域水质溶解氧与 COD、无机氮、磷及初级生产力的关系. 中国环境监测, 2006, 22(3): 70-72
- 张志锋, 贺欣, 张哲, 等. 渤海富营养化现状、机制及其与赤 潮的时空耦合性. 海洋环境科学, 2012, 31(4): 465–468
- 林荣根, 邹景忠. 近海富营养化的结果与对策. 海洋环境科 学, 1997, 16(3): 71-75

- 林霄沛, 吴德星, 鲍献文, 等. 渤海海峡断面温度结构及流量 的季节变化. 青岛海洋大学学报(自然科学版), 2002, 32(3): 355-360
- 周锋, 黄大吉, 苏纪兰. 夏季渤海温跃层下的双中心冷水结 构的数值模拟. 科学通报, 2009, 54(11): 1591-1599
- 唐启升,孟田湘. 渤海生态环境和生物资源分布图集. 青岛: 青岛出版社, 1997
- 崔毅,杨琴芳,宋云利.夏季渤海无机磷酸盐和溶解氧分布 及其相互关系.海洋环境科学,1994,13(4):31-35
- 彭云辉, 陈浩如, 陈玲娣. 大亚湾大鹏澳海区水化学特征. 海 洋通报, 1996, 15(6): 27-34
- 蒋红, 崔毅, 陈碧鹃, 等. 渤海近 20 年来营养盐变化趋势研 究. 海洋水产研究, 2005, 26(6): 61-67
- 翟惟东,赵化德,郑楠,等.2011 年夏季渤海西北部、北部近岸 海域的底层耗氧与酸化.科学通报,2012,57(9):753-758
- Anderson TH, Taylor GT. Nutrient pulse, plankton blooms, and

seasonal hypoxia in western Long Island Sound. Estuaries, 2001, 24(2): 228-243

- Falkowski PG, Hopkins TS, Walsh JJ. An analysis of factors affecting oxygen depletion in the New York Bight. J Mar Res, 1980, 38(3): 479–506
- Helly JJ, Levin LA. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Res I, 2004, 51(9): 1159–1168
- Rabalais NN, Turner RE, Wiseman WJ. Gulf of Mexico hypoxia, A.K.A."the dead zone". Annu Rev Ecol Syst, 2002, 33: 235–263
- Wei H, He Y, Li Q, *et al.* Summer hypoxia adjacent to the Changjiang Estuary. J Mar Syst, 2007, 67(3–4): 292–303
- Welsh BL, Eller FC. Mechanisms controlling summertime oxygen depletion in western Long Island Sound. Estuaries, 1991, 14(3): 265–278

(编辑 马璀艳)

## **Report on the Occurrence of Hypoxia in the Central Bohai Sea**

JIANG Tao, XU Yong, LIU Chuanxia, ZHANG Yan, DING Dongsheng, SUN Xuemei, CHEN Jufa, CHEN Bijuan, ZHAO Jun, QU Keming<sup>®</sup>

(Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Shandong Provincial Key Laboratory of Fishery Resources and Eco-Environment, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071)

Abstract Hypoxia in the central areas of the Bohai Sea was reported for the first time in this study. The survey in August 2014 suggested that the hypoxic zone was 1200 km<sup>2</sup> in area and the minimum DO concentration was 2.30 mg/L. The hypoxic zone was on the southwest side of the investigated area (119.1°-119.6°E, 38.3°-38.8°N). The DO (4 mg/L) isoline indicated that the hypoxic layer reached 10 m under the water. There were differences in the temperature and density between the surface and the bottom layer ( $\delta T$  and  $\delta \rho$ ), implying the formation of strong pycnocline in the hypoxic zone. The  $\delta T$  isoline of 5 °C mainly occurred in the vicinity of hypoxic zone with the highest  $\delta T$  value of 7.3 °C. The density difference between the bottom and the surface layer has a similar spatial pattern with  $\delta T$ . By contrast, the salinity difference between the bottom and the surface layer was small (< 0.8) in the investigated areas. These results suggested that thermal stratification could be more influential than saline stratification in controlling the occurrence of hypoxia. The COD concentration was high (< 0.9 mg/L) on the southwest side of the investigated area that accounted for the majority of the hypoxic zone. In addition, high level of Chl-a (> 4  $\mu$ g/L) and PO<sub>4</sub><sup>3-</sup>-P (> 6  $\mu$ g/L) was also observed in this area. We proposed that the formation of hypoxia could be a result of combined factors including the inflow from the Yellow Sea, the topography, and especially, the thermal stratification and *in situ* production.

Key words The central Bohai Sea; Dissolved oxygen; Hypoxia; Eutrophication

① Corresponding author: QU Keming, E-mail: qukm@ysfri.ac.cn

DOI: 10.11758/yykxjz.20150611001

http://www.yykxjz.cn/

# 渤海中部浮游动物的生态特征<sup>\*</sup>

徐东会 孙雪梅 陈碧鹃<sup>①</sup> 夏 斌 崔正国 赵 俊 江 涛 刘传霞 曲克明

 $\mathbb{C}$ 

(农业部海洋渔业可持续发展重点实验室 山东省渔业资源与生态环境重点实验室 中国水产科学研究院黄海水产研究所 青岛 266071)

摘要 本研究针对 2013 年 5 月(春季)、8 月(夏季)、11 月(秋季)和 12 月(冬季)在渤海中部海域以 浅水 【 型浮游生物网采集的浮游动物样品,分析了浮游动物的种类组成、丰度分布和多样性;通过 结合现场环境参数,探讨了环境因子与浮游动物之间的关系。结果显示,4个季节共鉴定浮游动物 74 种(含浮游幼虫 21 类), 桡足类为绝对优势的类群, 在浮游动物的物种丰富度中占 25.7%。渤海 中部海域全年均出现的浮游动物优势种类共2个,分别为中华哲水蚤(Calanus sinicus)和强壮箭虫 (Sagitta crassa)。春季共鉴定浮游动物 29 种(含浮游幼虫 6 类), 浮游动物平均丰度为 782.0 ind/m<sup>3</sup>, 平均湿重生物量为 157.1 mg/m<sup>3</sup>, 香农-威纳指数(H')和物种丰富度指数(D)分别为 2.36 和 1.02; 夏季共 鉴定浮游动物 45 种(含浮游幼虫 18 类), 浮游动物平均丰度为 199.6 ind/m3, 平均湿重生物量为 135.8 mg/m<sup>3</sup>, H'和 D 分别为 1.75 和 1.78; 秋季共鉴定浮游动物 42 种(含浮游幼虫 14 类), 浮游动物 平均丰度为 42.1 ind/m<sup>3</sup>, 平均湿重生物量为 122.5 mg/m<sup>3</sup>, H'和 D 分别为 1.83 和 2.08; 冬季共鉴定浮 游动物 33 种(含浮游幼虫 12 类),浮游动物平均丰度为 72.1 ind/m<sup>3</sup>,平均湿重生物量为 151.1 mg/m<sup>3</sup>, H'和 D 分别为 1.63 和 1.53。浮游动物丰度与环境因子间的相关性分析表明,春季影响渤海中部海 域浮游动物分布的主要环境因子组合为表盐、底溶解氧和水深;夏季影响渤海中部海域浮游动物分 布的主要环境因子组合为底温、底盐和叶绿素;秋季影响渤海中部海域浮游动物分布的主要环境因 子组合为表温、表 pH 和底 pH; 冬季影响渤海中部海域浮游动物分布的主要环境因子组合为底 pH 和叶绿素。与同期历史数据相比,浮游动物的种类数、丰度和生物量均有所下降。

关键词 渤海;浮游动物;种类组成;多样性

中图分类号 S931 文献标识码 A 文章编号 2095-9869(2016)04-0007-12

渤海是陆岸环抱的半封闭性内海,沿岸多条大、 小河流入海。因此,渤海具有水质肥沃,饵料生物丰 富的特点,并构成我国北方经济鱼虾类的主要产卵场 和索饵场(白雪娥等,1991)。浮游动物作为海洋生态 系统中的重要组成部分,其动态变化控制着初级生产 力的节律、规模和归宿;同时,浮游动物作为经济鱼 类的饵料来源,在很大程度上决定了鱼种的补充机制 (Cushing, 1972<sup>1)</sup>; Froneman, 2004; 齐衍萍等, 2010; 徐东晖, 2010<sup>2)</sup>)。

目前,关于渤海海域浮游动物的种类组成、数量

① 通讯作者:陈碧鹃,研究员, E-mail: chenbj@ysfri.ac.cn

<sup>\*</sup> 农业部溢油专项"渤海生态环境监测与评估"(农办渔【2012】117号)和"应对溢油关键技术专项研究"(2012-NZ-5739) 共同资助。徐东会, E-mail: lvbaobei@sina.com

收稿日期: 2015-06-11, 收修改稿日期: 2015-08-11

<sup>1)</sup> Cushing DH. The production cycle and the numbers of marine fish. Symposium Zoological Society of London, 1972, 29: 213-232

<sup>2)</sup> 徐东晖. 自然和人为因子对黄、东海几种桡足类优势种生理活动的影响. 中国海洋大学博士研究生学位论文, 2010, 9-15

变动的研究较多,但一般是针对整个渤海水域大尺度的研究(白雪娥等,1991;毕洪生等,2000;王克等,2002;张武昌等,2002),或仅局限于渤海部分水域小范围的研究(王彬等,2010;马静,2011<sup>1)</sup>;李自尚,2012<sup>2)</sup>;马静等,2012;彭荣等,2012;高文胜等,2014;王宇等,2014),针对渤海中部水域的调查研究较为少见。本研究利用2013年5、8、11、12月在渤海中部水域开展的海洋调查所获得的浮游动物资料,分析了浮游动物的种类组成和数量变化,对该水域浮游动物的生态特征进行研究,探讨了浮游动物与环境因子之间的关系。以期为渤海中部水域浮游动物的长期变化研究提供基础资料,并对该水域生物资源的合理利用提供科学依据。

## 1 材料与方法

#### 1.1 调查海区及方法

分别于 2013 年 5 月(春季)、8 月(夏季)、11 月(秋季)和 12 月(冬季),在渤海中部水域(图 1)进行浮游动物调查。使用美国 YSI556 型多参数水质监测仪测定海水温度、盐度、溶解氧、pH 及水深等环境参数,叶绿素的测定采用荧光分光光度法《海洋监测规范》 (GB17378.4-2007)。采用浅水 I 型浮游生物网采集浮游动物样品,用 5%福尔马林海水溶液固定保存,参照《海洋调查规范——海洋生物调查》(GB12763.6-2007)完成浮游动物样品的处理和分析。

## 1.2 数据处理与分析

**1.2.1** 丰度和生物量 浮游动物丰度为每立方米 水体中的个体数,生物量为固定样品后称得的湿重。

**1.2.2** 优势种 根据每个种的优势度值(*Y*)来确定 浮游动物的优势种,将 *Y*≥0.02 的种类作为优势种 (徐兆礼等, 1989)。

**1.2.3** 生物多样性 浮游动物多样性指数使用香 农-威纳指数(*H'*)(Shannon *et al*, 1949)和 Margalef 丰富 度指数(*D*)(Margalef, 1958)表示。根据《海洋监测规 范》(GB17378.7–2007)的评价标准,当*H'*<1时,为 重污染;当*H'*=1–2时,为中度污染;当*H'*=2–3时,为轻度污染;当*H'*=3–4时,为清洁区域。

**1.2.4** 浮游动物与环境因子关系 应用多元统计软件 PRIMER V6.1 中的 BIOENV 和 RELATE 程序(Souissi et al, 2001)分析浮游动物丰度与环境因子间的关系。

## 2 结果与分析

#### 2.1 种类组成及优势种

2013 年渤海中部水域调查共鉴定各类浮游动物 53种、浮游幼虫21类,合计种类数为74(表1)。其中, 浮游动物成体分别包括刺胞动物16种,栉水母2种, 枝角类2种,介形类1种,桡足类19种,等足类1种, 端足类4种,糠虾类2种,磷虾类1种,十足类1种, 毛颚类2种,被囊类2种。春季渤海中部水域调查共



3) 马静.夏、秋季黄河口及其邻近海域大中型浮游动物群落生态学研究.中国海洋大学硕士研究生学位论文,2011,22-70
 2) 李自尚.春季黄河口及其邻近水域浮游动物群落特征与粒径谱的初步研究.中国海洋大学硕士研究生学位论文,2012,20-61

| 甜米 6                                                |           | 丰度 Abur   | ndance (%) |           |
|-----------------------------------------------------|-----------|-----------|------------|-----------|
| 种英 Species —                                        | 春季 Spring | 夏季 Summer | 秋季 Autumn  | 冬季 Winter |
| 束状高手水母 Bougainvillia ramose                         |           | _         | 0.06       |           |
| 高手水母 Bougainvillia sp.                              |           | _         | 0.01       | _         |
| 八束水母 Koellikerina sp.                               |           | _         | 0.03       | _         |
| 日本长管水母 Sarsia japonica                              |           | 0.01      | _          | _         |
| 单肢水母 Nubiella sp.                                   |           | 0.01      | _          | _         |
| 小介穗水母 Podocoryne minima                             | _         | 0.01      | _          | _         |
| 真囊水母 Euphysora sp.                                  | _         | 0.04      | _          | _         |
| 杜氏外肋水母 Ectopleura dumortieri                        |           | 0.09      | _          | _         |
| 马来触丝水母 Helgicirrha malayensis                       | 2.14      | _         | _          | _         |
| 六辐枝管水母 Willsia mutabllis                            | 0.12      | _         | _          | _         |
| 八斑芮氏水母 Rathkea octopunctata                         | 8 31      | _         | _          | _         |
| 多管水母 Aequorea coerulescens                          | 0.03      |           |            |           |
| 锡兰和平水母 Eirene cevlonensis                           |           | _         | 0.10       | 0.06      |
| 半球美螅水母 Clytia hemisphaerica                         | _         | 0.02      | 0.06       | 0.06      |
| 四枝管水母 Proboscidactyla flavicirrata                  |           | 0.02      | 1.17       | 1.15      |
| 五角水母 Mussiaea atlantica                             | _         | 0.05      | 0.83       | 0.51      |
| 球形侧腕水母 Pleurobrachia globosa                        | _         | _         | 0.55       | 0.17      |
| 瓜水母 Beroe cucumis Fabricius                         |           | —         | 0.55       | 0.17      |
| 內限小学 Beroe enclands Fubricitus                      |           | 1.72      | 0.01       | 0.01      |
| 当家人入園 Fennia uniositis                              |           | 0.01      | 0.01       |           |
| れ所三角祖 Evalue tergestind<br>枚氏昆萤 Asteroning grimaldi |           | 0.01      |            | 0.01      |
| 伯氏圭虽 Asteropina grimatat                            | 10.49     |           | 42.22      | 0.01      |
| 中午台小姐 Calanus Sinicus                               | 19.48     | 38.14     | 42.33      | 50.33     |
| 小饭台小鱼 Furacationus parvus                           | 11.65     | 0.87      | 0.87       | 1.08      |
| 强彻识百术虽Furucationus crussitiositis                   | _         | 0.07      | 0.02       | 0.07      |
| 版针 胸刺水蛋 Centropages abaominalis                     | 5.68      | 0.01      | —          | —         |
| 度甩胸刺水蛋 Centropages tenuiremis                       | 1.51      | 0.01      | _          | —         |
| 同时 胸刺水蛋 Centropages aorsispinatus                   | 2.28      | —         | 0.05       | —         |
| 平头水金 Candacia sp.                                   | 0.01      | —         | —          | _         |
| 具刺唇角水蚕 Labidocera euchaeta                          | —         | 0.01      | 1.33       | 0.70      |
| 双刺唇角水蚕 Labidocera bipinnata                         | —         | 0.40      | 0.49       | 0.55      |
| 双毛纺锤水蛋 Acartia bifilosa                             | 5.36      | 0.04      | 0.10       | 0.01      |
| 克氏纺锤水蚤 Acartia clausi                               | 0.02      | —         | —          | —         |
| 太平洋纺锤水蚤 Acartia pacifica                            | 18.91     | —         | 0.01       | 0.03      |
| 瘦尾简角水蚤 Pontellopsis tenuicauda                      | 0.49      | —         | —          | —         |
| 海洋伪镖水蚤 Pseudodiaptomus marinus                      | 0.28      | —         | —          | —         |
| 刺尾歪水蚤 Tortanus spinicaudatus                        | 1.96      | —         | —          | —         |
| 拟长腹剑水蚤 Oithona similis                              | —         | —         | 0.10       | 0.12      |
| 近缘大眼剑水蚤 Corycaeus affinis                           | 1.73      | 0.17      | 1.26       | 0.52      |
| 挪威小毛猛水蚤 Microsetella norvegica                      | 2.94      | —         | —          | —         |
| 怪水蚤 Monstrilla sp.                                  | —         | 0.01      | —          | —         |
| 小寄虱 Microniscus sp.                                 | _         | 0.03      | 0.09       | 0.07      |
| 细足法虫戎 Themisto gracilipes                           | 0.04      | 0.67      | 0.52       | 1.08      |
| 蜾贏斐 Corophium sp.                                   | 0.15      | —         | —          | —         |
| 麦杆虫 Caprella sp.                                    | _         |           | 0.01       | _         |

## 表 1 渤海中部水域浮游动物种类组成

Tab.1 The composition of zooplankton in the central Bohai Sea

续表1 Continuted Tab.1

| TH X Constant                     |           | 丰度 Abur   | dance (%) |           |
|-----------------------------------|-----------|-----------|-----------|-----------|
| 种尖 Species —                      | 春季 Spring | 夏季 Summer | 秋季 Autumn | 冬季 Winter |
| 钩虾 Gammaridea                     |           | 0.01      | 0.10      | 0.03      |
| 长额刺糠虾 Acanthomysis longirostris   | _         | 0.02      | 0.14      | _         |
| 儿岛囊糠虾 Gastrosaccus kojimansis     | 0.05      | _         | 0.05      | _         |
| 太平洋磷虾 Euphausia pacifica          | _         | 0.01      | _         | _         |
| 中国毛虾 Acetes chinensis             | 0.02      | _         | _         | _         |
| 拿卡箭虫 Sagitta nagae                | _         | 0.03      | 0.03      | _         |
| 强壮箭虫 Sagitta crassa               | 7.32      | 37.43     | 39.59     | 39.30     |
| 异体住囊虫 Oikopleura dioica           | _         | 0.08      | 0.64      | 0.20      |
| 小齿海樽 Doliolum denticulatum        | _         | _         | 0.02      | _         |
| 帚虫类辐轮幼虫 Actinotrocha larva        | _         | _         | 0.07      | 0.08      |
| 柱头幼虫 Tornaria larva               | _         | 8.12      | 0.01      | 0.02      |
| 多毛类幼体 Polychaeta larva            | _         | 0.03      | 1.07      | 0.29      |
| 双壳类幼体 Bivalve larvae              | _         | 1.49      | 6.60      | 2.47      |
| 腹足类幼体 Gastropoda larva            | _         | 0.25      | 0.19      | 0.02      |
| 桡足类无节幼虫 Nauplius larva (Copepoda) | 8.35      | 0.01      | _         | 0.02      |
| 桡足幼体 Copepodite larva             | _         | 0.01      | _         | _         |
| 磷虾节胸幼虫 Calyptopis larva           | _         | 0.01      | 0.14      | 0.02      |
| 糠虾幼体 Mysidacea larvae             | 0.07      | _         | _         | _         |
| 阿利玛幼虫 Alima larva                 | _         | 0.16      | _         | _         |
| 蔓足类藤壶幼体 Balanus larva             | 0.01      | _         | _         | _         |
| 长尾类幼体 Macrura larva               | 0.01      | 1.43      | 0.92      | 0.79      |
| 短尾类溞状幼虫 Brachyura zoea larva      | 0.01      | 0.61      | 0.14      | 0.06      |
| 短尾类大眼幼体 Brachyura megalopa larva  | _         | 0.01      | _         | _         |
| 歪尾类溞状幼虫 Porcellana zoea larva     | _         | 0.01      | 0.03      | 0.10      |
| 海蛇尾长腕幼虫 Ophiopluteus larva        | 1.10      | 0.95      | 0.02      | _         |
| 海胆长腕幼虫 Echinopluteus larva        | _         | 5.80      | 0.07      | 0.03      |
| 海星羽腕幼虫 Bipinnaria larva           | _         | 1.00      | _         | _         |
| 棘皮动物幼体 Echinodermata larva        | _         | 0.13      | 0.15      | _         |
| 仔稚鱼 Fish larva                    | _         | 0.02      | 0.03      | _         |
| 鱼卵 Fish eggs                      | _         | 0.06      | 0.06      | 0.07      |

— 表示该种类未出现

- denoted unobserved species or taxon

鉴定各类浮游动物 23 种、浮游幼虫 6 类,合计种类数 为 29。夏季渤海中部水域调查共鉴定各类浮游动物 27 种、浮游幼虫 18 类,合计种类数为 45。秋季渤海 中部水域调查共鉴定各类浮游动物 28 种、浮游幼虫 14 类,合计种类数为 42。冬季渤海中部水域调查共 鉴定各类浮游动物 21 种、浮游幼虫 12 类,合计种类 数为 33。

渤海中部水域浮游动物的生态特征可划分为 4个类群:(1)近岸低盐类群:该类群适应的盐度较低, 代表种类有真刺唇角水蚤(L. euchaeta)、双刺唇角水蚤 (L. bipinnata)、太平洋纺锤水蚤(A. pacifica)、八斑芮氏 水母(R. octopunctata)等。(2)低温高盐类群:该类群代 表种类有细足法虫戎(T. gracilipes)、太平洋磷虾 (E. pacifica)等。(3)广温广盐类群:该类群适温性强, 主要有中华哲水蚤(C. sinicus)、小拟哲水蚤 (P. parvus)、腹针胸刺水蚤(C. abdominalis)、背针胸 刺水蚤(C. dorsispinatus)、拟长腹剑水蚤(O. similis)、 近缘大眼剑水蚤(C. affinis)、强壮箭虫(S. crassa)、球 形侧腕水母(P. globosa)、五角水母(M. atlantica)等。 (4)高温高盐类群:该类群代表种类为小齿海樽 (D. denticulatum)。

春季渤海中部海域浮游动物共有7个优势种类,

分别为中华哲水蚤(Y=0.17)、小拟哲水蚤(Y=0.05)、腹 针胸刺水蚤(Y=0.02)、双毛纺锤水蚤(Y=0.04)、太平洋 纺锤水蚤(Y=0.15)、八斑芮氏水母(Y=0.02)和强壮箭虫 (Y=0.07)。夏季渤海中部海域浮游动物共有 3 个优势 种类,分别为中华哲水蚤(Y=0.38)、强壮箭虫(Y=0.37) 和海胆长腕幼虫(Y=0.04)。秋季渤海中部海域浮游动 物共有 3 个优势种类,分别为中华哲水蚤(Y=0.41)、 强壮箭虫(Y=0.40)和双壳类幼体(Y=0.06)。冬季渤海中 部海域浮游动物共有 3 个优势种类,分别为中华哲水 蚤(Y=0.50)、强壮箭虫(Y=0.39)和双壳类幼体(Y=0.02)。 2013 年渤海中部海域全年均出现的浮游动物优势种 类共 2 个,分别为中华哲水蚤和强壮箭虫。

#### 2.2 浮游动物丰度及生物量水平分布特征

浮游动物总丰度的平面分布见图 2。从图 2-a 可以 看出,春季渤海中部海域浮游动物总丰度很高,平均值 为 782.0 ind/m<sup>3</sup>。总丰度最高值出现在调查水域南部 537 号站(8509.6 ind/m<sup>3</sup>),总丰度最小值出现在调查水域西 南部 527 号站(15.4 ind/m<sup>3</sup>)。夏季渤海中部海域浮游动 物总丰度较高,其平均值为 199.6 ind/m<sup>3</sup>。总丰度最 高值出现在调查水域西南部 525 号站(907.6 ind/m<sup>3</sup>), 总丰度最小值出现在调查水域西南部 534 号站 (16.0 ind/m<sup>3</sup>)(图 2-b)。秋季渤海中部海域浮游动物总 丰度较低,其平均值为 42.1 ind/m<sup>3</sup>。总丰度最高值出 现在调查水域西南部 534 号站(254.8 ind/m<sup>3</sup>),总丰度最 小值出现在调查水域西北部 501 号站(3.3 ind/m<sup>3</sup>) (图 2-c)。冬季渤海中部海域浮游动物总丰度较低,其 平均值为 72.1 ind/m<sup>3</sup>。总丰度最高值出现在调查水域 东南部 539 号站(300.3 ind/m<sup>3</sup>),总丰度最小值出现在 调查水域中部 520 号站(13.0 ind/m<sup>3</sup>)(图 2-d)。

浮游动物生物量的平面分布见图 3。春季渤海中部 海域浮游动物湿重生物量的分布格局与丰度存在一定 的差异。平均湿重生物量为 157.1 mg/m<sup>3</sup>。生物量的最 高值出现在调查水域南部 537 号站(917.9 mg/m<sup>3</sup>),最小 值出现在调查水域中部 512 号站(3.8 mg/m<sup>3</sup>)(图 3-a)。 夏季渤海中部海域浮游动物的平均湿重生物量为 135.8 mg/m<sup>3</sup>。生物量的最高值出现在调查水域西部 517 号站(507.2 mg/m<sup>3</sup>),最小值出现在调查水域东南部 517 号站(40.2 mg/m<sup>3</sup>),最小值出现在调查水域东南部 541 号站(40.2 mg/m<sup>3</sup>)(图 3-b)。秋季渤海中部海域浮游 动物的平均湿重生物量为 122.5 mg/m<sup>3</sup>。生物量的最高 值出现在调查水域中部 511 号站(499.6 mg/m<sup>3</sup>),最小值 出现在调查水域东南部 532 号站(31.0 mg/m<sup>3</sup>)(图 3-c)。冬 季渤海中部海域浮游动物的平均湿重生物量为 151.1 mg/m<sup>3</sup>。生物量的最高值出现在调查水域东南部





a: 春季; b: 夏季; c: 秋季; d: 冬季 a: spring; b: summer; c: autumn; d: winter



a: 春季; b: 夏季; c: 秋季; d: 冬季 a: spring; b: summer; c: autumn; d: winter

539 号站(476.4 mg/m<sup>3</sup>),最小值出现在调查水域中部 520 号站(45.0 mg/m<sup>3</sup>)(图 3-d)。

#### 2.3 浮游动物优势种丰度分布特征

2.3.1 中华哲水蚤 中华哲水蚤的平面分布见图 4, 从图 4 可以看出,该种在渤海中部研究水域的平面分 布并不均匀。春季渤海中部水域中华哲水蚤的平均丰 度为152.3 ind/m<sup>3</sup>,其对浮游动物总丰度的贡献率达到 19.5%。丰度最高值出现在调查水域南部 537 号站,丰 度值为 1923.1 ind/m<sup>3</sup>(图 4-a)。夏季渤海中部水域中华哲 水蚤的平均丰度为76.1 ind/m<sup>3</sup>,其对浮游动物总丰度的 贡献率达到 38.1%。丰度最高值出现在调查水域南部 的 529 号站,丰度值为 384.0 ind/m<sup>3</sup>(图 4-b)。秋季渤海 中部水域中华哲水蚤的平均丰度为 17.8 ind/m<sup>3</sup>,其对浮 游动物总丰度的贡献率达到 42.3%。丰度最高值出现 在调查水域西南部的 534 号站, 丰度值为 177.1 ind/m3 (图 4-c)。冬季渤海中部水域中华哲水蚤的平均丰度为 36.3 ind/m<sup>3</sup>,其对浮游动物总丰度的贡献率达到 50.3%。丰度最高值出现在调查水域东部的 523 号站, 丰度值为 173.8 ind/m<sup>3</sup>(图 4-d)。

2.3.2 强壮箭虫 强壮箭虫的平面分布见图 5。春

季渤海中部水域强壮箭虫的平均丰度为 57.3 ind/m<sup>3</sup>, 其对浮游动物总丰度的贡献率达到 7.3%。最大值出 现在调查水域西北部的501号站,丰度高达559.6 ind/m<sup>3</sup>, 最小值出现在 527 号站(2.6 ind/m<sup>3</sup>)(图 5-a)。夏季渤海 中部水域强壮箭虫的平均丰度为 74.7 ind/m<sup>3</sup>,其对浮 游动物总丰度的贡献率达到 37.4%。最大值出现在调 查水域西南部的 525 号站,丰度高达 259.0 ind/m3, 最小值出现在 535 号站(7.9 ind/m<sup>3</sup>)(图 5-b)。秋季渤海 中部水域强壮箭虫的平均丰度为 16.7 ind/m<sup>3</sup>, 其对浮 游动物总丰度的贡献率达到 39.6%。最大值出现在调 查水域东南部的 539 号站,丰度高达 55.3 ind/m<sup>3</sup>,最 小值出现在 501 和 528 号站(2.3 ind/m<sup>3</sup>)(图 5-c)。冬季 渤海中部水域强壮箭虫的平均丰度为 28.3 ind/m<sup>3</sup>, 对 浮游动物总丰度的贡献率达到 39.3%。最大值出现在 调查水域东南部的 539 号站, 丰度高达 125.0 ind/m<sup>3</sup>, 最小值出现在 520 号站(5.4 ind/m<sup>3</sup>)(图 5-d)。

#### 2.4 生物多样性分布特征

浮游动物香农-威纳指数的平面分布见图 6。春季 渤海中部海域浮游动物 H'平均值为 2.36,最高值出现 在调查水域西南部的 535 号站,为 3.06;而最低值出



a: spring; b: summer; c: autumn; d: winter





现在研究水域西北部的 501 号站,为 0.58 (图 6-a)。 夏季渤海中部海域浮游动物 H'平均值为 1.75,最高 值出现在调查水域西南部的 535 号站,为 2.71;而 最低值出现在研究水域东北部的 506 号站,为 1.15 (图 6-b)。秋季渤海中部海域浮游动物 H'平均值 为 1.83,最高值出现在调查水域西南部的 528 号站, 为 2.96;而最低值出现在研究水域西北部的 510 号站, 为 1.13 (图 6-c)。冬季渤海中部海域浮游动物 H'平均 值为 1.63,最高值出现在调查水域南部的 529 号站, 为 2.34;而最低值出现在研究水域东部的 523 号站, 为 0.92 (图 6-d)。

浮游动物物种丰富度指数的平面分布见图 7。春季浮游动物 D 平均值为 1.02,最高值出现在调查水域东南部的 532 号站,为 1.66;而最低值出现在研究 水域西南部的 528 号站,为 0.59 (图 7-a)。夏季浮游 动物 D 平均值为 1.78,最高值出现在调查水域西南 部的 535 号站,为 2.77;而最低值出现在研究水域东 北部的 513 号站,为 1.07 (图 7-b)。秋季浮游动物 D 平均值为 2.08,最高值出现在调查水域东南部的 531 号站,值为 3.28;而最低值出现在研究水域西北 部的 501 号站,为 1.18 (图 7-c)。冬季浮游动物 D 平 均值为 1.53,最高值出现在调查水域南部的 529 号站, 值为 2.96;而最低值出现在研究水域西北部的 510 号 站,值为 0.76 (图 7-d)。

## 2.5 浮游动物分布与环境因子的相关性

浮游动物与环境因子间的相关性系数见表 2。单 因子分析结果显示,春季,浮游动物丰度与水深的相 关性最高(P<0.05);夏季,浮游动物丰度与底层盐度 的相关性最高(P<0.01);秋季,浮游动物丰度与表层 温度的相关性最高(P<0.01);冬季,浮游动物丰度与 叶绿素的相关性最高(P<0.05)。双因子分析结果显示, 春季,浮游动物丰度与表层盐度、水深的相关性最高 (P<0.05);夏季,浮游动物丰度与底层温度、底层盐 度的相关性最高(P<0.01);秋季,浮游动物丰度与表 层温度、表层 pH 的相关性最高(P<0.01);冬季,浮 游动物丰度与底层 pH、叶绿素的相关性最高 (P<0.01)。三因子分析结果显示,春季,浮游动物丰 度与表层盐度、底层溶解氧、水深的相关性最高 (P<0.05);夏季,浮游动物丰度与底层温度、底层盐





度、叶绿素的相关性最高(P<0.01);秋季,浮游动物 丰度与表层温度、表层 pH、底层 pH 的相关性最高 (P<0.01); 冬季, 浮游动物丰度与底层盐度、底层 pH、 叶绿素的相关性最高(P<0.05)。四因子分析结果显示, 春季,浮游动物丰度与表层盐度、底层盐度、底层溶 解氧、水深的相关性最高(P<0.05); 夏季, 浮游动物 丰度与底层温度、底层盐度、表层 pH、叶绿素的相关 性最高(P<0.01);秋季,浮游动物丰度与表层温度、底 层温度、表层 pH、底层 pH 的相关性最高(P<0.01); 冬季,浮游动物丰度与底层盐度、底层 pH、水深、 叶绿素的相关性最高(P<0.05)。在所涉及的影响因子 中,春季对浮游动物分布最重要的影响因子包括表层 盐度、底层溶解氧和水深;夏季对浮游动物分布最重 要的影响因子包括底层温度、底层盐度和叶绿素:秋 季对浮游动物分布最重要的影响因子包括表层温度、表 层 pH 和底层 pH; 冬季对浮游动物分布影响最重要的 因子包括底层 pH 和叶绿素。

## 3 讨论

本研究共记录浮游动物 53 种, 浮游幼虫 21 类,

合计 74 个种类。其中, 浮游甲壳动物 28 种, 为绝对 优势类群;其次为水螅水母15种和浮游幼虫21类。 毕洪生等(2000)分析了 1959 年全国海洋普查渤海海 域周年的中网浮游动物样品,共记录浮游动物 87 种, 浮游幼虫 17 类, 桡足类(30 种)是浮游动物的主要组 成部分,水母类(29种)次之。王克等(2002)对 1998年秋季和1999年春季渤海中南部海域的大网浮 游动物样品进行分析,分别记录浮游动物 46 种和 23 种, 浮游幼虫 13 类和 10 类。张武昌等(2002)对 1998年秋季和1999年春季渤海中南部海域的浮游动 物中网样品进行研究,分别记录了浮游动物 47 种和 27种。杜明敏等(2013)对渤海 2006-2007年 908 专项 调查 4 个航次的浮游动物样品进行分析, 春季, 共记 录浮游动物 21 种, 浮游幼虫 4 类; 夏季, 共记录浮游 动物 59 种, 浮游幼虫 16 类; 秋季, 共记录浮游动物 39种,浮游幼虫9类;冬季,共记录浮游动物22种, 浮游幼虫 3 类。本研究结果与同期历史数据相比 (毕洪生等,2000; 王克等,2002; 杜明敏等,2013), 浮 游动物成体种类数有所下降,但种类组成仍是以桡足 类和水螅水母为主,且浮游幼虫的种类数差别不大。

王克等(2002)分析 1998 年和 1999 年渤海中南部

|                 |                                                          |             | Spearman 相   | 似性系数 $\rho_{s}$ |             |
|-----------------|----------------------------------------------------------|-------------|--------------|-----------------|-------------|
| 因子 Variable     | 非生物参数 Abiotic parameters                                 | 春季          | 夏季           | 秋季              | 冬季          |
|                 |                                                          | Spring      | Summer       | Autumn          | Winter      |
| 单因子             | 表层温度 Temperature of surface layer                        | 0.051       | 0.013        | 0.235**         | -0.046      |
| Single variable | 底层温度 Temperature of bottom layer                         | 0.007       | 0.139        | 0.134           | -0.065      |
|                 | 表层盐度 Salinity of surface layer                           | 0.060       | 0.056        | 0.007           | 0.028       |
|                 | 底层盐度 Salinity of bottom layer                            | 0.009       | $0.270^{**}$ | -0.016          | 0.048       |
|                 | 表层溶解氧 DO of surface layer                                | 0.116       | -0.132       | 0.004           | -0.086      |
|                 | 底层溶解氧 DO of bottom layer                                 | 0.062       | -0.111       | 0.064           | -0.114      |
|                 | 表层 pH pH of surface layer                                | -0.033      | 0.111        | 0.235           | -0.025      |
|                 | 底层 pH pH of bottom layer                                 | 0.037       | -0.078       | 0.206           | 0.067       |
|                 | 水深 Water depth                                           | 0.128*      | -0.023       | -0.030          | 0.038       |
|                 | 叶绿素 Chlorophyll                                          | 0.053       | 0.070        | 0.010           | 0.156*      |
| 双因子             | 表层温度/表层 pH Temperature/pH of surface layer               |             |              | 0.320**         |             |
| Two variables   | 表层盐度/水深 Salinity of surface layer/Water depth            | 0.146*      |              |                 |             |
|                 | 底层温度/底层盐度 Temperature/salinity of bottom layer           |             | 0.371**      |                 |             |
|                 | 底层 pH/叶绿素 pH/chlorophyll of bottom layer                 |             |              |                 | 0.199**     |
| 三因子             | 表层温度/表层 pH/底层 pH                                         |             |              | 0.244**         |             |
| Three variables | Temperature/pH of surface layer and pH of bottom layer   |             |              | 0.344           |             |
|                 | 表层盐度/底层溶解氧/水深                                            | $0.150^{*}$ |              |                 |             |
|                 | Salinity of surface layer/DO of bottom layer/Water depth |             |              |                 |             |
|                 | 低层温度/低层盐度/叶绿系                                            |             | 0.421**      |                 |             |
|                 | remperature and samily of bottom layer/chlorophyll       |             |              |                 |             |
|                 | Salinity and nH of bottom layer/chloronhyll              |             |              |                 | $0.167^{*}$ |
| 四因子             | 表层温度/底层温度/表层 pH/底层 pH                                    |             |              | 0.210**         |             |
| Four variables  | Temperature and pH of surface layer and bottom layer     |             |              | 0.319           |             |
| rour variables  | 表层盐度/底层盐度/底层溶解氧/水深 Salinity of surface                   | $0.140^{*}$ |              |                 |             |
|                 | layer/salinity and DO of bottom layer/water depth        | 0.140       |              |                 |             |
|                 | 底层温度/底层盐度/表层 pH/叶绿素 Temperature and salinity             |             | $0.419^{**}$ |                 |             |
|                 | of bottom layer/pH of surface layer/chlorophyll          |             | 0.117        |                 |             |
|                 | 底层盐度/底层 pH/水深/叶绿素 Salinity and pH of bottom              |             |              |                 | $0.146^{*}$ |
|                 | layer/water depth/chlorophyll                            |             |              |                 |             |

#### 表 2 浮游动物与环境因子的相关性

Tab.2 Correlation between zooplankton abundance and environmental variables

\* 表示 P<0.05; \*\* 表示 P<0.01

\* denoted *P*<0.05; \*\* denoted *P*<0.01

海域大网的浮游动物样品,发现桡足类和强壮箭虫是 春季和秋季渤海中南部海域的优势种类。本研究结果 与其相似,浮游动物优势种类主要有中华哲水蚤和强 壮箭虫等。2013 年全年浮游动物总丰度与主要优势 种的丰度趋势大体相同,说明浮游动物总丰度的分布 主要受中华哲水蚤和强壮箭虫等优势种的影响。本研 究中,秋季渤海中部海域浮游动物总丰度较低,其平 均值仅为 42.1 ind/m<sup>3</sup>,这主要是由于夜光虫(*Noctiluca scientillans*)广泛、大量地分布所导致。根据秋季航次 的同步调查数据显示,夜光虫在调查站位出现的频率 为 100%,其最大值出现在调查水域东南部的 539 号站, 丰度高达 5120.0 ind/m<sup>3</sup>,该物种的平均丰度达到 501.6 ind/m<sup>3</sup>。渤海中部海域春季和秋季的浮游动物湿 重生物量分别为157.1、122.5 mg/m<sup>3</sup>。本研究结果与同 期历史数据相比(白雪娥等, 1991; 王克等, 2002), 渤海 中部浮游动物的丰度和生物量均有所下降。

渤海中部浮游动物 H'在春季为 2.36、夏季为 1.75、秋季为 1.83、冬季为 1.63,多样性指数全年大 部分时间均低于 2,说明渤海中部调查海域处于中度 污染状态。主要是由于渤海属于封闭性内海,三面环 陆,长期受陆源污染物排放的影响。同时,2011 年 发生的渤海蓬莱 19-3 油田重大溢油事故,污染海域 达到了 6200 km<sup>2</sup>,溢油油污沉积物污染面积达到了 1600 km<sup>2</sup>,该事故对渤海海区生态环境影响显著

17

(陈涛, 2013)。国家应继续大力推进渤海生态环境修复 治理工作,争取使渤海早日恢复为昔日的海上粮仓。

浮游动物的种类组成和分布特征与水温、盐度、 水团、溶解氧、叶绿素和 pH 等生态因子密切相关 (郑重等, 1984, 1992; Froneman, 2004; 陈洪举, 2007<sup>1)</sup>; 朱延忠, 2008<sup>2)</sup>; 朱延忠等, 2008; 杜明敏等, 2013)。渤 海是半封闭的内海,黄河、海河和其他河流均注人渤 海,由于地处温带,渤海具有明显的季节变化 (张武昌等, 2002; 曾呈奎等, 2003)。渤海水团常年分 布于渤海中部及渤海海峡,是黄海混合水进入渤海与 沿岸低盐水混合变性而成,该水团在渤海的范围最 大,盐度最高,温度季节变化明显。因此,渤海海水 和淡水的混合与温度的季节变化是影响浮游动物群落 的重要因子(王克等, 2002; 曾呈奎等, 2003)。杜明敏等 (2013)根据中国近海 2006-2007 年 908 专项调查总计 4个航次的浮游动物样品鉴定结果分析发现,春季水 温和盐度是解释浮游动物群落结构的最佳环境因子 组合;夏季水温、盐度和水深是解释浮游动物群落结 构的最佳环境因子组合;秋季水温、盐度、水深和 pH 等均对中国近海浮游动物群落结构造成一定程度 的影响;冬季水温和盐度是解释浮游动物群落结构的 最佳环境因子组合。本研究结果与其类似,浮游动物 丰度和环境因子的相关性分析结果显示,春季影响渤 海中部海域浮游动物分布的主要环境因子组合为表盐、 底溶解氧和水深;夏季影响渤海中部海域浮游动物分布 的主要环境因子组合为底温、底盐和叶绿素;秋季影响 渤海中部海域浮游动物分布的主要环境因子组合为表 温、表 pH 和底 pH; 冬季影响渤海中部海域浮游动物 分布的主要环境因子组合为底 pH 和叶绿素。

## 参考文献

- 马静,陈洪举,刘光兴.2007年夏季黄河口及其邻近水域浮游 动物的群落特征.中国海洋大学学报(自然科学版),2012, 42(5):74-80
- 王宇, 房恩军, 郭彪, 等. 渤海湾天津海域春季浮游动物群落 结构及其与环境因子的关系. 海洋渔业, 2014, 36(4): 300-305

- 王克, 张武昌, 王荣, 等. 渤海中南部春秋季浮游动物群落结构. 海洋科学集刊, 2002(44): 34–42
- 王彬, 董婧, 刘春洋, 等. 夏初辽东湾海蜇放流区大型水母和 主要浮游动物. 渔业科学进展, 2010, 31(5): 82–90
- 白雪娥, 庄志猛. 渤海浮游动物生物量及其主要种类数量变动的研究. 海洋水产研究, 1991, 12: 71-92
- 毕洪生, 孙松, 高尚武, 等. 渤海浮游动物群落生态特点 I. 种类组成与群落结构. 生态学报, 2000, 20(5): 715-721
- 朱延忠, 陈洪举, 刘光兴. 福建沙埕港浮游动物群落特征及 影响因子. 中国海洋大学学报(自然科学版), 2008, 38(6): 943-950
- 齐衍萍, 陈洪举, 朱延忠, 等. 福建罗源湾浮游动物群落特征. 中国海洋大学学报(自然科学版), 2010, 40(1): 39-46
- 杜明敏, 刘镇盛, 王春生, 等. 中国近海浮游动物群落结构及 季节变化. 生态学报, 2013, 33(17): 5407-5418
- 张武昌,王克,高尚武,等. 渤海春季和秋季的浮游动物.海 洋与湖沼,2002,33(6):630-639
- 陈涛. 渤海溢油事件的社会影响研究. 中国海洋大学学报(社 会科学版), 2013(5): 28-33
- 郑重, 李少菁, 许振祖. 海洋浮游生物学. 北京: 海洋出版社, 1984, 139-571
- 郑重, 李少菁, 连光山. 海洋桡足类生物学. 厦门: 厦门大学 出版社, 1992, 126–163
- 徐兆礼, 陈亚瞿. 东黄海秋季浮游动物优势种聚集强度与鲐 鲹渔场的关系. 生态学杂志, 1989, 8(4): 13-15
- 高文胜, 刘宪斌, 张秋丰, 等. 渤海湾近岸海域浮游动物多样 性. 海洋科学, 2014, 38(4): 55-60
- 彭荣, 左涛, 万瑞景, 等. 春末夏初莱州湾浮游动物生物量谱及 潜在鱼类生物量的估算. 渔业科学进展, 2012, 33(1): 10-16
- 曾呈奎, 徐鸿儒, 王春林. 中国海洋志. 郑州:大象出版社, 2003, 145-146
- Froneman PW. Zooplankton community structure and biomass in a southern African temporarily open/closed estuary. Estuar Coast Shelf S, 2004, 60(1): 125–132
- Margalef R. Information theory in ecology. Int J Gen Syst, 1958 (3): 36–71
- Shannon CE, Weaver W. The mathematical theory of communication. IL: The University of Illinois Press, 1949, 1–125
- Souissi S, Ibanez F, Hamadou RB, *et al.* A new multivariate mapping method for studying species assemblages and their habitats: example using bottom trawl surveys in the Bay of Biscay (France). Sarsia, 2001, 86(6): 527–542

(编辑 马璀艳)

<sup>1)</sup> 陈洪举. 长江口及其邻近海域浮游动物群落生态学研究. 中国海洋大学硕士研究生学位论文, 2007, 53-68

<sup>2)</sup> 朱延忠. 夏、冬季北黄海大中型浮游动物群落生态学研究. 中国海洋大学硕士研究生学位论文, 2008, 43-72

## The Ecological Characteristics of Zooplankton in the Central Bohai Sea

XU Donghui, SUN Xuemei, CHEN Bijuan<sup>®</sup>, XIA Bin, CUI Zhengguo,

ZHAO Jun, JIANG Tao, LIU Chuanxia, QU Keming

(Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Shandong Provincial Key Laboratory of Fishery Resources and Eco-Environment, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071)

Abstract Studies on the species, abundance and distribution of zooplankton have been extensive and mainly focused on either the entire or certain small parts of the Bohai Sea. In this study, we analyzed the composition, abundance, dominant species, and biodiversity of zooplankton based on samples collected in the central Bohai Sea in 2013. The distribution and its influencing factors were explored with multivariate analysis according to the sampling date and environmental parameters. A total of 74 zooplankton species/taxa (including 21 pelagic larvae) were identified in four surveys. Copepods were the most abundant species. The numbers of pelagic copepod and medusa species accounted for 25.7% and 24.3% of the total species respectively. The composition of the dominant species was consistent with previous reports. The Calanus sinicus and Sagitta crassa were the dominant species. The abundance of C. sinicus and S. crassa explained 19.5%–50.3% and 7.3%–39.6% of the total zooplankton abundance respectively. In spring, the average abundance, the average biomass, the Shannon-Wiener index (H'), and the Margalef's index (D) were 782.0 ind/m<sup>3</sup>, 157.1 mg/m<sup>3</sup>, 2.36, and 1.02 respectively. In summer, the values of parameters above were 199.6 ind/m<sup>3</sup>, 135.8 mg/m<sup>3</sup>, 1.75, and 1.78. In autumn, they were 42.1 ind/m<sup>3</sup>, 122.5 mg/m<sup>3</sup>, 1.83, and 2.08 respectively. In winter, they were 72.1 ind/m<sup>3</sup>, 151.1 mg/m<sup>3</sup>, 1.63, and 1.53 respectively. The abundance and biomass fluctuated and showed distinct heterogeneity in the central part of the Bohai Sea. There was a seasonal variation in the primary environmental factors that affected the distribution of zooplankton. In spring, they were surface salinity, bottom DO, and water depth. In summer, they were bottom temperature, bottom salinity, and chlorophyll. In autumn, they were surface temperature, surface pH, and bottom pH. In winter, they were bottom pH and chlorophyll. Our research provided the fundamental information on the long-term observation of zooplankton ecology in the central part of the Bohai Sea. Compared to the data collected in 1959, 1998, and 2006, the number of species, abundance and biomass of zooplankton have decreased.

Key words Bohai Sea; Zooplankton; Species composition; Diversity

① Corresponding author: CHEN Bijuan, E-mail: chenbj@ysfri.ac.cn

DOI: 10.11758/yykxjz. 20150526002

http://www.yykxjz.cn/

# 渤海中部网采浮游植物种类组成和季节变化\*

## 孙雪梅 徐东会 夏 斌 崔正国 曲克明 江 涛 赵 俊 陈聚法 陈碧鹃<sup>①</sup>

(农业部海洋渔业可持续发展重点实验室 山东省渔业资源与生态环境重点实验室 中国水产科学研究院黄海水产研究所 青岛 266071)

**摘要** 利用 2013 年 5 月、7 月、11 月和 12 月渤海中部 41 个站位的 4 次综合海上调查所获资料, 分析其浮游植物群落结构的季节变化特征。共鉴定出浮游植物 3 门 42 属 87 种。其中,硅藻门 33 属 72 种,甲藻门 9 属 15 种,金藻门 1 属 1 种。渤海中部浮游植物优势种多为硅藻,部分甲藻也表 现为优势类群。与历史资料比较发现,主要优势种发生了演替现象,往年优势种浮动弯角藻 (Eucampia zodiacus)本次调查并未出现,斑点海链藻(Thalassiosira punctigera)首次以优势种出现, 浮游甲藻的优势地位与往年相比日趋明显。浮游植物细胞丰度 5 月、7 月、11 月和 12 月平均为 200.14×10<sup>4</sup>、16.32×10<sup>4</sup>、7.43×10<sup>4</sup>、12.77×10<sup>4</sup> cell/m<sup>3</sup>,与同期历史资料相比,5 月偏高,这与萎软 几内亚藻(Guinardia delicatula)的暴发有关,其他月份相对比较稳定。其群落结构特征中的多样性指 数(H')和均匀度指数(J)均呈现 7 月>11 月>5 月>12 月的趋势。Spearman 相关性分析结果显示,与浮 游植物细胞丰度相关度较高的环境因子是无机氮、磷酸盐、石油烃和 N/P。

关键词 渤海中部;浮游植物;优势种;群落结构

中图分类号 S932.7 文献标识码 A 文章编号 2095-9869(2016)04-0019-09

渤海是一个半封闭式的内海,它包括辽东湾、莱 州湾、渤海中部、渤海湾、渤海海峡 5 个部分,其四 周几乎被陆地包围,仅东南部的渤海海峡与黄海相 通。渤海沿岸入海河流较多,黄河、小清河、辽河等 向其注入了大量的淡水和泥沙以及丰富的营养,对浮 游植物的生长和繁殖起到重要作用。多年的调查结果 显示,渤海的浮游植物物种十分丰富。王家楫 1936 年 曾多次对渤海浮游植物种类进行调查和研究(孙军等, 2005),发现其有 400 多个物种,主要是近岸硅藻。 近年来,受人类活动的影响,包括城市污水排放、开 采石油带来的溢油污染等,渤海的生态环境变得极其 脆弱(卞少伟等, 2015)。浮游植物是海洋生态系统中 的重要初级生产者,在维护整个生态系统的稳定方面 发挥着不可替代的作用,当生态环境发生变化时,其 浮游植物的群落结构可能也会发生相应的改变,分析 海洋浮游植物群落结构变化特征成为海洋生态环境 监测的一项重要指标。

渤海浮游植物的群落结构变化研究起始于 20 世 纪 30 年代,主要集中在物种分类和其生态分布习性 方面(王俊等,2003;孙萍等,2008;尹翠玲等,2013)。 孙军等(2002、2005)的研究表明,渤海的浮游植物群落 结构比 40 余年前发生了较大的变化,浮游植物群落 由硅藻占绝对优势逐渐转变为硅藻/甲藻共存为主的 群落。近年来,研究者开始陆续对其浮游植物群落结构 与环境因子的相关性进行综合分析(郭术津等,2014)。

本研究基于 2011 年发生的渤海溢油事故对渤海 浮游植物群落结构的影响,对 2013 年渤海中部浮游 植物群落结构的物种组成、优势种演替、细胞丰度以

<sup>\*</sup>农业部溢油专项"渤海生态环境监测与评估"(农办渔【2012】117号)和"应对溢油关键技术专项研究"(2012-NZ-5739) 共同资助。孙雪梅, E-mail: sunxm@ysfri.ac.cn

① 通讯作者:陈碧鹃,研究员, E-mail: chenbj@ysfri.ac.cn

收稿日期: 2015-05-26, 收修改稿日期: 2015-10-14

及多样性等的季节变化特征进行大面积跟踪调查,该 研究结果为更好地了解溢油对渤海浮游植物群落的 改变及其对生态系统的影响提供基础资料。

## 1 材料与方法

### 1.1 调查区域

2013年5月、7月、11月和12月分别对渤海中部 进行4个航次的水文、化学和生物的综合嵌套式外业调 查,共设41个站位,站位分布见图1。



#### 1.2 采集方法

样品的采集采用国际标准号 20 的筛绢缝制的浅 水Ⅲ型浮游生物网(网口直径 37 cm, 网口面积 0.1 m<sup>2</sup>, 网身长 270 cm, 网目 76 μm),在每个站位,自底至表 垂直拖网取样,将样品固定在 2%的甲醛溶液中。在 实验室内对浮游植物样品进行浓缩。然后于实验室显 微镜下进行种类鉴定和数量统计。水温、盐度、溶解 氧(DO)、pH、化学需氧量(COD)等指标多参数水质监 测仪进行现场测定。具体操作方法均按中华人民共和 国国家标准《海洋调查规范》(GB/T12763.6-2007)和 《海洋监测规范》(GB/T17378-2007)中规定的方法执行。

#### 1.3 浮游动物分布与环境因子关系

采用多元统计软件 PRIMER V7.0 (Plymouth Routines In Multivariate Ecological Research)软件中的 BIOENV 程序分析浮游植物细胞丰度与环境因子间的关系 (Souissi *et al*, 2001),用 Spearman 相关性系数( $\rho_s$ )表示 (薛雄志等, 2004)。本研究的环境因子主要有温度、盐 度、溶解氧、pH、化学需氧量、磷酸盐、无机氮、氮 磷比(N/P)和石油烃。

## 1.4 数据处理

浮游植物多样性(H')和均匀度(J)的分析方法参

照 Shannon 等(1963)、Pielou (1969)和孙军等(2004) 的方法。

物种多样性指数的计算采用香农-威纳指数(H', Shannon-Wiener index),其计算公式为:

$$H' = -\sum_{i=1}^{n} P_i \log_2 P_i$$

物种均匀度指数(J)采用 Pielou 的计算公式为:

$$J = \frac{H'}{\log_2 S}$$

浮游植物优势度(Y)计算公式为:

$$Y = \frac{n_i}{N} f_i$$

式中, N 为采集样品中所有物种的总个体数; S 为 样品中的物种总数; P<sub>i</sub>为第 *i* 种的个体数与样品中的 总个数的比值; n<sub>i</sub>为第 *i* 种的总个体数; f<sub>i</sub>为该种在各 样品中出现的频率,其中以优势度>0.02 确定为优势 种(徐兆礼等, 1989)。

## 2 结果与分析

#### 2.1 物种组成

本次调查共鉴定出浮游植物 3 门 42 属 87 种(不包 括未定名物种),其中,硅藻门 33 属 72 种,甲藻门 9 属 15 种,金藻门仅 1 属 1 种。硅藻在物种和数量上 都占有优势,甲藻在个别站位的数量中占优势。浮游 植物的生态类型以温带近岸性物种为主,少数为广温 广盐性沿岸种和暖温带浮游性种等,与历史调查资料 相符。

5月调查海域共检出浮游植物 19属 49种(表 1), 其中硅藻门15属42种,甲藻门4属7种。本次调查 的优势种为萎软几内亚藻(Guinardia delicatula)(温带 近岸种)和刚毛根管藻(Rhizosolenia setigera)(广温广 盐性沿岸种),优势度见表 2。7月调查海域共检出浮 游植物 36 属 70 种(表 1), 其中, 硅藻门 28 属 56 种, 甲藻门 8 属 13 种,金藻门 1 属 1 种。本次调查的优 势种包括(1)温带近岸性种:具槽帕拉藻(Melosira sulcate)、萎软几内亚藻、洛氏角毛藻(Chaetoceros lorenzianus)、密连角毛藻(Chaetoceros densus)、布氏 双尾藻(Ditylum brightwellii); (2)暖温带浮游性种: 翼 根管藻印度变型(Rhi. acuminata); (3)广温广盐性种: 斑点海链藻(Thalassiosira punctigera)、刚毛根管藻、三 角角藻(Ceratium tripos)、锥形原多甲藻(Protoperidinium conicum)、夜光藻(Noctiluca scientillans), 优势度见表 2。 11 月调查海域共检出浮游植物 30 属 63 种(表 1), 其

|                                     |     | Tab  | .1 List of | phytoplankt | on in the surveyed area               |     |      |          |          |
|-------------------------------------|-----|------|------------|-------------|---------------------------------------|-----|------|----------|----------|
| 种类                                  | 5月  | 7月   | 11 月       | 12 月        | 种类                                    | 5月  | 7月   | 11月      | 12 月     |
| Species                             | May | July | November   | December    | Species                               | May | July | November | December |
| 具槽帕拉藻 M. sulcata                    | +   | +    | +          | +           | 泰晤士旋鞘藻 Helicotheca tamesis            |     | +    | +        |          |
| 中心圆筛藻 Coscinodiscus centralis       | +   |      | +          | +           | 针杆藻 Synedra spp.                      |     |      | +        | +        |
| 偏心圆筛藻 Cos. excentricus              | +   | +    | +          | +           | 佛氏海线藻 Thalassionema frauenfeldii      |     |      | +        | +        |
| 虹彩圆筛藻 Cos. oculus-iridis            | +   | +    | +          | +           | 菱形海线藻 Thalassionema nitzschioides     |     |      | +        |          |
| 格氏圆筛藻 Cos. granii                   |     | +    | +          | +           | 舟形藻 Navicula spp.                     | +   |      |          |          |
| 威利圆筛藻 Cos. weilesii                 | +   | +    | +          | +           | 舟形藻 Navicula sp.                      |     | +    | +        |          |
| 星脐圆筛藻 Cos. asteromphalus            | +   | +    | +          | +           | 双壁藻 Diploneis sp.                     |     |      |          | +        |
| 琼氏圆筛藻 Cos. coscinodiscus jonesianus | +   | +    |            |             | 唐氏藻 Donkinia sp.                      |     |      | +        |          |
| 辐射圆筛藻 Cos. radiatus                 | +   | +    | +          | +           | 羽纹藻 Pinnularia sp.                    |     |      | +        |          |
| 蛇目圆筛藻 Cos. argus                    | +   |      |            |             | 长菱形藻 Nitzschia longissima             | +   | +    | +        | +        |
| 明壁圆筛藻 Cos. debilis                  | +   |      | +          | ÷           | 弯端长菱形藻 Nitzschia longissimia          | +   | +    |          |          |
| 巨圆筛藻 Cos. gigas                     |     | +    | +          | +           | 洛氏菱形藻 Nitzschia lorenzizna            |     |      | +        |          |
| 圆筛藻 Coscinodiscus sp.               | +   | +    | +          | +           | 菱形藻 Nitzschia sp.                     | +   |      |          |          |
| 爱氏辐环藻 Actinocyclus octonarius       | +   |      | +          | +           | 尖刺拟菱形藻 Pseudo-nitzschia pungens       |     | +    | +        | +        |
| 海链藻 Thalassiosira sp.               |     | +    | +          | +           | 柔弱拟菱形藻 Pseudo-nitzschia delicatissima | +   | +    | +        | +        |
| 斑点海链藻 T. punctigera                 | +   | +    | +          | +           | 派洛棍形藻 Bacillaria paxillifera          |     | +    |          |          |
| 圆海链藻 Thalassiosira rotula           | +   | +    |            |             | 冰河拟星杆藻 Asterionellopsis glacialis     | +   | +    |          | +        |
| 太平洋海链藻 Thalassiosira pacifica       | +   |      | +          |             | 六辐辐裥藻 Actinoptychus hexagonus         |     | +    | +        |          |
| 中肋骨条藻 Skeletonema costatum          |     | +    | +          |             | 中华齿状藻 Odontella sinensis              |     | +    | +        | +        |
| 丹麦细柱藻 Leptocylindrus danicus        | +   | +    | +          | ÷           | 高齿状藻 Odontella regia                  |     | +    | +        | +        |
| 翼根管藻印度变型 Rhi. acuminata             | +   | +    | +          | +           | 豪猪棘冠藻 Corethrom hystrix               | +   | +    | +        | +        |
| 刚毛根管藻 Rhi. setigera                 | +   | +    | +          | +           | 掌状冠盖藻 Stephanopyxis palmeriana        |     | +    |          | +        |
| 粗根管藻 Rhi. robusta                   |     | +    |            |             | 中华半管藻 Hemiaulus sinensis              |     | +    |          |          |
| 笔头根管藻 Rhizosolenia styliformis      | +   | +    | +          | +           | 布氏双尾藻 D. brightwellii                 | +   | +    | +        | +        |
| 卡氏根管藻 Rhizosolenia castracanei      |     | +    | +          |             | 太阳双尾藻 Pleurosigma sol                 | +   | +    | +        | +        |
| 根管藻 Rhizosolenia sp.                |     | +    |            |             | 尖端曲舟藻 Pleurosigma acutum              |     | +    | +        |          |
| 薄壁几内亚藻 Guinardia flaccid            | +   | +    |            | +           | 海洋曲舟藻 Pleurosigma pelagicum           | +   | +    | +        | +        |
| 菱软几内亚藻 G. delicatula                | +   | +    | +          | +           | 窄细曲舟藻 Pleurosigma affine              | +   | +    | +        |          |
| 斯氏几内亚藻 Guinardia striata            | +   | +    |            | +           | 波状石丝藻 Lithodesmium undulatum          |     | +    |          |          |
| 透明辐杆藻 Bacteriastrum hyalinum        |     | +    | +          |             | 膜状缪氏藻 Meuniera membranacea            |     | +    | +        |          |

表1 调查海域浮游植物种类名录

21

| :<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>: |   |   |   |   |                                   |   |   |   |   |
|---------------------------------------------------------------------------------------------|---|---|---|---|-----------------------------------|---|---|---|---|
| 窄隙角毛藻 Ch. affinis var.affinis                                                               |   | + | + | + | 粗刺角藻 Ceratium horridum            |   | + | + |   |
| 洛氏角毛藻 Ch. lorenzianus                                                                       | + | + | + | + | 大角角藻 Ceratium macroceros          | + | + | + | + |
| 并基角毛藻 Ch. decipiens                                                                         |   |   | + |   | 梭角角藻 Ceratium fusus var.schuttii  | + | + | + | + |
| 并基角毛藻单胞变型 Ch. decipiens                                                                     | + | + | + |   | 叉状角藻 Ceratium furca               |   |   | + | + |
| 拟旋链角毛藻 Ch. pseudocurvisetus                                                                 |   | + |   |   | 夜光藻 N. scientillans               | + | + | + | + |
| 旋链角毛藻 Ch. curvisetus                                                                        | + | + | + | + | 海洋原多甲藻 Protoperidinium micans     |   | + | + | + |
| 柔弱角毛藻 Ch. debilis                                                                           | + | + | + |   | 扁平原多甲藻 Protoperidinium depressum  | + | + | + | + |
| 窄面角毛藻 Ch. paradoxus                                                                         |   |   | + |   | 光甲原多甲藻 Protoperidinium pellucidum | + | + |   | + |
| 扭角毛藻 Ch. hirundinellus                                                                      | + |   |   |   | 五角原多甲藻 Protoperidinium pentagonum | + | + | + | + |
| 丹麦角毛藻 Ch. danicus                                                                           | + | + | + | + | 雜形原多甲藻 Protoperidinium conicum    |   | + | + |   |
| 卡氏角毛藻 Ch. castracanei                                                                       | + | + | + | + | 原多甲藻 Protoperdinium sp.           | + | + | + | + |
| 奇异角毛藻 Ch. Paradoxus                                                                         | + | + |   |   | 斯氏扁甲藻 Pyrophacus steinii          |   | + |   |   |
| 短孢角毛藻 Ch. brevis                                                                            | + | + |   |   | 裸甲藻 Gymnodinium sp.               |   | + | + |   |
| 暹罗角毛藻 Ch. Siamense                                                                          |   | + |   |   | 膝沟藻 Gonyaulax sp.                 |   |   |   | + |
| 晃孢角毛藻 Ch. diadema                                                                           |   |   | + | + | 具尾鳍藻 Dinophysis caudata           |   |   |   | + |
| 角毛藻 Ch sp.                                                                                  | + | + | + | + | 链状亚历山大藻 Alexandrium catenella     |   |   | + |   |
| 蜂窝三角藻 Triceratium favus                                                                     |   | + | + |   | 小等刺硅鞭藻 Dictyocha fibula           |   |   | + |   |
| 短角弯角藻 E. zodiacus                                                                           |   |   | + |   |                                   |   |   |   |   |

| 5月 Ma                         | ıy                        | 7月 July                        | 7                         | 11 月 Noven                    | nber                      | 12月 Decen                     | nber                      |
|-------------------------------|---------------------------|--------------------------------|---------------------------|-------------------------------|---------------------------|-------------------------------|---------------------------|
| 优势种<br>Dominant species       | 优势度<br>Dominant<br>degree | 优势种<br>Dominant species        | 优势度<br>Dominant<br>degree | 优势种<br>Dominant species       | 优势度<br>Dominant<br>degree | 优势种<br>Dominant species       | 优势度<br>Dominant<br>degree |
| 萎软几内亚藻<br>G. delicatula       | 0.87                      | 具槽帕拉藻<br>M. sulcata            | 0.04                      | 虹彩圆筛藻<br>Cos. Oculus iridis   | 0.03                      | 斑点海链藻<br>T. punctigera        | 0.69                      |
| 刚毛根管藻<br><i>Rhi. setigera</i> | 0.05                      | 斑点海链藻<br>T. punctigera         | 0.12                      | 斑点海链藻<br>T. punctigera        | 0.66                      | 梭角角藻<br>C. fusus var.schuttii | 0.04                      |
|                               |                           | 萎软几内亚藻<br>G. delicatula        | 0.23                      | 三角角藻<br>C. tripos             | 0.04                      | 大角角藻<br>C. macroceros         | 0.04                      |
|                               |                           | 洛氏角毛藻<br><i>Ch.lorenzianus</i> | 0.03                      | 梭角角藻<br>C. fusus var.schuttii | 0.04                      | 夜光藻<br>N.scientillans         | 0.09                      |
|                               |                           | 密连角毛藻<br><i>Ch. densus</i>     | 0.03                      |                               |                           |                               |                           |
|                               |                           | 翼根管藻印度变型<br>Rhi. acuminata     | 0.08                      |                               |                           |                               |                           |
|                               |                           | 刚毛根管藻<br><i>Rhisetigera</i>    | 0.03                      |                               |                           |                               |                           |
|                               |                           | 布氏双尾藻<br>D. brightwellii       | 0.03                      |                               |                           |                               |                           |
|                               |                           | 三角角藻<br>C. tripos              | 0.04                      |                               |                           |                               |                           |
|                               |                           | 锥形原多甲藻<br>P. conicum           | 0.05                      |                               |                           |                               |                           |
|                               |                           | 夜光藻<br>N. scientillans         | 0.03                      |                               |                           |                               |                           |

表 2 调查海区浮游植物优势种 Tab.2 Dominant phytoplankton species in the surveyed sea

中硅藻门 26 属 52 种,甲藻门 4 属 11 种。本次调查的 优势种为(1)广温外洋性种:虹彩圆筛藻;(2)广温广盐 性种:斑点海链藻、三角角藻、梭角角藻(C.fusus var.schuttii),优势度见表 2。12 月调查海域共检出浮游 植物 22 属 50 种(表 1),其中硅藻门 19 属 41 种,甲 藻门 3 属 9 种。本次调查的优势种为(1)沿岸广布性种: 爱氏辐环藻(Actinocyclus octonarius);(2)近岸浮游性 种:扁平原多甲藻(P. depressum);(3)广温广盐性种: 三角角藻、梭角角藻,优势度见表 2。

从表 1、表 2 可以看出,4 次大面调查过程中浮 游植物群落结构有所变化,但变化不大。优势种多为 硅藻,部分优势种与往年调查结果有所不同。其中, 萎软几内亚藻、布氏双尾藻、三角角藻和梭角角藻在 近 20 年的调查中优势度一直很高。斑点海链藻作为 一种广温外源性物种,首次在渤海调查结果中以优势 种出现,其在 7 月、11 月和 12 月中均以优势种大量 出现,在各监测站位中,占总细胞丰度的均值分别为 11.60%、33.62%、65%。1984–1985 年,林更铭等(2007) 在福建海岸带和台湾海峡调查中,发现斑点海链藻。 1995年中国厦门海关在船舶的压舱水中也检测到。研究者认为它是由通过压舱水或者自然扩散引入,其在适宜条件下可以暴发性的繁殖。另外,萎软几内亚藻,作为一种外源性赤潮种,在5月和7月均大量出现,在各站位出现频率高达87.81%和65.85%,占细胞丰度的0-99.22%和0-80.21%,其均值分别为33.62%和11.86%。本次调查中的优势种同往年浮游植物优势种资料(康元德等,1991;孙军等,2002;孙萍等,2008)相比,渤海秋季浮游植物的优势种变化趋势主要表现在角毛藻属的衰退和浮游甲藻角藻属、圆筛藻属、根管藻属和斑点海链藻的兴起。其中,硅藻门的圆筛藻属和角毛藻属中的优势种以及甲藻门角藻属中的优势种均为体积大、生物量高的物种,对整个浮游植物的碳库影响较大。

#### 2.2 细胞丰度的平面分布

5月调查海域浮游植物的平面分布不均,浮游植物的数量范围为(2.09-530.10)×10<sup>4</sup> cell/m<sup>3</sup>,平均值为 200.14×10<sup>4</sup> cell/m<sup>3</sup>。浮游植物平面分布的格局是数量

密集区出现在 513 号和 514 号站,占整个调查区域总 细胞丰度的 43.02%和 29.02%; 505 号站数量最低, 占总细胞丰度的 0.02%(图 2)。在各监测站位上,硅藻 占细胞丰度的 41.80%-100.00%,平均为 86.62%;甲 藻占细胞丰度的 0-58.25%,平均为 13.38%。5 月的 浮游植物细胞丰度均值为本年度调查的最高值,而 1992 年的调查结果显示(王俊等,1998),5 月的渤海 中部浮游植物细胞丰度基本为全年最低,约为几十万 个/m<sup>3</sup>,分析认为这可能与 5 月的赤潮种萎软几内亚 藻暴发有关,其占每个站位细胞数量的 0-99.22%。 其中,有 11 个站位达到 50%以上,因而增加了这个月 的浮游植物细胞丰度值。









7 月调查海域浮游植物的数量范围为(1.6-90.46)× 10<sup>4</sup> cell/m<sup>3</sup>,平均值为 16.32×10<sup>4</sup> cell/m<sup>3</sup>。浮游植物平 面分布的格局是数量密集区出现在 518 号和 519 号站 位,占整个调查区域总细胞丰度的 9.23%和 13.52%; 504 号站数量最低,占总细胞丰度的 0.24%。在各监 测站位上,硅藻占细胞丰度的 37.87%-95.32%,平均 为 77.65%;甲藻占细胞丰度的 4.66%-63.46%,平均 为 22.28%。7 月的细胞丰度与王俊等(1998)1992 年的 调查结果很相近,渤海浮游植物数量从 7 月开始逐渐 增多,到 8 月达到 66×10<sup>4</sup> cell/m<sup>3</sup>。1998 年 9 月调查结 果显示(孙军等, 2004),渤海中部浮游植物细胞丰度均 值为 168.86×10<sup>4</sup> cell/m<sup>3</sup>。可见,在没有发生赤潮等异 常生态变化时,渤海中部浮游植物的细胞丰度变化相 对比较稳定,这可能与渤海中部水体相对比较稳定, 受沿岸人类活动影响较小有关。



图 4 11 月调查海区表层浮游植物细胞丰度平面分布 Fig.4 Horizontal distribution of phytoplankton cell abundances (×10<sup>4</sup> cell/m<sup>3</sup>) in the surface water in November

11 月调查海域浮游植物的数量范围为(0.11-102)× 10<sup>4</sup> cell/m<sup>3</sup>,平均值为 7.43×10<sup>4</sup> cell/m<sup>3</sup>。数量密集区 出现在 539 号和 540 号站位,占整个调查区域总细胞 丰度的 33.39%和 11.12%。522 号站数量最低,占总 细胞丰度的 0.04%(图 4)。在各监测站位上,硅藻占细 胞丰度的 23.26%-100.00%,平均为 64.29%;甲藻占 细胞丰度的 1.24%-81.40%,平均为 35.71%。该月甲 藻在浮游植物中的比率较其他有所升高。2011 年 11 月 渤海的 浮游植物细胞丰度调查结果显示均值为 4.36×10<sup>3</sup> cell/m<sup>3</sup>(郭术津等, 2014),可见,2013 年比 2011 年的细胞丰度有了显著增加。

12月调查海域浮游植物的数量范围为(0.36-55.53)× 10<sup>4</sup> cell/m<sup>3</sup>,平均值为 12.77×10<sup>4</sup> cell/m<sup>3</sup>。数量密集区 出现在 535 号、536 号、537 号和 538 号站位,占整 个调查区域总细胞丰度的 10.60%、5.28%、6.11%和 6.89%。503 号站数量最低,占总细胞丰度的 0.07%。 在各监测站位上,硅藻占细胞丰度的 40.78%-98.38%, 平均为 83.41%;甲藻占细胞丰度的 2.76%-59.75%, 平均为 16.59%。

浮游植物群落结构中甲藻和硅藻所占的比率是 一个重要的结构指数,甲藻中的赤潮种较多,高的甲 藻比率预示着甲藻可以大量生长而导致赤潮的暴发 (孙军等, 2004)。本研究调查结果显示,5月甲藻/硅 藻比率为 0-1.39, 平均值为 0.21; 7 月甲藻/硅藻比率 为 0.05-1.68, 平均值为 0.34; 11 月甲藻/硅藻比率为 0.01-3.50, 平均值为 0.72; 12 月甲藻/硅藻比率为 0.03-1.47, 平均值为 0.23。11 月甲藻/硅藻比率较高, 虽然没有出现甲藻赤潮,可能是整个浮游植物群落的 细胞丰度还未达到赤潮暴发的浓度,但这种群落结构 预示一旦条件成熟,此区域就有可能发生赤潮。



图 5 12 月调查海区表层浮游植物细胞丰度平面分布 Fig.5 Horizontal distribution of phytoplankton cell abundances (×10<sup>4</sup> cell/m<sup>3</sup>) in the surface water in December

#### 2.3 群落多样性特征

Tah 3

浮游植物的多样性和均匀度能够反映浮游植物 群落结构的特征,为研究海域内浮游植物与生态环境 的关系提供依据。多样性指数通常用于反映群落结构的 复杂程度。越复杂的群落,对环境的反馈功能越强,从 而使群落结构得到较大的缓冲,趋于稳定(徐宗军等, 2011)。均匀度指数(Pielou index)代表群落内物种分布 的均匀程度,是群落是否成熟和稳定的特征之一。

5月调查海域浮游植物多样性指数的变化范围为 0.17-2.45, 平均值为 1.49; 均匀度为 0.02-0.90, 平 均值为 0.59。7 月调查海区浮游植物多样性指数的变 化范围为 0.94-3.01, 平均值为 2.45; 均匀度为 0.31-0.92, 平均值为 0.79。11 月调查海域浮游植物 多样性指数的变化范围为 0.27-2.81, 平均值为 1.77; 均匀度为 0.09-0.86, 平均值为 0.63。12 月调查海域 浮游植物多样性指数的变化范围为 0.64-2.13, 平均 值为 1.34; 均匀度为 0.25-0.77, 平均值为 0.49。从 分析结果可以看出,7月的浮游植物多样性最高,其 次是11月、5月和12月。2000年秋季渤海浮游植物 多样性结果为 0.47-4.04(孙军等, 2005), 2005 年夏末 渤海湾浮游植物的多样性结果为 1.59-2.98, 均值为 2.32(孙萍等, 2008), 本次调查的多样性结果较 2000 年偏低,比 2005 年调查结果稍高,说明渤海浮游植 物群落结构在本年度调查中存在一定的波动,但整体 变化不大。均匀度指数和多样性指数具有非常相似的整 体分布特征,也是呈现7月>11月>5月>12月的趋 势,这一趋势与2005年的调查结果相吻合。

#### 2.4 浮游植物丰度与环境因子关系

将 5 月、7 月、11 月和 12 月每个站位的 9 个环境 因子[温度、盐度、DO、pH、COD、磷酸盐(Dissolved inorganic phosphorus, DIP)、无机氮(Dissolved inorganic nitrogen, DIN)、氮磷比 N/P 和石油烃含量(Petroleum Hydrocarbons, PHCS)]与细胞丰度进行 Spearman 相关 性分析。结果显示,单因子环境参数中,5月、7月、 11 月、12 月与细胞丰度相关度最高的均为无机氮, Spearman 相似性系数( $\rho_s$ )见表 3。双因子参数中 4 个月 相关度最高的分别是无机氮/石油烃组、无机氮/石油

| 月份   | Month    | 因子 Factor     | 相关性最高因子 Most relevant factor | Spearman 相似性系数 $\rho_s$ |
|------|----------|---------------|------------------------------|-------------------------|
| 5 月  | May      | 单因子组          | 无机氮 DIN                      | 0.536                   |
| 7 月  | July     | Single factor | 无机氮 DIN                      | 0.606                   |
| 11 月 | November | group         | 无机氮 DIN                      | 0.598                   |
| 12 月 | December |               | 无机氮 DIN                      | 0.760                   |
| 5 月  | May      | 双因子组          | 无机氮/石油烃 DIN/PHCS             | 0.552                   |
| 7 月  | July     | Two-factor    | 无机氮/石油烃 DIN/PHCS             | 0.819                   |
| 11 月 | November | group         | 磷酸盐/无机氮 DIP/DIN              | 0.639                   |
| 12 月 | December |               | 磷酸盐/无机氮 DIP/DIN              | 0.800                   |
| 5 月  | May      | 三因子组          | 磷酸盐/无机氮/石油烃 DIP/DIN/PHCS     | 0.569                   |
| 7 月  | July     | Three–Factor  | 无机氮/氮磷比/石油烃 DIN/N/P/PHCS     | 0.837                   |
| 11 月 | November | group         | 磷酸盐/无机氮/氮磷比 DIP/DIN/N/P      | 0.642                   |
| 12 月 | December |               | 磷酸盐/无机氮/氮磷比 DIP/DIN/N/P      | 0.802                   |

表 3 浮游植物细胞丰度与环境因子的 Spearman 相关性分析 Spearman analysis of correlation between phytoplankton abundance and environmental factors

烃组、磷酸盐/无机氮组以及磷酸盐/无机氮组,三因 子参数中4个月相关度最高的分别是磷酸盐/无机氮/ 石油烃组、无机氮/(N/P)石油烃组、磷酸盐/无机氮/ (N/P)组和磷酸盐/无机氮/(N/P)组。可见,与本次调 查的4个月的细胞丰度相关度最高的是无机氮含量, 在双环境因子和三环境因子组合中均出现了石油烃、 磷酸盐和 N/P。张翠霞等(2014)曾在文中指出,营养 盐是影响浮游植物优势物种丰度的主要因素,本次相 关性分析结果也显示,影响浮游植物群落结构的主要 环境因子是无机氮。另外,在双因子组合中出现石油 烃含量,说明石油烃含量与细胞丰度的相关性也很 高,其对群落结构的形成能够发挥一定的作用。

## 3 结论

(1) 2013 年渤海的浮游植物以硅藻为主,其生态 类型多为温带近岸种和广布种,少数为暖海性物种和 大洋性物种。从浮游植物的细胞丰度和多样性分析结 果可以看出,该年度调查的浮游植物群落结构比较稳 定,说明 2011 年的渤海溢油污染并没有对其造成影响。

(2) 渤海中部 5 月浮游植物细胞丰度最高,与历 史资料相比也有所偏高,这与萎软几内亚藻急剧增多 有关,其他月份浮游植物的细胞丰度值整体比较稳定。

(3)与历史同期相比,浮游植物优势种的组成发 生了变化。往年优势种浮动弯角藻本次调查并未出 现,三角角藻和萎软几内亚藻再次成为优势种;近些 年来浮游甲藻类的优势地位越来越明显,本次调查 中,甲藻中的三角角藻、梭角角藻、大角角藻、锥形 原多甲藻和夜光藻成为渤海中部的优势种,这些种类 均为赤潮种,一旦条件合适随时可能暴发甲藻赤潮。

(4) Spearman 相关性分析结果显示,与浮游植物 细胞丰度相关度较高的环境因子是无机氮、磷酸盐,石油烃和 N/P。

#### 参考文献

- 王俊, 康元德. 渤海浮游植物种群动态的研究. 海洋水产研 究, 1998, 19(1): 43-52
- 卞少伟, 孙韧, 梅鹏蔚, 等. 2013 年春夏季天津近岸海域浮游 植物的群落结构. 水生态学杂志, 2015, 36(1): 47-52
- 尹翠玲, 张秋丰, 石海明, 等. 2011 年渤海湾近岸海域网采浮游植物群落. 海洋湖沼通报, 2013(3): 152–160
- 孙军, 刘东艳, 杨世民, 等. 渤海中部和渤海海峡及邻近海域 浮游植物群落结构的初步研究. 海洋与湖沼, 2002, 33(5): 461-471
- 孙军, 刘东艳. 2000 年秋季渤海的网采浮游植物群落. 海洋学报, 2005, 27(3): 124–132
- 孙军,刘东艳.多样性指数在海洋浮游植物研究中的应用. 海洋学报,2004,26(1): 62-75
- 孙萍,李瑞香,李艳,等. 2005年夏末渤海网采浮游植物群落 结构.海洋科学进展,2008,26(3):354–363
- 张翠霞,陈婷,黄晓,等. 2011 年夏季北黄海浮游植物群落.海 洋湖沼通报,2014(1):81-93
- 林更铭,杨清良.台湾海峡小型浮游植物的物种多样性和分 布特征.生物多样性,2007,15(1):31-45
- 徐兆礼, 陈亚瞿. 东黄海秋季浮游动物优势种聚集强度与鲐 碜渔场的关系. 生态学杂志, 1989, 8(4): 13-15
- 徐宗军, 孙萍, 朱明远, 等. 南海北部春季网采浮游植物群落 结构初步研究. 海洋湖沼通报, 2011(2): 100-106
- 郭术津,李彦翘,张翠霞,等. 渤海浮游植物群落结构及与环 境因子的相关性分析. 海洋通报,2014,33(1):95–105
- 康元德. 渤海浮游植物的数量分布和季节变化. 海洋水产研 究, 1991(12): 31-44
- 薛雄志,杨喜爱.近岸海域污染的生态效应评价.海洋科学, 2004,28(10):75-81
- Margalef, DR. Perspectives in ecological theory. Chicago: University of Chicago Press, 1968, 1–111
- Pielou, EC. An introduction to mathematical ecology. New York: Wiley-Inter-Science, 1969

Shannon CE, Weaver W. The mathematical theory of communication Urbana. IL: University of Illinois Press, 1949, 144

Wang CC. Dinoflagellata of the gulf of Pê-Hai. Sinensia, 1936, 7(2): 128–171

(编辑 江润林)

## Species Composition and Seasonal Variation of Netz-Phytoplankton in the Central Bohai Sea

SUN Xuemei, XU Donghui, XIA Bin, CUI Zhengguo, QU Keming, JIANG Tao, ZHAO Jun, CHEN Jufa, CHEN Bijuan<sup>(D)</sup>

(Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Shandong Provincial Key Laboratory for Fishery Resources and Eco-environment, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071)

The community structure of phytoplankton could be affected by environmental factors, such Abstract as water temperature, salinity, total nitrogen, and total phosphorus. Changes in environmental factors may be associated with alteration in the community structure of phytoplankton. To investigate the consequences of oil spill in the Bohai Sea in 2011, here we analyzed features of phytoplankton community structure using data obtained in the comprehensive investigation at 41 stations within the central Bohai Sea in May, July, November and December 2013. The sampling and measuring methods followed the Specifications for Oceanographic Surveys and Specifications for Marine Monitoring. A total of 87 phytoplankton species were found, including 72 species of diatom in 33 genera and 15 species of pyrrophyta in 9 genera. There was another species of chrysophyta in 1 genus. Diatoms were the dominant phytoplankton species, while some dinoflagellates species also accounted for a large portion in the community. Compared to the historical data in the same season, there was an obvious shift in the community structure. Eucampia zodiacus, a previous dominant species, were not found in this survey; however, *Thalassiosira punctigera* appeared for the first time as a dominant species. The dominance of planktonic dinoflagellate became increasingly evident. The average cell abundance was  $200.14 \times 10^4$  cell/m<sup>3</sup>, 16.32×10<sup>4</sup> cell/m<sup>3</sup>, 7.43×10<sup>4</sup> cell/m<sup>3</sup> and 12.77×10<sup>4</sup> cell/m<sup>3</sup> in May, July, November and December respectively. The cell abundance in May was higher compared to the historical data probably due to the outbreak of Guinardia delicatula, and in other month it was relatively stable. The diversity index and evenness index of the community structure followed the order July > November > May > December. The Spearman analysis revealed that changes in the nutrient structure of the central Bohai Sea was responsible for the shift in community structure, and that the spilled petroleum also might have affected the community structure. Because the phytoplankton community structure was generally consistent with results from other investigations, it was most likely unchanged after the oil spill in 2011.

Key words Central Bohai Sea; Phytoplankton; Dominant species; Community structure

① Corresponding author: CHEN Bijuan, E-mail: chenbj@ysfri.ac.cn

DOI: 10.11758/yykxjz. 20150527002

http://www.yykxjz.cn/

# 近年渤海中部海域活性磷酸盐的时空变化特征

陈聚法<sup>#</sup> 赵 俊<sup>#</sup> 过 锋 曲克明 崔正国 孙雪梅 朱建新 丁东生 刘传霞



(农业部海洋渔业可持续发展重点实验室 山东省渔业资源与生态环境重点实验室 中国水产科学研究院黄海水产研究所 青岛 266071)

**摘要** 渤海封闭性强, 水动力条件和自净能力较弱, 其生态系统较为敏感和脆弱。2011 年位于 渤海中部的蓬莱 19-3 油田发生重大溢油事故, 对渔业生态环境和渔业资源造成了严重影响。为了 解和掌握该起溢油污染事故发生后渔业生态环境的变化状况, 分别于 2012-2014 年在渤海中部海域 进行了 9 个航次的生态环境跟踪调查。利用其中部分调查资料, 作者对渤海中部活性磷酸盐的时空 变化特征及其影响因素进行了分析探讨。结果显示, (1) 2012-2014 年春季和夏季渤海中部海域活 性磷酸盐含量符合第二类海水水质标准要求, 秋、冬季部分海域已受到活性磷酸盐的污染。(2) 不 同季节渤海中部海域活性磷酸盐的平面分布趋势各异, 垂直分布也存在季节差异。春季和夏季活性 磷酸盐呈现由表层至底层递减的趋势, 秋季和冬季接近呈垂直分布均匀状态。(3) 渤海中部海域活 性磷酸盐平均含量季节变化明显, 其含量顺序由高到低依次为冬季、秋季、春季、夏季, 冬季明显 高于夏季。2014 年渤海中部海域活性磷酸盐含量低于 2013 年, 呈逐年降低趋势。(4) 渤海中部海 域活性磷酸盐时空变化受到诸多因素的影响, 营养盐的外源补充、内源再生和生物消耗是影响活性 磷酸盐时空变化的最重要因素。

关键词 活性磷酸盐;时空变化;影响因素;渤海中部海域 中图分类号 X824 文献标识码 A 文章编号 2095-9869(2016)04-0028-08

渤海为我国半封闭的内海,三面环陆,仅东部通 过渤海海峡与黄海相通。渤海海域面积为77284 km<sup>2</sup>, 大陆海岸线长2668 km,平均水深18 m。渤海沿岸有 入海河流100余条,其中主要入海河流40余条,较 大河流包括黄河、小清河、海河、滦河、大辽河等, 形成渤海沿岸三大水系和三大海湾生态系统。渤海封 闭性较强,水动力条件和自净能力不强,其生态系统 较为敏感和脆弱。一旦受到污染,渤海生态系统受损 程度要重于水动力条件强的开阔海域,受损生态系统 的恢复也需要更长的时间。

从 2011 年 6 月 4 日开始,位于渤海中部的蓬莱 19-3 油田发生重大溢油事故,事故持续时间之长,影 响范围之广在渤海前所未有,对渔业生态环境和渔业 资源造成了严重影响。为了解和掌握该起溢油污染事 故发生后渔业生态环境的变化状况,分别于 2012 年 春季、2013 年和 2014 年春、夏、秋、冬四季在渤海 中部海域进行了 9 个航次的生态环境跟踪调查。作者 利用海水中活性磷酸盐的调查结果,对渤海中部活性 磷酸盐的时空变化特征及其影响因素进行了分析探 讨,既可实时了解研究海域营养盐的现状,又可评估 蓬莱 19-3 油田溢油事故对污染海域生态环境的短期 和中期影响。本研究内容属于海洋溢油生态影响研究 的范畴,也是溢油污染海域生态修复研究的基础。

有关渤海海域海水营养盐的分布变化特点与营

<sup>\*</sup>农业部溢油专项"渤海生态环境监测与评估"(农办渔【2012】117号)和"应对溢油关键技术专项研究"(2012-NZ-5739) 共同资助

<sup>#</sup> 共同第一作者: 陈聚法, 研究员, E-mail: chenjf@ysfri.ac.cn; 赵 俊, 研究员, E-mail: zhaojun@ysfri.ac.cn 收稿日期: 2015-05-27, 收修改稿日期: 2015-08-10

养状况已有诸多分析研究结果(于春艳等, 2013;石强 2013;张乃星等, 2011;张继民等, 2008;蒋红等, 2005; 赵骞等, 2004;赵亮等, 2002;崔毅等, 1996;陈淑珠 等, 1991;林庆礼等, 1991;吕小乔等, 1985),但近年对 渤海中部海水营养盐的系统研究未见报道。作者通过分 析 2012-2014年渤海中部活性磷酸盐调查资料,对该海 域活性磷酸盐的时空变化进行了研究,对于渤海生态环 境的保护和受损生态系统的恢复具有重要意义。

## 1 材料与方法

#### 1.1 调查方法

1.1.1 调查区域与站位设置 调查区域为渤海中 部海域(图 1),设置生态环境调查站位 41 个,水样采集 层次为表层、10 m 层、底层。调查时间分别为 2012 年 春季; 2013 年春季、夏季、秋季、冬季; 2014 年春 季、夏季、秋季、冬季,共计 9 个航次。

1.1.2 调查项目与分析方法 调查项目包括水温、 盐度、pH、DO、COD、亚硝酸盐氮、硝酸盐氮、氨 氮、无机氮、活性磷酸盐、石油类、重金属(铜、锌、 铅、镉、汞)、砷等。本研究仅对活性磷酸盐数据进 行分析。活性磷酸盐样品的采集、处置和检测均按《海 洋监测规范》(中华人民共和国国家质量监督检验检 疫总局等, 2007)的规定和要求进行。

#### 1.2 评价方法

采用单因子污染指数法,单因子污染指数计算公式: *P<sub>i</sub>*=*C<sub>i</sub>/C<sub>io</sub>*。式中, *P<sub>i</sub>*为某项因子的污染指数, *C<sub>i</sub>*为某项因子的实测值, *C<sub>io</sub>*为某项因子的评价标准值。

以污染指数值 1.0 作为该因子是否对海水产生污染的 基本界线,大于 1.0 说明海水已被该因子污染。

依据《海水水质标准》(国家环境保护局等,1997) 中的第一类标准(活性磷酸盐≤0.015 mg/L)和第二类 标准(活性磷酸盐≤0.030 mg/L),分别对调查海域活 性磷酸盐的污染状况进行评价。

### 2 结果与分析

### 2.1 近年渤海中部海域活性磷酸盐的含量与空间分布

**2.1.1** 活性磷酸盐的含量状况 对2012-2014年9个 航次活性磷酸盐调查结果进行统计分析。结果显示, 2012 年春季渤海中部海域活性磷酸盐含量范围为 4.43-22.07 μg/L, 表层、10 m 层和底层的含量平均值 分别为 11.12、10.94、10.45 μg/L (表 1)。

2013 年春季渤海中部海域活性磷酸盐含量范围 为 4.52–19.96 μg/L,表层、10 m 层和底层含量平均 值分别为 11.03、11.09、10.51 μg/L;夏季活性磷酸盐 含量为 2.12–9.70 μg/L,表层、10 m 层和底层含量平 均值分别为 5.51、4.97、4.77 μg/L;秋季活性磷酸盐 含量范围为 3.03–47.35 μg/L,表层、10 m 层和底层 含量平均值分别为 23.57、25.05、26.16 μg/L;冬季活 性磷酸盐含量为 8.57–38.12 μg/L,表层、10 m 层和 底层含量平均值分别为 22.33、23.25、22.19 μg/L(表 1)。 2014 年春季渤海中部海域活性磷酸盐含量为 1.20–24.93 μg/L,表层、10 m 层和底层含量平均值分 别为 9.13、8.25、8.99 μg/L;夏季活性磷酸盐含量为 0.45–18.23 μg/L,表层、10 m 层和底层含量平均值分



別为 3.26、3.04、2.90 μg/L; 秋季活性磷酸盐含量在 4.14-33.36 μg/L, 表层、10 m 层和底层含量平均值分 別为 15.00、13.52、15.64 μg/L; 冬季活性磷酸盐含 量为 18.75-55.27 μg/L, 表层、10 m 层和底层含量平 均值分别为 33.85、32.87、32.63 μg/L(表 1)。

2012-2014 年各个调查航次渤海中部海域表层、 10 m 层和底层活性磷酸盐含量范围列入表 1。 2.1.2 活性磷酸盐的空间分布 平面分布趋势:渤 海中部海域表层、10 m 层和底层活性磷酸盐的平面 分布趋势相似,作者以表层为例来分析其平面分布趋 势。春季调查海域表层活性磷酸盐高含量区主要位于 渤海湾湾口附近和 38.5°N 附近的东西向带状区域, 其他区域活性磷酸盐含量相对较低。夏季表层活性磷 酸盐高含量区主要集中在调查海域的西北部,其他区 域活性磷酸盐含量相对较低。秋季表层活性磷酸盐高 含量区主要集中在调查海域的北部,其他区域活性磷 酸盐含量相对较低。冬季表层活性磷酸盐高含量区主 要集中在调查海域的东北部,调查海域东南角和西南 角也存在活性磷酸盐高含量区,其他区域活性磷酸盐 含量相对较低(图 2)。垂直分布趋势:春季和夏季渤海

表 1 2012-2014 年渤海中部海域活性磷酸盐含量状况 Tab.1 Concentrations of active phosphate in the central Bohai Sea during 2012-2014



图 2 渤海中部海域表层活性磷酸盐平面分布

Fig.2 Horizontal distribution of active phosphate concentration in the surface layer of the central Bohai Sea  $(\mu g/L)$ 

中部海域活性磷酸盐平均含量以表层最高,10 m 层 次之,底层最低,呈由表层至底层递减的变化趋势。 秋季渤海中部海域活性磷酸盐平均含量表层至10 m 层分布均匀,10 m 层至底层呈现增高趋势。冬季渤 海中部海域活性磷酸盐平均含量接近呈现垂直分布 均匀状态(表2)。

| 表 2   | 渤海中部海域不同层次活性磷酸盐含量变化                            |
|-------|------------------------------------------------|
| Tab.2 | Variation of active phosphate concentration at |
|       | different depths in the central Bohai Sea      |

| **           | 平均含量 A        | verage of concen     | tration/µg/L |
|--------------|---------------|----------------------|--------------|
| 李卫<br>Season | 表层<br>Surface | 10 m 层<br>10 m depth | 底层<br>Bottom |
| 春季 Spring    | 10.43         | 10.09                | 9.98         |
| 夏季 Summer    | 4.39          | 4.01                 | 3.84         |
| 秋季 Autumn    | 19.29         | 19.29                | 20.90        |
| 冬季 Winter    | 28.09         | 28.06                | 27.41        |

#### 2.2 渤海中部海域活性磷酸盐的时间变化特征

2.2.1 活性磷酸盐的季节变化 调查结果显示,渤海中部海域活性磷酸盐平均含量季节变化明显。表层、10 m 层和底层活性磷酸盐含量季节变化趋势相同,3个层次其含量顺序均为冬季>秋季>春季>夏季,冬季明显高于夏季 (图 3)。

**2.2.2** 活性磷酸盐的年际变化 调查和分析结果显示,2014年渤海中部海域表层、10 m 层和底层活性磷酸盐平均含量均低于2013年,呈下降趋势(图 4)。



图 3 渤海中部海域活性磷酸盐季节变化 Fig.3 Seasonal variation of active phosphate concentration in the central Bohai Sea

#### 2.3 渤海中部海域活性磷酸盐的污染状况

依据单因子污染指数法对调查海域活性磷酸盐 的含量状况进行评价,按照第一类海水水质标准计算 得出的污染指数和超标率列入表 3,按照第二类海水 水质标准计算得出的污染指数和超标率列入表 4。



图 4 渤海中部海域活性磷酸盐年际变化 Fig.4 Inter-annual variation of active phosphate concentration in the central Bohai Sea

评价结果显示,2012 年春季渤海中部调查海域全部站 位活性磷酸盐含量均符合第二类海水水质标准(表 4), 部分站位超过第一类海水水质标准,表层、10 m 层和 底层超标率分别为 28.57%、19.05%和 9.52% (表 3)。

2013 年春季渤海中部调查海域全部站位活性磷酸盐含量均符合第二类海水水质标准(表 4),部分站位超过第一类海水水质标准,表层、10 m 层和底层超标率分别为 14.63%、14.63%和 17.07% (表 3)。

2013 年夏季渤海中部调查海域全部站位活性磷酸盐含量均符合第一类海水水质标准,无超标情况出现(表 3 和表 4)。

2013 年秋季渤海中部调查海域大部分站位活性 磷酸盐含量符合第二类海水水质标准,少部分站位超 过第二类海水水质标准,表层、10 m 层和底层超标率 分别为 29.27%、26.83%和 29.27%(表 4);调查海域少 部分站位活性磷酸盐含量符合第一类海水水质标准, 大部分站位超过第一类海水水质标准,表层、10 m 层 和底层超标率分别为 82.93%、87.80%和 92.68%(表 3)。

2013 年冬季渤海中部调查海域大部分站位活性 磷酸盐含量符合第二类海水水质标准,少部分站位超 过第二类海水水质标准,表层、10 m 层和底层超标 率分别为7.32%、9.76%和4.88%(表4);调查海域少部 分站位活性磷酸盐含量符合第一类海水水质标准,大部 分站位超过第一类海水水质标准,表层、10 m 层和底 层超标率分别为90.24%、92.68%和87.80%(表3)。

2014 年春季渤海中部调查海域全部站位活性磷酸盐含量均符合第二类海水水质标准(表4),部分站位超过第一类海水水质标准,表层、10 m 层和底层超标率分别为 12.20%、12.20%和 14.63% (表3)。

2014 年夏季渤海中部调查海域全部站位活性磷酸盐含量均符合第二类海水水质标准(表4),个别站位

| 1a0.5 1                  | ollution inc            | dex and exceeding limit ra      | te of active            | phosphate in the central B      | sonal Sea di            | Iring 2012–2014                 |
|--------------------------|-------------------------|---------------------------------|-------------------------|---------------------------------|-------------------------|---------------------------------|
| 田本时间                     |                         | 表层 Surface                      | 10                      | m 层 10 m depth                  |                         | 底层 Bottom                       |
| 调查时间<br>Surveyed time    | $P_i$ 范围<br>$P_i$ scope | 超标率<br>Exceeding limit rate (%) | $P_i$ 范围<br>$P_i$ scope | 超标率<br>Exceeding limit rate (%) | $P_i$ 范围<br>$P_i$ scope | 超标率<br>Exceeding limit rate (%) |
| 2012 年春季<br>Spring, 2012 | 0.30-1.47               | 28.57                           | 0.30-1.37               | 19.05                           | 0.39–1.28               | 9.52                            |
| 2013 年春季<br>Spring, 2013 | 0.40-1.24               | 14.63                           | 0.30-1.24               | 14.63                           | 0.30-1.33               | 17.07                           |
| 2013 年夏季<br>Summer, 2013 | 0.14-0.65               | 0                               | 0.14-0.58               | 0                               | 0.14-0.55               | 0                               |
| 2013 年秋季<br>Autumn, 2013 | 0.20-2.54               | 82.93                           | 0.57-2.66               | 87.80                           | 0.57-3.16               | 92.68                           |
| 2013 年冬季<br>Winter, 2013 | 0.94–2.42               | 90.24                           | 0.57-2.17               | 92.68                           | 0.57-2.54               | 87.80                           |
| 2014 年春季<br>Spring,2014  | 0.08-1.48               | 12.20                           | 0.08-1.20               | 12.20                           | 0.08-1.66               | 14.63                           |
| 2014 年夏季<br>Summer,2014  | 0.03-1.22               | 2.44                            | 0.03-1.14               | 2.44                            | 0.03-0.55               | 0                               |
| 2014 年秋季<br>Autumn,2014  | 0.28-2.22               | 41.46                           | 0.28-1.64               | 36.59                           | 0.47-1.54               | 53.66                           |
| 2014 年冬季<br>Winter,2014  | 1.83-2.61               | 100.00                          | 1.83–2.91               | 100.00                          | 1.25-3.68               | 100.00                          |

表 3 2012-2014 年渤海中部海域活性磷酸盐污染指数与超标率

a f a atia 

注:按照第一类海水水质标准计算

Note: The  $P_i$  value was calculated according to the first class limit of sea water quality standard

超过第一类海水水质标准,表层、10 m 层和底层超 标率分别为 2.44%、2.44%和 0 (表 3)。

2014 年秋季渤海中部调查海域大部分站位活性 磷酸盐含量符合第二类海水水质标准,仅个别站位超 过第二类海水水质标准,表层、10 m 层和底层超标 率分别为 4.88%、0、0 (表 4);调查海域部分站位活 性磷酸盐含量符合第一类海水水质标准,部分站位超 过第一类海水水质标准,表层、10 m 层和底层超标 率分别为 41.46%、36.59%、53.66% (表 3)。

2014 年冬季渤海中部调查海域大部分站位活性 磷酸盐含量符合第二类海水水质标准,少部分站位超 过第二类海水水质标准,表层、10 m 层和底层超标 率分别为 26.83%、21.95%和 17.07% (表 4); 调查海 域全部站位活性磷酸盐含量超过第一类海水水质标 准, 表层、10 m 层和底层超标率均为 100% (表 3)。

由此可见,虽然调查海域地处渤海中部、非近岸海 域,受陆源污染的影响较小,但秋、冬季部分海域活性 磷酸盐含量仍然超过第二类海水水质标准。该调查区域 为进出渤海的主要航道,船舶生活污水和压舱水的大量 排放应该是导致该海域活性磷酸盐超标的原因之一。

#### 3 讨论

海水中的营养盐是海洋浮游植物生长繁殖所必 须的营养物质,氮和磷是组成生物细胞原生质的重要 元素,而硅则是硅藻等海洋浮游植物的骨架和介壳的 主要组成部分。它们在控制海洋植物的生长和海洋初 级生产力等方面起着相当重要作用。大量的研究表 明,海水中的氮、磷、硅等营养盐的水平及其结构极 大地影响着浮游植物的初级生产水平及生态系统结 构(Lagus et al, 2004)。由于这些元素参与生物生命活 动的整个过程,他们的存在形态与分布受到生物的制 约,同时受到化学、地质和水文等因素的影响(张乃星 等,2011),因此,研究营养盐的分布变化规律对于海 洋生态环境保护具有重要的意义。

#### 3.1 影响渤海中部活性磷酸盐空间分布的主要因素

影响渤海中部海域活性磷酸盐平面分布的因素 众多,影响机制错综复杂,沿岸径流携带营养盐入海、 浮游植物的生长繁殖、海水层化的区域差异、环流场 的分布、研究海域与莱州湾、渤海湾、辽东湾以及黄海

| Tab.4                    | Pollution index and exceeding limit rate of active phosphate in the central Bohai Sea during 2012-2014 |                                 |                         |                                 |                         |                                 |
|--------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|---------------------------------|-------------------------|---------------------------------|
| 调查时间 -<br>Surveyed time  | 表层 Surface                                                                                             |                                 | 10 m 层 10 m depth       |                                 | 底层 Bottom               |                                 |
|                          | $P_i$ 范围<br>$P_i$ scope                                                                                | 超标率<br>Exceeding limit rate (%) | $P_i$ 范围<br>$P_i$ scope | 超标率<br>Exceeding limit rate (%) | $P_i$ 范围<br>$P_i$ scope | 超标率<br>Exceeding limit rate (%) |
| 2012 年春季<br>Spring, 2012 | 0.15-0.74                                                                                              | 0                               | 0.15-0.69               | 0                               | 0.20-0.64               | 0                               |
| 2013 年春季<br>Spring, 2013 | 0.20-0.62                                                                                              | 0                               | 0.15-0.62               | 0                               | 0.15-0.67               | 0                               |
| 2013 年夏季<br>Summer, 2013 | 0.07-0.32                                                                                              | 0                               | 0.07-0.29               | 0                               | 0.07-0.27               | 0                               |
| 2013 年秋季<br>Autumn, 2013 | 0.10-1.27                                                                                              | 29.27                           | 0.29–1.33               | 26.83                           | 0.29–1.58               | 29.27                           |
| 2013 年冬季<br>Winter, 2013 | 0.47-1.21                                                                                              | 7.32                            | 0.29-1.09               | 9.76                            | 0.29–1.27               | 4.88                            |
| 2014 年春季<br>Spring, 2014 | 0.04-0.74                                                                                              | 0                               | 0.04-0.60               | 0                               | 0.04-0.83               | 0                               |
| 2014 年夏季<br>Summer, 2014 | 0.02-0.61                                                                                              | 0                               | 0.02-0.57               | 0                               | 0.02-0.27               | 0                               |
| 2014 年秋季<br>Autumn, 2014 | 0.14-1.11                                                                                              | 4.88                            | 0.14-0.82               | 0                               | 0.24-0.77               | 0                               |
| 2014 年冬季<br>Winter, 2014 | 0.92-1.31                                                                                              | 26.83                           | 0.92-1.45               | 21.95                           | 0.62-1.84               | 17.07                           |

表 4 2012-2014 年渤海中部海域活性磷酸盐污染指数与超标率

注:按照第二类海水水质标准计算

Note: The  $P_i$  value was calculated according to the second class limit of sea water quality standard

北部海域营养盐的交换;水动力因子和生物扰动作用下 海水--沉积物界面营养盐的交换、生物的代谢等因素均 对活性磷酸盐的平面分布产生影响(张乃星等, 2011; 蒋红等, 2005; 崔毅等, 1996)。

渤海中部海域活性磷酸盐垂直分布结构主要受 到渤海沿岸入海径流、海水层化、垂直对流作用、涡 动混合作用和海水--沉积物界面交换等因素的影响。 富含氮、磷营养盐的陆源径流入海,首先作用于上层 海水,使上层海水中活性磷酸盐含量增高。春季和夏 季海水层化现象明显,受跃层的阻隔,上下层海水混 合强度较弱,使磷酸盐含量较高的上层海水难以交换 至下层,再加上春、夏季风浪较小、表层沉积物难以 悬浮进入水体,通过海水-沉积物界面释放至底层海 水中的营养盐很少,因此,形成春、夏季表层至底层 活性磷酸盐递减的变化趋势。与夏季相比,秋季陆源 径流入海量减少,海水层化现象逐渐消失,浪流作用 下的沉积物再悬浮强度加大,通过海水-沉积物界面 释放至底层海水中的营养盐增多,因此,形成秋季活 性磷酸盐的这种垂直分布格局。冬季水温下降, 表层 海水密度变大下沉,海水垂直对流作用加强,再加 上冬季大风过程的影响,风生涡动的混合作用强烈 (鲍献文等, 2004),上下层海水充分混合,使得冬季 渤海中部海域活性磷酸盐含量近呈垂直分布均匀状态(张乃星等, 2011;赵骞等, 2004)。

#### 3.2 影响渤海中部活性磷酸盐时间变化的主要因素

影响渤海中部海域活性磷酸盐季节变化的主要 因素包括受到渤海沿岸入海径流量、浮游植物生长繁 殖和海水垂直混合作用等因素的影响。春季,随着光 照时间的延长,水温的回升,浮游植物的光合作用加 强。在经历了春季浮游植物的生长高峰后,海水中的 营养盐被大量消耗。到了夏季,海水中的营养盐含量 显著降低。之后随着水温下降和光照时间缩短,浮游 植物繁殖能力减弱,再加上径流输入的补充,秋季营 养盐水平逐步回升(赵骞等, 2004; 赵亮等, 2002)。冬 季,水温降至一年中的最低值,光照差,不利于浮游 植物的生长繁殖,对营养盐的消耗大幅减少,此时营 养盐的再生补充较为充分(张乃星等, 2011), 使得冬季 渤海中部海域活性磷酸盐含量达到最高。虽然冬季随陆 源径流入海的营养盐减少,但沉积物再悬浮强度达到最 大,通过海水--沉积物界面释放至海水中的营养盐明显 增多,部分抵消了营养盐入海量减少对磷酸盐含量的影
响。2013 年春、夏、秋、冬季渤海中部海域浮游植物 调查结果显示,浮游植物种类数以春季最多(67 种),夏 季次之(63 种),秋季第三(59 种),冬季最少(48 种);浮 游植物丰度以春季最高(200.14×10<sup>4</sup> cell/m<sup>3</sup>),夏季次之

(16.32×10<sup>4</sup> cell/m<sup>3</sup>),秋季第三(12.77×10<sup>4</sup> cell/m<sup>3</sup>), 冬季最低(7.43×10<sup>4</sup> cell/m<sup>3</sup>)。调查海域浮游植物种数 和丰度的这种季节变化趋势证实了浮游植物生长繁 殖是影响活性磷酸盐季节变化的主要因素之一。

造成渤海中部海域活性磷酸盐含量年际变化的 原因错综复杂,沿岸入海径流变化、浮游植物丰度变 化、环流特征变化、气象条件变化、温度、盐度和pH 值变化等均对研究海域活性磷酸盐年变化产生影响。 《2013 年中国海洋环境状况公报》(国家海洋局, 2014)和《2014年中国海洋环境状况公报》(国家海洋 局, 2015)(以下简称公报)显示, 2013 年渤海主要入 海河流黄河、小清河、大辽河和双台子河径流携带入 海的总磷量为 3708 t, 而 2014 年上述 4 条河流径流 携带入海的总磷量为 2842 t, 比 2013 年下降 866 t, 降幅达到 23.35%。2014 年渤海中部海域活性磷酸盐 含量低于 2013 年,与渤海沿岸主要河流径流携带入 海的总磷量大幅下降明显相关。另外,浮游植物调查结 果显示, 2013 年渤海中部四季调查共鉴定出浮游植物 87种,2014年调查海域浮游植物种类数与2013年基 本持平(85 种); 2014 年浮游植物平均丰度由 2013 年的 59.16× 10<sup>4</sup> cell/m<sup>3</sup> 增至 65.45×10<sup>4</sup> cell/m<sup>3</sup>, 生物多样 性指数均值由 2013 年的 1.76 增至 2.02。由此可见, 与 2013 年相比, 2014 年调查海域浮游植物平均丰度 和生物多样性增加也是造成 2014 年渤海中部海域活 性磷酸盐含量低于 2013 年的重要原因之一。

#### 3.3 渤海中部活性磷酸盐的长期变化

蒋红等(2005)研究了渤海 1982–1998 年营养盐的 变化趋势,结果显示,20世纪 90年代渤海中部海域 活性磷酸盐含量比 80年代显著下降,由1982年的 30.97 μg/L 降至1998年的 9.92 μg/L。本研究结果显 示,2013年和2014年渤海中部海域活性磷酸盐含量 分别为15.87、14.92 μg/L,比1998年有所增高,但 仍处于较低水平,磷有可能成为研究海域浮游植物生 长繁殖的限制因子。

#### 3.4 本研究结果与其他研究结果的比较

赵亮等(2002)在研究渤海氮磷营养盐的循环和 收支时发现,渤海 4-9 月为营养盐消耗期,10 月到 翌年 3 月为营养盐补充期,这与本研究关于渤海中部 海域活性磷酸盐季节变化趋势的分析结果一致。 2013 年公报显示, 2013 年夏季渤海中部调查海域 活性磷酸盐含量符合第一类海水水质标准, 与本研究评价结果一致。

2014 年公报显示,2014 年春季渤海中部调查海域活性磷酸盐含量符合第一类海水水质标准。本研究评价结果为大部分站位活性磷酸盐含量符合第一类海水水质标准,少数站位活性磷酸盐含量超过第一类海水水质标准,表层、10 m 层和底层超标率分别为12.20%、12.20%和14.63%,二者存在一定差异。

公报显示,2014 年夏季渤海中部调查海域活性 磷酸盐含量符合第一类海水水质标准。本研究评价结 果为绝大部分站位活性磷酸盐含量符合第一类海水 水质标准,仅个别站位活性磷酸盐含量超过第一类海 水水质标准,表层、10 m 层和底层超标率分别为 2.44%、2.44%和0,二者基本一致。

公报显示,2014 年秋季渤海中部的东北部海域 活性磷酸盐含量符合第二、三类海水水质标准,无第 四类水质海域。本研究评价结果为绝大部分站位活性 磷酸盐含量符合第二、三类海水水质标准,仅个别站 位活性磷酸盐含量超标,表层、10 m 层和底层超标 率分别为4.88%、0和0,二者基本一致。

# 4 结语

(1) 2012-2014 年春季和夏季渤海中部海域活性 磷酸盐含量符合第二类海水水质标准要求,秋、冬季 部分海域已受到活性磷酸盐的污染。

(2)不同季节渤海中部海域活性磷酸盐的平面 分布趋势各异,垂直分布也存在季节差异。春季和夏 季活性磷酸盐呈由表层至底层递减的趋势,秋季和冬 季近呈垂直分布均匀状态。

(3) 渤海中部海域活性磷酸盐平均含量季节变 化明显,其含量为冬季>秋季>春季>夏季,冬季明显 高于夏季。2014 年渤海中部海域活性磷酸盐含量低 于 2013 年,呈降低趋势。

(4) 渤海中部海域活性磷酸盐时空变化受到诸 多因素的影响,外源补充、内源再生和浮游植物吸收 消耗是影响活性磷酸盐时空变化的最重要因素。

#### 参考文献

于春艳,梁斌,鲍晨光,等. 渤海富营养化现状及趋势研究. 海洋环境科学, 2013, 32(2): 175-177

- 中华人民共和国国家质量监督检验检疫总局 中国国家标准 化管理委员会.海洋监测规范—第4部分:海水分析 (GB17378.4-2007).北京:中国标准出版社,2007
- 石强. 渤海夏季海水磷酸盐年际时空演变. 海洋通报, 2013,

32(4): 395-402

- 吕小乔, 祝陈坚, 张爱斌, 等. 夏季渤海西南部及黄河口海域 营养盐分布特征. 山东海洋学院学报, 1985, 15(1): 146–158
- 张乃星, 任荣珠, 吴凤丛, 等. 渤海海峡冬季营养盐的分布特 征及影响因素. 海洋通报, 2011, 30(6): 607-614
- 张继民,刘霜,张琦,等.黄河口附近海域营养盐特征及富营 养化程度评价.海洋通报,2008,27(5):65-72
- 陈淑珠,顾郁翘,刘敏光,等.黄河口及其邻近海域营养盐分 布特征.中国海洋大学学报(自然科学版),1991,21(1): 32-41
- 林庆礼, 宋云利, 杨琴芳, 等. 渤海增殖水化学环境. 海洋水 产研究, 1991(12): 11-30
- 国家环境保护局,国家技术监督局. (GB3097-1997). 海水水 质标准. 北京:中国标准出版社,1997
- 国家海洋局. 2013年中国海洋环境状况公报. 2014

- 国家海洋局. 2014年中国海洋环境状况公报. 2015
- 赵亮, 魏皓, 冯士筰. 渤海氮磷营养盐的循环和收支. 环境科 学, 2002, 23(1): 78-81
- 赵骞, 田纪伟, 赵仕兰, 等. 渤海冬夏季营养盐和叶绿素 a 的 分布特征. 海洋科学, 2004, 28(4): 34–39
- 崔毅, 宋云利. 渤海海域营养现状研究. 海洋水产研究, 1996, 17(1): 57-62
- 蒋红, 崔毅, 陈碧鹃, 等. 渤海近 20 年来营养盐变化趋势研 究. 海洋水产研究, 2005, 26(6): 61-67
- 鲍献文, 万修全, 吴德星, 等. 2000 年夏末和翌年初冬渤海 海水水文特征. 海洋学报, 2004, 26(1): 14-24
- Lagus A, Suomela J, Weithhoff G, *et al.* Species-specific differences in phytoplankton responses to N and P enrichments and the N:P ratio in the Archipelago Sea, northern Baltic Sea. J Plankton Res, 2004, 26(7): 779–798

(编辑 江润林)

# Recent Temporal and Spatial Variation in Active Phosphate Concentration in Seawater of the Central Bohai Sea

CHEN Jufa<sup>#</sup>, ZHAO Jun<sup>#</sup>, GUO Feng, QU Keming, CUI Zhengguo, SUN Xuemei, ZHU Jianxin, DING Dongsheng, LIU Chuanxia

(Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Shandong Provincial Key Laboratory of Fishery Resources and Ecological Environment; Yellow Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Qingdao 266071)

Abstract The Bohai Sea is a semi-closed gulf with weak hydrodynamic condition and self-purification capacity. Therefore its eco-system is more sensitive and fragile than open seas. A serious oil spill accident occurred in the Penglai 19-3 oil field located in the central Bohai Sea in 2011, which severely affected the marine ecological environment and fishery resources. To determine the aftermath in fishery ecological environment, nine surveys were carried out in the central Bohai Sea in 2012–2014. Based on part of the survey data, we analyzed the temporal and spatial variation in active phosphate and the corresponding factors in the central Bohai Sea. The results showed that the levels of active phosphate met the second class of sea water quality standard in spring and summer from 2012 to 2014, but the pollution caused by active phosphate was observed in part of the survey in autumn and winter; the horizontal and vertical distribution of active phosphate varied in different seasons, and in spring and summer the concentration of active phosphate gradually decreased along with the increase in depth, while in autumn and winter it was almost constant from the surface to the bottom; the seasonal mean concentration of active phosphate followed the order winter>autumn>spring>summer, and it was obviously higher in winter than in summer, plus the mean concentration was lower in 2014 than in 2013; The distribution and variation of active phosphate in the central Bohai Sea was affected by many factors, and key ones included exogenous supplement, endogenous release of nutrients, and biological consumption.

Key words Active phosphate; Temporal and spatial variation; Influencing factors; Central Bohai Sea

<sup>#</sup> Joint first author: CHEN Jufa, E-mail: chenjf@ysfri.ac.cn; ZHAO Jun, E-mail: zhaojun@ysfri.ac.cn

DOI: 10.11758/yykxjz.20150818001

http://www.yykxjz.cn/

# 基于欧拉-拉格朗日方法的某溢油事故 天然渔业资源损失评估方法案例研究<sup>\*</sup>

丁东生 马绍赛 陈碧鹃 崔正国 赵 俊 刘传霞 张旭志 曲克明<sup>①</sup>

(农业部海洋渔业可持续发展重点实验室山东省渔业资源与生态环境重点实验室 中国水产科学研究院黄海水产研究所 青岛 266071)

**摘要** 本研究针对渤海中部某船舶碰撞溢油事故,基于欧拉-拉格朗日方法,对事故发生后的油 膜漂移扩散和油膜消失后的溶解态分布趋势,分别进行了数值模拟。在此基础上,界定事故溢油对 渤海天然渔业资源的影响范围,进而估算天然渔业资源损失。结果显示:溢油量按 13 m<sup>3</sup> 计算,油 膜存在期约为 72 h,累加油膜扫海面积约为 69.19 km<sup>2</sup>;油膜消失后,事故溢油仍会以溶解态、乳 化态或悬浮颗粒态在海水中扩散,水体中的石油烃含量符合渔业水质标准,溢油在第 11 天中午即 可抵岸;油膜会造成渔业资源损失,油膜消失后,悬浮颗粒态和乳化态石油在岸滩等因素影响下会 形成凝聚态石油,并对潮间带生物造成影响。其影响面积结合溶解态抵岸区域内自然岸线长度予以 估算,经评估,在油膜扫海区域及受影响潮间带范围内,事故经济损失额合计为 631.9 万元。本研 究对数值模型方法在溢油事故天然渔业资源损失评估中的应用方面做了有益尝试,为无现场观测数

关键词 欧拉-拉格朗日方法; 溢油事故; 天然渔业资源损失评估 中图分类号 X824 文献标识码 A 文章编号 2095-9869(2016)04-0036-07

近年来,海洋溢油事故频发,已对渔业资源和生态环境产生严重危害。准确界定溢油事故影响范围, 是合理开展渔业资源损失评估、科学制定渔业资源养 护措施、有效保护海洋渔业环境的前提。目前,确定 溢油影响范围的方法可归纳为现场观测技术、遥感观 测技术和数值模型技术,但是只有现场观测结果可作 为司法鉴定的依据。遥感观测技术可分为卫星遥感、 航空遥感、船舶遥感和闭路电视(Closed-Circuit Television, CCTV)监视系统。其中,卫星遥感在实际使用中受到 其空间分辨率的限制,航空遥感和船舶遥感均受气候 条件限制,而 CCTV 监视系统只能用于特殊管控区, 如钻井平台附近的溢油观测。而数值模型技术在环境 影响评价中却已广泛使用。

数值模型技术已成为解决海洋环境中各种复杂问题的有效手段。溢油数值模型常用于事故发生后的油膜漂移轨迹、油膜扫海面积预报或事故现场还原(张珞平等,1988;娄安刚等,1994;张存智等,1997;余加艾等,1999;刘钦政等,2005;龙绍桥等,2006; Azevedo *et al*,2009;Badri *et al*,2010;廖国祥等,2010; Berry *et al*,2012;黄成等,2013;宋泽坤等,2013)。

现有模型对海洋中石油迁移转化过程关注的侧 重点为油膜漂移扩散(Berry *et al*, 2012; Deng *et al*, 2013; Li *et al*, 2013)和水体中石油烃迁移转化(Nepstad *et al*, 2015; 李克强, 2003、2007<sup>1)</sup>、2009; 郭良波等,

收稿日期: 2015-08-18, 收修改稿日期: 2015-10-19

<sup>\*</sup> 农业部专项"应对溢油关键技术专项研究"(2012-NZ-5739)、农业部专项"渤海生态环境监测评估"(13-Q52201302) 和黄海水产研究所级基本科研业务费项目(2060302481; 2060302201516058)共同资助。丁东生, E-mail: dingds@ysfri.ac.cn

① 通讯作者:曲克明,研究员, E-mail: qukm@ysfri.ac.cn

<sup>1)</sup> 李克强. 胶州湾主要化学污染物海洋环境容量研究. 中国海洋大学博士研究生学位论文, 2007

2005<sup>1)</sup>、2007; 王修林等, 2006)。溢油模型重点关注 前者且相关研究已较为成熟,甚至已开始与 GIS 或 Google Earth等结合进行业务化应用相关研究(Nelson *et al*, 2015; Helle *et al*, 2015; Chen *et al*, 2004; 牟林等, 2011; 焦俊超等, 2011; 刘文全等, 2011),但甚少关注 油膜破碎后的相关迁移转化过程。

实际溢油事故发生后,在岸滩、潮间带等区域常 见到块状石油。这些凝聚态石油通常是在岸滩、地形 等因素共同作用下,由随水体迁移至近岸的乳化态和 悬浮颗粒态石油凝聚形成。此种情况下,水体中石油 烃浓度一般都符合水质标准,这也是溢油模型甚少关 注该过程的原因。考虑到此类凝聚态石油对潮间带生 物的损害,在天然渔业资源损失评估中有必要同时掌 握油膜扫海面积以及溶解态向岸分布趋势。

本研究针对渤海中部的某船舶碰撞漏油事故,采 用欧拉-拉格朗日方法,对事故溢油的油膜漂移轨迹、 扩散面积以及溶解态溢油影响范围,进行了数值模 拟,核定了事故影响范围,进而评估了天然渔业资源 损失。

### 1 溢油轨迹与溶解态向岸分布趋势模拟

2012 年两艘轮船在渤海中部海域(图 1)发生碰撞。事故造成其中一艘船舶燃油舱破损,约 13 m<sup>3</sup>船用重质燃料油(180CST)泄漏(简称"溢油事故")。



#### 1.1 水动力模式

水动力模式为汉堡陆架海模式(Hamburg shelf ocean model, HAMSOM),是由德国汉堡大学海洋研

究所 Backhaus 等(1983、1985)及其同事构建的1种三 维分层平均的半隐式数值模式。

#### 1.2 油膜扩散模型

溢油入海后在海面形成油膜,并不断扩散,其扩展半径由 PC Blokker 公式计算(许文彬, 2011;娄厦等, 2008):

$$D_t^3 = D_0^3 + \frac{24}{\pi} k \left( r_w - r_0 \right) \frac{r_0}{r_w} V_0 t \tag{1}$$

式中,  $D_t$ ,  $D_0$ 分别为 t 时和初始油膜的直径(m)。 根据事故漏油实际情况, 燃油舱破损且破口较小, 为 计算方便,  $D_0$ 初始值取 1 m;  $r_w$ ,  $r_0$ 为水和油的密度, 前者取 1.025 (许文彬, 2011), 后者为 180CST 的实测 数据, 为 0.987;  $V_0$ 为溢油量(m<sup>3</sup>), 取 13 m<sup>3</sup>; k 为系 数,根据胜利原油与 180CST 现场实验模拟结果(尚未 发表)并参照文献(许文彬, 2011), 取 3000;  $\pi$  为圆周 率; t 为时间。

#### 1.3 油膜漂移模型

在潮流场计算的基础上,用欧拉-拉格朗日方法, 对溢油油膜漂移轨迹进行跟踪模拟。投放初始,即  $t=t_0$ 时,标识质点的初始位置为 $\bar{x}_0$ ,其拉格朗日速度与欧 拉速度的关系为:

$$\left(\vec{U}_{1}\right)\left(\vec{x}_{0},t\right) = \vec{U}\left[\vec{y}\left(\vec{x}_{0},t\right),t\right]$$
(2)

式中, $\bar{y}(\bar{x}_0,t)$ 是水质点的运动轨迹。(2)式表明, 只有在质点运动的轨迹 $\bar{y}$ 上,拉格朗日速度 $\bar{U}_1$ 才能 与欧拉速度 $\bar{U}$ 相等。 $\bar{y}$ 可由下式确定:

$$\overline{y}(\overline{x}_0, t) = \overline{x}_0 + \int_{t_0}^t \vec{U}[\overline{y}(\overline{x}_0, t')dt'$$
(3)

$$\overline{v}(\overline{x}_0,t) = \overline{x}_0 + \oint \vec{U}(\overline{x}_0,t)dt'$$
(4)

拉格朗日平均余流是水质点在1个潮周期T内的 漂移距离与潮周期T之商:

$$\overrightarrow{U_{lr}}\left(\overline{x}_{0},t\right) = \frac{1}{T} \left[\overline{y}\left(\overline{x}_{0},t+T\right) - \overline{y}\left(\overline{x}_{0},t\right)\right] = \frac{1}{T} \oint \vec{U}\left(\overline{x},t\right) dt' (5)$$

拉格朗日的平均余流为:

$$\vec{U}_{lr}\left(\overline{x}_{0},t\right) = \frac{\overline{y}_{n} - \overline{y}_{0}}{nt} \tag{6}$$

在拉格朗日余流基础上,同时考虑实时风场对油 膜漂移轨迹的影响。油膜漂移模型实时风场采用的风 力、风向由历史天气网查询得到。事故当日,风力为 5 级,风向为东北风;次日,风力为 4 级,风向为东南-西北风各 12 h;第 3 天,风力为 6 级,风向为北风。

<sup>1)</sup> 郭良波. 渤海环境动力学数值模拟及环境容量研究. 中国海洋大学博士研究生学位论文, 2005

#### 1.4 溶解态迁移转化模型

模型为基于 HAMSOM 原始方程构建的三维斜 压模式,垂向采用 Z 坐标,水平方向采用平面直角坐 标,以 Arakawa C 网格进行离散,水平网格分辨率为 2'×2'(图 2),垂向分 20 层,层厚分别为 4 m×1、2 m× 13、3 m×1、4 m×1、5 m×1、6 m×1、7 m×1 和 15 m×1, 为防止计算时"露底"溢出,表层取 4 m (王强, 2004)<sup>1)</sup>。

为了使目标海域流场计算准确,水动力模型计算范 围比目标海域范围略大(图 3),其开边界设于 122°30′E。

模型初始条件,如温度、盐度、流场、云层初始 值(王强,2004<sup>1)</sup>; 王修林等,2006; Zhao *et al*,2011)和 水动力参数(赵亮等,2002; 王强,2004<sup>1)</sup>)主要参考文 献中的值。





溶解态输入通量为动态,输入网格随着油膜漂移

轨迹及油膜实时面积变动,输入通量取 13 m<sup>3</sup>,为获 取溶解态溢油最大影响范围,模拟时将其视为保守物 质,随着油膜减少而同步输入模型进行模拟运算。

# 2 模拟结果与分析

#### 2.1 油膜漂移轨迹

**2.1.1** 油膜扩散面积 180CST 油膜各时间点扩散 半径及面积见表 1。

表 1 180CST 前 12 h 的扩散半径及面积

Tab.1 Diffusion radius and areas in the first twelve

|             | hours of 180CST |                            |
|-------------|-----------------|----------------------------|
| 时间 Time (h) | 半径 Radius (m)   | 面积 Area (km <sup>2</sup> ) |
| 1           | 171             | 0.092                      |
| 2           | 215             | 0.146                      |
| 3           | 247             | 0.191                      |
| 4           | 271             | 0.231                      |
| 5           | 292             | 0.268                      |
| 6           | 311             | 0.303                      |
| 7           | 327             | 0.336                      |
| 8           | 342             | 0.367                      |
| 9           | 356             | 0.397                      |
| 10          | 368             | 0.426                      |
| 11          | 380             | 0.454                      |
| 12          | 391             | 0.481                      |

**2.1.2** 油膜漂移距离 根据拉格朗日余流场与实时风生流场叠加结果,180CST油膜漂移距离见表 2,油膜漂移轨迹见图 4。

表 2 各时间段油膜漂移距离

| Tab.2 Floating dist | ance of oil film in certain time course |
|---------------------|-----------------------------------------|
| 时间 Time (h)         | 漂移距离 Floating distance (km)             |
| 0-12                | 19.93                                   |
| 12–24               | 10.47                                   |
| 24–36               | 13.34                                   |
| 36–48               | 15.26                                   |
| 48-72               | 11.70                                   |

因现场实时风力、风向无直接观测值,为求风力、 风向更接近实际,本研究取目标海域周边陆域山东东 营市、莱州市和长岛县的实时风场数据,对此次溢油 事故海域实时风力、风向参数取值予以矫正。其中, 东营市位于目标海域西南方向,长岛县位于目标海域

1) 王强. 渤海环流的季节变化及浮游生态动力学模拟. 中国海洋大学硕士研究生学位论文, 2004



东方, 莱州市位于目标海域东南方向。

油膜漂移轨迹主要受溢油区海面实时风场和潮 流场影响,本案例中因风力较强,实时风生流场的驱 动贡献更大。

**2.1.3** 油膜扫海面积 以 13 m<sup>3</sup>溢油量计算,模拟 得到累加扫海面积共计 69.19 km<sup>2</sup> (表 3)。

| 18 5           | 百时间权加肤门何间你                                   |
|----------------|----------------------------------------------|
| Tab.3 Floating | area of oil film in certain time course      |
| 时间             | 累加扫海面积                                       |
| Time (h)       | Accumulated floating area (km <sup>2</sup> ) |
| 0-12           | 12.19                                        |
| 12–24          | 9.43                                         |
| 24–36          | 14.23                                        |
| 36–48          | 18.19                                        |
| 48-72          | 15.16                                        |
| 合计 Total       | 69.19                                        |
|                |                                              |

表 3 各时间段油膜扫海面积

#### 2.2 溶解态向岸分布

室内试验测得 180CST 极限饱和浓度为 10000-150000 mg/L,油膜在海上存在时间≤72 h,但事故溢 油仍会以溶解态在海水中扩散,向岸分布情况见图 5。 由图 5 可知,溶解态溢油在第 11 天 11:00 即可抵岸, 随着时间的推移其溶解态油品主体将逐渐抵岸,溶解 态覆盖区域石油含量均未超过《渔业水质标准》 (GB11607-89) (0.05 mg/L)。

#### 3 损失评估

#### 3.1 海洋生物资源受损面积

油膜扫海区域的污染水平达到《海水水质标准》规 定的四类或超四类水平,远超《渔业水质标准》,会损害 海洋生物资源。溶解态向岸分布趋势模拟结果显示事 故溢油潜在的影响范围,虽然该区域石油烃含量均未 超过《渔业水质标准》,但乳化态和悬浮颗粒态石油 抵岸后会在地形等影响下凝聚成团,从而对潮间带生物造成不良影响。

油膜扫海面积 69.19 km<sup>2</sup> 需全部评估。潮间带受 损面积核定过程如下:根据溶解态向岸分布模拟结 果,该事故潜在潮间带影响范围为山东龙口和蓬莱两 市。根据海岸线长度,两市潮间带面积约为 193 km<sup>2</sup>, 扣除海岸防护工程用海、港口建设工程用海、船舶工 业用海、旅游娱乐用海、造地工程用海以及渔业基础 设施用海与围海养殖用海等,天然潮间带剩余 20%左 右,按 20%计算,为 38.6 km<sup>2</sup>;根据两市近岸块状油 污油指纹比对结果(占比 37.8%)折算,受影响潮间带 面积约为 14.6 km<sup>2</sup>。

#### 3.2 渔业资源损失评估方法及参数

由于溢油污染发生于渤海中部,影响区域为山东 省的烟台沿海,故采用《山东省海洋生态损害赔偿和 损失补偿评估方法》,损失评估参数见表4。

根据《山东省海洋生态损害赔偿和损失补偿评估 方法》(DB37/T1448-2009),在渔业资源损失评估工 作中,油膜扫海区域属严重污染。故鱼类、无脊椎动 物和浮游动物的损害系数均取上限值,分别为 0.4、 0.6 和 0.8; 仔稚鱼的损害系数取 1.0; 潮间带生物损 害系数取中值,为 0.5。生物量按照"我国近海海洋 综合调查和评价专项"冬季调查结果换算得到。海洋 生物价格采用"烟台市价格认证中心出具的《山东省 价格认证结论书》(烟价认字【2011】6号)"中所列 各种近海水产品价格,将价格在20元/kg以上的种类 定为优质经济类,价格在 20 元/kg 以下的种类定为低 值小型类。其中,优质经济类为12种。优质经济类 价格确定为 44.25 元/kg, 低值小型类价格确定为 11.25 元/kg。仔稚鱼换算为商品苗种, 按平均价格 1.0元/尾计算;浮游动物转化为低级游泳动物生物量, 其价格取低值小型类价格 11.25 元/kg; 潮间带底栖生 物主要由多毛类、软体动物、甲壳动物和棘皮动物组 成,其经济价值较低,经综合考虑,按0.8万元/t计 算,即8元/kg。

#### 3.3 渔业资源损失评估结果

经评估,油膜扫海区域内渔业资源损失额为 137.0万元,潮间带生物损失额为73.7万元,一次性 损失额共计210.6万元(表4)。

根据《山东省海洋生态损害赔偿和损失补偿评估 方法》,生物资源的损害赔偿为一次性损害额的3倍, 据此,该事故生物资源的损害赔偿额共计631.9万元。

据《蓬莱 19-3 油田溢油事故联合调查组关于事



Fig.5 Distribution of the dissolved oil

表 4 经济损失评估 Tab.4 Evaluation of the economic loss

|                                                    | 种类 Species                                                                                                             |                          |                        |                              |                                    |  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|------------------------------|------------------------------------|--|
| 项目<br>Items                                        | 鱼类<br>Fish                                                                                                             | 无脊椎动物<br>Invertebrates   | 浮游动物<br>Zooplankton    | 潮间带生物<br>Intertidal organism | 仔稚鱼<br>Fish larvae<br>and juvenile |  |
| 生物量 Biomass                                        | 644 kg/km <sup>2</sup>                                                                                                 | 244 kg/km <sup>2</sup>   | 560 kg/km <sup>2</sup> | 13400 kg/km <sup>2</sup>     | 206000 ind                         |  |
| 损害系数 Impairment ratio                              | 0.4                                                                                                                    | 0.6                      | 0.8                    | 0.5                          | 1.0                                |  |
| 受损生物量 Biomass of the impaired                      | 257.6 kg/km <sup>2</sup>                                                                                               | 146.4 kg/km <sup>2</sup> | 448 kg/km <sup>2</sup> | 6700 kg/km <sup>2</sup>      | 10300 ind                          |  |
| 污染面积 Polluted area (km <sup>2</sup> )              | 69.19                                                                                                                  | 69.19                    | 69.19                  | 14.6                         | 69.19                              |  |
| 价格 Price                                           | 优质经济类 High quality and<br>expensive species: 44.25 yuan/kg<br>低值小型类 Cheap and miniature<br>species: 11.25 yuan/kg      |                          | 11.25<br>yuan/kg       | 8 yuan/kg                    | 1 yuan/ind                         |  |
| 一次性损失额 Direct economic loss (10 k yuan)            | <ul> <li>优质经济类 High quality and<br/>expensive species: 41.2<br/>低值小型类 Cheap and miniature<br/>species: 21.0</li> </ul> |                          | 3.5                    | 73.7                         | 71.2                               |  |
| 一次性损失额合计<br>Total direct economic loss (10 k yuan) |                                                                                                                        |                          | 210.6                  |                              |                                    |  |

故调查处理报告》, 蓬莱 19-3 溢油事故造成油田周边 及其西北部面积约 6200 km<sup>2</sup>的海域污染, 溢油事故 造成的海洋生态损害补偿额为 10.9 亿元人民币。仅 根据污染水体面积及海洋生态补偿金额估算单位面 积补偿金额, 蓬莱 19-3 油田溢油事故为 17.6 万元/km<sup>2</sup>, 本研究所选案例为 9.1 万元/km<sup>2</sup>,前者要高于后者, 但考虑到前者持续污染时间要远高于后者,本研究的 评估结果可信度较高。

# 4 结论

(1) 以 13 m<sup>3</sup>溢油量计算,油膜存在期约为 72 h,

模拟得到累加扫海面积共计 69.19 km<sup>2</sup>;油膜消失后, 事故溢油仍会以溶解态、乳化态或悬浮颗粒态在海水中 扩散,溶解态溢油在第 11 天的 11:00 即可抵岸,随着 时间的推移其溶解态溢油主体将逐渐抵岸,溶解态覆 盖区域石油含量均未超过《渔业水质标准》(0.05 mg/L)。

(2)油膜会造成渔业资源损失,油膜消失后,悬 浮颗粒态和乳化态石油在岸滩等因素影响下会形成 凝聚态石油,并对潮间带生物造成影响。根据《山东 省海洋生态损害赔偿和损失补偿评估方法》(DB37/ T1448-2009),经评估,在油膜扫海区域及受影响潮 间带范围内,事故经济损失额合计为 631.9 万元。本 研究对数值模型方法在溢油事故天然渔业资源损失 评估中的应用方面做了有益尝试,为评估无现场观测 数据支撑的海洋溢油事故所造成的天然渔业资源损 失,提供了一个可行的方法。

# 参考文献

- 王修林,李克强. 渤海主要化学污染物海洋环境容量. 北京: 科学出版社, 2006, 237–250, 265–278
- 龙绍桥,娄安刚,谭海涛,等.海上溢油粒子追踪预测模型中 的两种数值方法比较.中国海洋大学学报(自然科学版), 2006,36(Sup.):157-162
- 刘文全, 贾永刚, 卢芳. 渤海石油平台溢油生态环境损害评 估系统开发研究. 海洋环境科学, 2011, 30(5): 673-676, 685
- 刘钦政, 张存智, 刘煜, 等. 渤海溢油数值预报研究. 海洋预 报, 2005, 22(Supplement): 70-76
- 许文彬. 福州港福泰码头海上溢油事故影响预测. 福建水 产, 2011, 33(2): 44-49
- 牟林, 邹和平, 武双全, 等. 海上溢油数值模型研究进展. 海 洋通报, 2011, 30(4): 473–480
- 李克强, 王修林, 石晓勇, 等. 石油烃在胶州湾多介质中迁移-转 化模型研究. 海洋环境科学, 2009, 28(1): 12–16
- 李克强, 王修林, 阎菊, 等. 胶州湾石油烃污染物环境容量计 算. 海洋环境科学, 2003, 22(4): 13-17
- 余加艾,张波,陈伟斌,等. 渤海结冰海区溢油行为数值模拟. 海洋与湖沼,1999,30(5):552-557
- 宋泽坤, 程和琴, 刘昌兴, 等. 长江口溢油数值模拟及对水源 地影响. 长江流域资源与环境, 2013, 22(8): 1055–1063
- 张存智, 窦振兴, 韩康, 等. 三维溢油动态预报模式. 海洋环 境科学, 1997, 16(1): 22–39
- 张珞平, 王隆发, 吴瑜端. 河口港湾海水中石油烃的自然风 化模式. 海洋学报(中文版), 1988, 10(1): 117–121
- 国家海洋局. 蓬莱 19-3 油田溢油事故联合调查组关于事故调 查处理报告. 2012. http://www.soa.gov.cn/xw/hyyw\_90/ 201211/t20121109\_884.html
- 赵亮, 魏皓, 冯士筰. 渤海氮磷营养盐的循环和收支. 环境科 学. 2002, 23(1): 78-81
- 娄安刚, 奚盘根, 黄祖珂, 等. 海面溢油轨迹的分析与预报. 青岛海洋大学学报, 1994, 24(4): 477-484
- 娄厦,刘曙光. 溢油模型理论及研究综述. 环境科学与管理, 2008, 33(10): 33-37, 61
- 郭良波, 江文胜, 李凤岐, 等. 渤海 COD 与石油烃环境容量 计算. 中国海洋大学学报(自然科学版), 2007, 37(2): 310-316
- 黄成, 赵利平, 肖剑. 广西近海溢油扩散数值模拟. 水道港口,

2013, 34(2): 174–179

- 焦俊超,马安青,娄安刚,等. GIS和Google Earth开发在溢油 预测中的整合应用.遥感技术与应用,2011,26(2): 215-219
- 廖国祥,高振会,熊德琪.水下油气溢漏事故污染物输移预 测模型.大连海事大学学报,2010,36(4):115-120
- Azevedo A, Oliveira A, Fortunato AB, *et al.* Application of an Eulerian-Lagrangian oil spill modeling system to the Prestige accident: trajectory analysis. J Coastal Res, 2009(SI 56): 777–781
- Backhaus JO. A three-dimensional model for the simulation of shelf sea dynamics. Deutsche Hydrografische Zeitschrift, 1985, 38(4): 165–187
- Backhaus, JO. A semi-implicit scheme for the shallow water equations for application to shelf sea modeling. Cont Shelf Res, 1983, 2(4): 243–254
- Badri, MA, Azimian, AR. Oil spill model based on the kelvin wave theory and artificial wind field for the Persian Gulf. Indian J Mar Sci, 2010, 39(2): 165–181
- Berry A, Dabrowski T, Lyons K. The oil spill model OILTRANS and its application to the Celtic Sea. Mar Pollut Bull, 2012, 64(11): 2489–2501
- Chen F, Yapa PD. Three-dimensional visualization of multi-phase (oil/gas/hydrate) plumes. Environ Modell Softw, 2004, 19(7–8): 751–760
- Deng Z, Yu T, Jiang X, *et al.* Bohai Sea oil spill model: a numerical case study. Mar Geophys Res, 2013, 34(2): 115–125
- Helle I, Ahtiainen H, Luoma E, *et al.* A probabilistic approach for a cost-benefit analysis of oil spill management under uncertainty: A Bayesian network model for the Gulf of Finland. J Environ Manage, 2015, 158: 122–132
- Li Y, Zhu J, Wang H. The impact of different vertical diffusion schemes in a three-dimensional oil spill model in the Bohai Sea. Adv Atmos Sci, 2013, 30(6): 1569–1586
- Nelson JR, Grubesic TH, Sim L, *et al.* Approach for assessing coastal vulnerability to oil spills for prevention and readiness using GIS and the Blowout and Spill Occurrence Model. Ocean Coast Manage, 2015, 112: 1–11
- Nepstad R, Størdal IF, Brönner U, *et al.* Modeling filtration of dispersed crude oil droplets by the copepod *Calanus finmarchicus*. Mar Environ Res, 2015, 105: 1–7
- Zhao X, Wang X, Shi X, *et al.* Environmental capacity of chemical oxygen demand in the Bohai Sea: modeling and calculation. CJOL, 2011, 29(1): 46–52

(编辑 马璀艳)

# Evaluation of the Natural Fishery Resources Loss Caused by an Oil Spill Accident in the Central Bohai Sea Based on Euler-Lagrange Method

DING Dongsheng, MA Shaosai, CHEN Bijuan, CUI Zhengguo, ZHAO Jun,

LIU Chuanxia, ZHANG Xuzhi, QU Keming<sup>10</sup>

(Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Shandong Provincial Key Laboratory of Fishery Resources and Eco-Environment, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071)

Abstract In recent years, marine oil spill accidents occurred frequently, which has become a major concern on the marine environment and biological resources. To better understand the aftermath of an oil spill in a ship collision accident in the central Bohai Sea, here we modeled the floating and diffusion of oil film as well as the distribution of dissolved oil (petroleum hydrocarbon) using Euler-Lagrange method. The size of affected area and loss of fishery resources were also evaluated based on this model. We found that the volume of spilled oil was about 13,000 L, and the oil film lasted for 72 hours. The sea area affected by accumulated floating oil was about 69.19 km<sup>2</sup>. As the film broke down, oil droplets could be dissolved in the seawater in the form of emulsified and suspended particulate, and diffused to the coastal in 11 days, although the water quality would still meet the standard for fisheries. The oil film resulted in reduced fisheries resources, and the emulsified and suspended particulate could re-condense at the coast, which would harm the intertidal benthos. The affected area was determined based on the model and the length of coastline. It was estimated that the total economic loss in the oil film zone and the intertidal coastal zone was ¥ 6.319 million. Our study demonstrated that the numerical model, especially in the absence of observed data, could be a valuable tool in evaluating the change in natural fishery resources caused by oil spill accidents.

**Key words** Euler-Lagrange method; Oil spill accident; Loss evaluation of the natural fishery resources

① Corresponding author: QU Keming, E-mail: qukm@ysfri.ac.cn

DOI: 10.11758/yykxjz.20150526001

# 渤海中部 COD 的时空分布特征及其对 富营养化的贡献分析<sup>\*</sup>

张 艳 李秋芬 赵 俊 崔正国 周明莹 朱建新 丁东生 过 锋 刘传霞 曲克明<sup>①</sup>

(农业部海洋渔业可持续发展重点实验室 山东省渔业资源与生态环境重点实验室 中国水产科学研究院黄海水产研究所 青岛 266071)

**摘要** 以 2013 年春、夏、秋、冬 4 个季节对渤海中部海区的调查数据为依据,对调查海域表、中、底层水体的化学耗氧量(Chemical oxygen demand, COD)的时空分布、来源及其对富营养化的贡献等进行了分析。结果显示,调查海域 COD 平均含量以夏季最高,秋季次之,春季最低。垂直分布差异表现为春季表层最高,中层最低;夏季表层最高,底层最低;秋季和冬季均为中层最高,底层最低。各站位 COD 平均浓度水平分布在春季无明显的高值出现,含量分布较均匀,夏季 COD 从西向东呈降低趋势,高值主要分布于西部海域;秋季和冬季 COD 从北向南呈递减趋势,高值分布于调查海域北部。调查海域各站位营养指数 E 值变化范围为 0.088-2.995,平均值为 0.337±0.403,大于 1 的站位有 25 个,其中,秋季 20 个,冬季 5 个,表明大部分调查海域水质未达到富营养化状态,处于较低营养水平。COD 对调查海域富营养化的贡献率为 46.15%-141.41%,平均值为 (71.36±14.98)%,表明 COD 在渤海海区富营养化中占据了主要地位。

关键词 渤海; COD; 分布特征; 富营养化贡献

中图分类号 X145 文献标识码 A 文章编号 2095-9869(2016)04-0043-06

渤海是一个半封闭型海域,水体交换能力差,环 境容纳量有限。周边区域工农业较发达,城市人口密 集,大量的陆源污染物直接入海,导致海域污染日益 严重。据《2008年渤海海洋环境质量公报》(国家海 洋局,2009)的数据显示,渤海沿岸实时监测的陆源入 海排污口有100个左右,超标排放现象严重,导致其邻 近海域生态环境有所恶化,海水受到不同程度污染。

有机物是海洋中一类重要的污染物质,人们通常将化学耗氧量(Chemical oxygen demand, COD)等作为表征水体中有机物含量的有效指标,来间接反映水体中有机物污染程度,COD 值越大,说明水体中有机污染越严重(Kawabe *et al*, 1997)。化学耗氧有机物

是可能引起海水富营养化的重要因子,它可以为海洋 浮游植物生长提供碳源,直接促进浮游植物生长,因 而,COD 与赤潮之间也存在密切的联系(王颢等, 2008)。因此,有必要对整个渤海海区的COD 含量分 布、影响因素及其对海水富营养化的贡献进行深入研 究,从而为渤海发生富营养化、有害赤潮等海洋生态 环境问题的预警和防治提供必要的科学依据。

本研究依托于农业部溢油专项课题,以 2013 年春、夏、秋、冬4个季节对渤海中部海区的调查数据 为依据,对表、中、底层水体中 COD 含量在海域中 的水平分布及随季节的变化特征,与其他环境因子的 关系及对富营养化的贡献等进行了探讨,以期为了解

<sup>\*</sup>农业部溢油专项 "渤海生态环境监测评估" (农办渔【2012】117号)和 "应对溢油关键技术专项研究" (2012-NZ-5739) 共同资助。张 艳, E-mail: yanzhang@ysfri.ac.cn

①通讯作者:曲克明,研究员, E-mail:qukm@ysfri.ac.cn 收稿日期: 2015-05-26、收修改稿日期: 2015-08-27

当前渤海的有机污染情况, 解决富营养化等问题等提供理论依据。

# 1 材料与方法

#### 1.1 样品采集及分析

2013 年春季(5 月 13-15 日)、夏季(7 月 31 日-8 月 2 日)、秋季(11 月 1-6 日)、冬季(11 月 30 日-12 月 5 日)对 渤海中部海域生态环境进行了 4 个航次的跟踪调查。 设置调查站位 41 个(图 1)。采集水样深度包括表层、 10 m 层和底层; 5、7 月采集水样 41 个, 11、12 月 采集水样 40 个;采集的水样装入 2.5 L 塑料桶中,带 回实验室进行分析。

COD 测定方法参照《海洋监测规范》(GB12378.4-2007)中的碱性高锰酸钾法;无机氮(IN)为亚硝酸氮、 硝酸氮和氨氮含量的总和,3种形态氮的测定方法分 别参照《海洋监测规范》(GB12378.4-2007)中的萘乙 二胺分光光度法、锌-镉还原法和次溴酸盐氧化法; 活性磷酸盐(IP)测定方法参照《海洋监测规范》 (GB12378.4-2007)中的磷钼蓝分光光度法;水温、盐 度采用 YSI 水质分析仪测定。

#### 1.2 评价方法

**1.2.1** COD 污染评价 COD 污染评价通常采用 周爱国等(1998)提出的单因子污染指数(*P<sub>i</sub>*)法,其计 算公式如下:

$$P_i = \frac{C_i}{S_i} \tag{1}$$

式中,  $C_i$ 和  $S_i$ 分别为 COD 实测数据和评价标准 值, COD 评价标准值参考《海水水质标准》(GB3097– 2002) I 类要求(COD  $\leq 2$  mg/L)进行评价。当  $P_i > 1$ 时, 视为超标准,水质已经受到污染;当  $P_i \leq 1$ 时,表明 水质未受到污染,水体受污染程度随  $P_i$ 值的增大而 加重。

**1.2.2** 营养指数(*E*)值 目前,广泛应用于中国近 岸海域富营养化现状评价的方法为冈市友利(1972)提 出的营养指数(*E*)法。其计算公式为:

$$E = \frac{\text{IN}(\mu g / L) \times \text{IP}(\mu g / L) \times \text{COD}(\text{mg} / L)}{4500}$$
(2)

式中, *E* 为营养指数, IN 为无机氮, IP 为无机 磷, COD 为化学耗氧量。

当 *E*≤1 时,为贫营养;当 *E*>1 时,为富营养; *E* 值越高,富营养化程度越严重。

**1.2.3** COD 对富营养化贡献 根据杨斌等(2014) 营养指数(*E*)计算公式进行改进并提出 COD 对富营养 化贡献计算公式进行计算:

$$E_{\rm COD}(\%) = \frac{\lg 100C_{\rm COD}}{\lg 4500E} \times 100\%$$
(3)

式中, C<sub>COD</sub>为化学耗氧量浓度含量。

**1.2.4** 数据处理 COD 限量标准参考《海水水质标准》Ⅰ类要求(≤2.0 mg/L)。

1.2.5 统计分析 采用 Surfer8.0 软件绘制 COD 水



Fig.1 Sampling stations in the Bohai Sea

平分布图。采用 SPSS13.0 进行显著性及相关性分析。

# 2 结果与分析

#### 2.1 COD 的水平分布特征

调查结果表明(图 2),春季各站位 COD 平均含量 较低,调查海域分布较均匀,无明显高值出现;夏季 COD 高值主要分布于西部海域靠近渤海湾口附近, 从西向东呈递减的变化趋势;秋季和冬季 COD 高值 主要分布于北部海域,靠近辽东湾口附近,南部海域 含量较低,COD 从北向南呈递减趋势。从以上结果 可以看出,不同季节 COD 浓度梯度有一定的差异, 其中,春季调查海区各站位无明显浓度差异,夏季 COD 含量从西向东呈降低趋势,而秋季和冬季则是 从北向南呈降低趋势。其共同点是在湾口即渤海湾口 和辽东湾口附近,COD 含量偏高,原因可能与地表 径流有关,渤海湾口和辽东湾口附近工业废水和生活 污水入海较多,大量的有机质导致湾口附近海域 COD 含量较高。

#### 2.2 COD 的空间分布特征

2013 年渤海中部水体中 COD 变化范围为 0.37-

1.59 mg/L,所有站位 COD 含量符合《海水水质标准》 Ⅰ类要求(≤2.0 mg/L)。从图 3 可以看出,在4 个季 节中,夏季 COD 含量最高,其次为秋季,春季含量 最低。COD 垂直分布结果显示,春季表层 COD 含量 最高,中层最低;夏季为表层最高,底层含量最低; 秋季和冬季为中层最高,底层最低。T 检验结果显示, 除夏季中层和底层及表层和底层水体 COD 含量有显 著性差异外(P<0.05),其余季节水层之间 COD 含量 无显著性差异。

#### 2.3 渤海中部 COD 污染评价结果

从图 4 可以看出,该调查海域 COD 单因子污染指数(*P<sub>i</sub>*)夏季最高,其次为秋季,春季最低。各站位污染指数变化范围为 0.11–1.40,平均值为 0.53±0.21。其中,春季各站位 COD 污染指数范围为 0.18–0.80,平均值为 0.36±0.11;夏季 COD 污染指数范围为 0.24–1.05,平均 值为 0.63±0.15;秋季 COD 污染指数范围为 0.11–1.40, 平均值为 0.59±0.26;冬季 COD 污染指数范围为 0.24– 1.10,平均值为 0.54±0.16。在调查中,个别站位如夏季 502 站表层,秋季 513 站表层、中层,514 站底层,冬季



图 2 渤海中部海域 COD 平面分布 Fig.2 The horizontal distribution of COD in different seasons in the central Bohai Sea





在海域已经受到有机物的污染。

#### 2.4 营养指数 E 值结果

从图 5 可以看出,秋季水体中 E 值平均值最高, 其次为冬季,夏季最低。渤海中部海域各调查站位水 体营养指数 E 值变化范围为 0.088-2.995,平均值为 0.337±0.403。其中,春季 E 值变化范围为 0.005-0.620, 平均值为 0.096±0.110;夏季 E 值变化范围为 0.012-0.292,平均值为 0.082±0.050;秋季 E 值变化范围为 0.045-2.995,平均值为 0.710±0.548;冬季 E 值变化 范围为 0.117-1.559,平均值为 0.475±0.250。





从调查结果可以看出,春季和夏季各调查站位 E 值均<1,表明该调查海域无富营养化现象出现;秋季 和冬季水质状况略差,有部分站位的 E 值>1,有富营 养化现象出现。其中,秋季 E 值>1 的站位表层有 15 个、中层 8 个、底层 9 个;冬季 E 值>1 的站位表层 有 3 个、中层和底层均为 1 个。

### 2.5 COD 对富营养化的贡献

从图 6 可以看出,水体中 COD 对富营养化的贡献 率夏季最高,春季次之,秋季最低。渤海中部海域各调 查站位 COD 对富营养化的贡献 *E*<sub>COD</sub> 变化范围为 46.15%-141.41%,平均值为(71.36±14.98)%。其中,春 季贡献率范围为 49.79%-141.41%,平均值为(78.80± 17.25)%;夏季贡献率范围为 65.62%-123.82%,平均值 为(84.86±9.27)%;秋季贡献率范围为 46.15%-79.95%, 平均值为(59.61±4.75)%;冬季贡献率范围为 51.57%-75.89%,平均值为(61.58±4.11)%。

春季 COD 贡献率为底层 > 中层 > 表层; 夏季为 中层 > 表层 > 底层, 秋季为表层 > 中层 > 底层, 冬季 为中层 > 底层 > 表层, 各层海水富营养化贡献率无显 著性差异(*P*>0.05)。

COD 对富营养化贡献率与营养指数进行相关性分析,相关系数为-0.954,二者之间存在显著的负相关性,从而表明 COD 对富营养化贡献率随着营养指数升高而降低。



图 6 渤海中部海域水体中 COD 对富营养化的贡献 Fig.6 The contribution of COD to the eutrophication in the central Bohai Sea

#### 2.6 影响 COD 分布的主要环境因子

对 COD 与温度、盐度、DO、pH、无机氮、活性 磷酸盐和石油类等指标进行相关性分析。结果表明,在 上述因子中,温度、盐度和 DO 与水体中 COD 呈明显 的相关关系,其中,温度与 COD 具有显著正相关,盐 度和 DO 与 COD 具有显著负相关;另外,无机氮与 COD 有一定的正相关性,表明 COD 与无机氮具有一定的同 源性,其余因子无明显相关性。具体相关系数见表 1。

| _ | Tab.1 The correlation of COD content and the environmental factors $(n=41)$ |                   |             |          |        |           |           |               |
|---|-----------------------------------------------------------------------------|-------------------|-------------|----------|--------|-----------|-----------|---------------|
|   | 水层 Layers                                                                   | 温度 Temperature(℃) | 盐度 Salinity | DO(mg/L) | pН     | DIP(mg/L) | DIN(mg/L) | 石油类 Oil(mg/L) |
|   | 表层 Surface                                                                  | 0.807             | -1.00       | -0.713   | 0.047  | -0.051    | 0.306     | 0.087         |
|   | 中层 Middle                                                                   | 0.865             | -0.97       | -0.797   | -0.547 | 0.025     | 0.566     | 0.116         |
|   | 底层 Bottom                                                                   | 0.861             | -0.99       | -0.741   | -0.797 | 0.261     | 0.789     | -0.526        |

表 1 COD 与环境因子的相关关系

# 3 讨论

#### 3.1 COD 含量影响因素

渤海中部海域 COD 与盐度之间的相关分析显示,水体中 COD 含量与盐度之间存在显著负相关性,表明陆源排放及陆地河流输入对该调查海域 COD 分布具有重要影响,该结果与杨斌等(2014)和杨美兰等(2005)研究一致。另外,在 COD 水平分布方面,调查海域西部和北部靠近滦河和辽河入海口,夏季和秋季 COD 含量较高,这也说明 COD 分布受陆源排放的影响。

COD 作为陆源排海的主要污染物之一,主要来 自排海量大、处理率低的沿岸工农业废水和生活污水 (蓝文陆等,2012)。渤海沿岸工业发达,人口密集, 京津唐工业区更是位于渤海的西北部区域,工业废水 入海量较大;另外,在渤海西北部区域,海河和滦河 自此入海,夏季、秋季多雨季节,会携带了大量的有 机污染物入海,导致海水中的 COD 含量增加(李立青 等,2009;袁宇等,2008;胡敦欣等,2001;Shen, 1993)。王修林等(2009)研究发现,渤海 COD 主要来 源于陆源,即河流、排污口和面源,三者共占入海总 通量的 72.3%,河流所占的比例最大,平均可占陆源 排放的 80.2%,说明渤海 COD 排海总量主要来源于 以入海河流为主的陆源排放。

除了陆源排放外, COD 含量与温度也有一定的 关系。本研究结果显示, COD 与水温之间存在一定 的正相关性,说明 COD 含量变化受温度的影响较大, 在高温季节,如夏季和秋季, COD 含量较高,在温 度较低的春季和冬季, COD 含量较低。分析原因可 能是由于水温较高,浮游植物腐烂降解时引起水体中 的化学耗氧有机物含量增加(张艳等, 2012; 张运林等, 2008)。

#### 3.2 COD 污染及其对富营养化的贡献

随着渤海周边区域经济的高速发展,每年排入海中的有机污染物逐年增加(杨树珍,1997)。过多的有机物和营养盐超过了水体的自净能力,导致海水富营

养化现象出现。在本研究中,调查海域 COD 对富营 养化的贡献平均值为(71.36±14.98)%,说明造成渤海 海域富营养化的主要原因是 COD。这与郭全等(2005) 和苏一兵等(2003)认为造成渤海海区富营养化的主要 原因是氮和磷而不是 COD 的结论不同。本研究发现, 2013 年渤海中部海域有机污染要高于往年,这也说 明化学好氧有机物已经成为主要污染因素之一。

COD 对富营养化的贡献值与营养指数 E 值相比 较可以看出, 夏季 E 值最低, 这可能是由于浮游植物 大量生长, 消耗了无机氮和无机磷, 因此, COD 对 富营养化的贡献最高; 而秋季虽然 E 值最高, 但 COD 对富营养化的贡献率却最低。这表明在水体富营养化 程度较低时, COD 对其贡献较大, 而当富营养化程 度加重时, 来自营养盐的贡献更为突出。这也说明 COD 是影响海域富营养化的重要因素, 但并非决定 性因子, 单纯的有机物污染加重,并不能使海水的富 营养程度加重, 只有营养盐含量也增加时, 才会导致 严重富营养化。

### 4 结论

**4.1** 渤海 COD 含量夏季最高,其次为秋季,春季含量最低;水平分布及垂直分布之间均有一定的差异,同时还有一定的季节差异。

4.2 COD 单因子污染指数(P<sub>i</sub>)夏季最高,其次为秋季,春季最低;夏季、秋季和冬季各有1个调查站位P<sub>i</sub>>1,其所在海域已经受到有机物的污染。

**4.3** 渤海水体营养指数 E 值秋季最高,其次为冬季, 夏季最低;秋季和冬季有部分站位的 E 值 > 1,有富 营养化现象出现。

**4.4** 水体中 COD 对富营养化的贡献率夏季最高,秋季最低,贡献率随着营养指数 *E* 值的升高而降低。

#### 参考文献

冈市友利. 浅海的污染与赤潮发生-内湾赤潮的发生机制. 日 本水产资源保护协会, 1972, 58-72

王颢, 石晓勇, 张传松, 等. 2004 年春季东海赤潮高发区 COD 及其与赤潮关系的初步研究. 海洋科学, 2008, 32(12): 82-86

- 王修林, 崔正国, 李克强, 等. 渤海 COD 人海通量估算及其 分配容量优化研究. 海洋环境科学, 2009, 28(5): 497-500
- 苏一兵, 雷坤, 孟伟. 陆域活动对渤海海岸带的影响. 中国水利, 2003(3B): 75-80
- 李立青, 尹澄清. 雨、污合流制城区降雨径流污染的迁移转化 过程与来源研究. 环境科学, 2009, 30(2): 368-375
- 张艳, 李秋芬, 孙雪梅, 等. 浒苔腐烂过程中水体细菌群落结 构变化的 PCR-DGGE 分析. 中国水产科学, 2012, 19(5): 872-880
- 张运林,杨龙元,秦伯强,等.太湖北部湖区 COD 浓度空间 分布及与其它要素的相关性研究.环境科学,2008,29(6): 1457–1462
- 杨斌, 钟秋平, 鲁栋梁, 等. 钦州湾海域 COD 时空分布及对 富营养化贡献分析. 海洋科学, 2014, 38(3): 20-25
- 杨美兰,林钦,黄洪辉,等.珠江口水域化学耗氧量(COD)的 分布特征.海洋通报,2005,24(4):22-26
- 杨树珍. 渤、黄海海域环境不容乐观. 海洋信息, 1997(l):

27-28

- 周爱国, 蔡鹤生. 地质环境质量评价理论与应用. 武汉: 地质 大学出版社, 1998
- 胡敦欣, 韩舞鹰, 章申. 长江、珠江口及邻近海域陆海相互作 用. 北京: 海洋出版社, 2001, 10–14
- 袁宇,朱京海,侯永顺,等. 辽东湾入海污染物调查及海域水 质安全分析. 中国安全科学学报,2008,18(2):12-16
- 郭全, 王修林, 韩秀荣, 等. 渤海海区 COD 分布及对海水富 营养化贡献分析. 海洋科学, 2005, 29(9): 71–75
- 国家海洋局.2008年渤海海洋环境质量公报.2009
- 蓝文陆,杨绍美,苏伟.环钦州湾河流入海污染物通量及其 对海水生态环境的影响.广西科学,2012,19(3):257-262
- Kawabe M, Kawabe M. Factors determining chemical oxygen demand in Tokyo Bay. J Oceanogr, 1997, 53(5): 443–453
- Shen ZL. A study on the relationships of the nutrients near the Changjiang River Estuary with the flow of the Changjiang River water. Chin J Oceanol Limnol, 1993, 11(3): 260–267

(编辑 陈严)

# Temporal and Spatial Distribution of COD and Its Source and Contribution to Eutrophication in the Central Bohai Sea

ZHANG Yan, LI Qiufen, ZHAO Jun, CUI Zhengguo, ZHOU Mingying, ZHU Jianxin, DING Dongsheng, GUO Feng, LIU Chuanxia, QU Keming<sup>®</sup>

(Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Shandong Provincial Key Laboratory of Fishery Resources and Eco-Environment; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071)

The temporal and spatial distribution of chemical oxygen demand (COD) in different water Abstract layers, and its source and contribution to eutrophication were analyzed in this study based on data collected in the Bohai Sea in all 4 seasons of 2013. The results showed that the highest average concentration of COD appeared in summer, followed by autumn; while the lowest concentration appeared in spring. The analysis about vertical distribution of COD showed that the highest and lowest concentrations of COD appeared in the surface and middle layers in spring, and they appeared in the surface and bottom layers respectively in summer; in autumn and winter they were observed in the middle and bottom layers. As for the horizontal distribution the average COD concentration was distributed quite evenly in spring; in summer COD concentration was the highest in the western sea area and displayed a gradual decrease from the west to the east; in winter the highest concentration was detected in the northern area and it dropped from the north to the south. During the survey period, the COD level in most stations met the first-class seawater quality standard. The E value ranged from 0.088 to 2.995, and the average was  $0.337\pm0.403$ . There were 25 stations in which the E values were above 1, including 20 stations in autumn and 5 stations in winter. These results indicated that the surveyed regions might not undergo eutrophication. The contribution of COD to eutrophication ranged from 46.15% to 141.41%, and the average was (71.36±14.98)%, which suggested that COD played an important role in the eutrophication of the Bohai Sea.

**Key words** The Bohai Sea; COD; Distribution characteristics; Contribution to eutrophication

① Corresponding author: QU Keming, E-mail: qukm@ysfri.ac.cn

DOI: 10.11758/yykxjz.20150602001

http://www.yykxjz.cn/

# 渤海中部海域沉积物中 Hg 的校正 及其空间分布特征<sup>\*</sup>

杨 嵌 夏 斌 杨 庶 孙 耀 周明莹 朱建新 崔正国<sup>①</sup> 讨 刘传霞 赵 锋 曲克明 俊 (农业部海洋渔业可持续发展重点实验室 山东省渔业资源与生态环境重点实验室 中国水产科学研究院黄海水产研究所 青岛 266071)

**摘要** 以 2013 年 5 月从渤海采集到的表层沉积物及水样为研究对象,对渤海中部海域汞(Hg)的 空间分布规律进行分析。结果显示,沉积物中,Hg的含量为(1.058–9.256)×10<sup>-3</sup> mg/kg,平均值为 4.781×10<sup>-3</sup> mg/kg;水体中,Hg的含量为0.005–0.240 µg/L,平均值为0.090 µg/L。由于沉积物的粒 度组成是影响重金属元素沉积中最显著的影响因素之一,故本研究采用归一化法对Hg的"粒度效 应"进行校正,并以水体中的Hg作为参照与校正结果进行对比,来分析沉积物中的Hg对周边环 境造成的影响。将校正后沉积物与水体中的Hg进行相关性分析,二者相关性显著(*R*=0.634, *P*<0.001, *n*=29)。推测,水体中的Hg主要来自于沉积物中Hg的释放。由此可见,这种"二次污染"会对周 边环境造成长期的危害,在治理的过程中需要引起重视。

关键词 渤海; 沉积物; 水体; 汞; 二次污染

中图分类号 X824 文献标识码 A 文章编号 2095-9869(2016)04-0049-05

渤海是我国唯一的半封闭型内海,该海域的产卵 场、育幼场和渔场集中,素有"黄渤海渔业资源摇篮" 之称。自"环渤海经济圈发展战略"确立以来,环渤 海经济的高速发展和渤海海洋开发活动的持续加强, 导致渤海所承受的环境压力不断加重(高之国,2011; 李永琪,2012)。重金属元素作为近海主要的污染物, 其污染水平的变化是衡量环境变化的一项重要指标。 汞(Hg)作为一种持久性污染物,具有累积性效应 (Bing et al, 2013),能通过物理、化学或生物的途径在 水相和固相中相互运移,并通过食物链的富集作用危 害人类健康。为了保护近岸生态系统和确保食物安 全,对我国近岸陆架海域 Hg 的空间变化进行系统的 研究非常重要(Fang et al, 2009; Sun et al, 2012; 郭福星等, 2011; Sheng et al, 2013)。沉积物常被看作 是海洋环境中 Hg 的主要储库(Udayakumar *et al*, 2014),其中的 Hg 受粒度影响较大(张志锋等,2013)。 Ackermann 等(1983)研究显示,多数重金属污染物主 要富集于 20 μm 以下的沉积物中。本研究利用粒度指 标对表层沉积物中的 Hg 进行校正,并讨论 Hg 在沉积 物中的分布特点及对周边环境造成的影响。

# 1 材料与方法

### 1.1 样品采集

2013 年 5 月 13-15 日在渤海中部海区(118.61°-120.83°E, 38.20°-39.21°N)进行表层沉积物和水样采 集,调查站位见图 1。调查船为海监船只。利用抓斗 式采泥器采集沉积物样品,沉积物样品数量为 33 个;

<sup>\*</sup> 农业部溢油专项"渤海生态环境监测与评估"(农办渔【2012】117号)和"应对溢油关键技术专项研究"(2012-NZ-5739) 共同资助。杨 茜, E-mail: yangqian@ysfri.ac.cn

① 通讯作者: 崔正国, 副研究员, E-mail: cuizg@ysfri.ac.cn 收稿日期: 2015-06-02, 收修改稿日期: 2015-07-02



利用采水器取采集水样,水样数量为41个。将沉积 物样品和水体样品分别用聚乙烯封口袋和聚乙烯瓶 低温保存,随后进行分析。

#### 1.2 实验方法

1.2.1 Hg 的分析方法 将沉积物样品经自然风干,研磨过筛后,参照海洋监测规范第 5 部分 (GB17378.5-2007)(2007),于硝酸-盐酸体系中加热消 化,Hg 以离子态全部进入提取液。

参照海洋监测规范第 4 部分(GB17378.4–2007) (2007),采用原子荧光法,在 KBH<sub>4</sub>的作用下将水样 及沉积物提取液还原,Hg 离子被还原成单质 Hg。以 氩气为载气,将 Hg 蒸气带入原子荧光光度计的原子 化器中,测定 Hg 原子荧光强度,检出限为 0.007 μg/L。 1.2.2 粒度的分析方法 取适量未过筛的沉积物 样品,放入 50 ml 烧杯中,用英国 Malvern 2000E 型 激光粒度仪测定沉积物的粒径分布特征。

#### 1.3 异常值的判别

为最大限度的保证本研究的真实性和可信性,采用 Grubbs 法来检验测定存在的异常值。

#### 1.4 数据统计与分析

采用 Surfer 8.0 绘制图片, Excel 2010 软件进行 相关性分析, *P*<0.001 为显著性水平。

#### 2 结果与讨论

#### 2.1 异常值的判别结果

对水样以及沉积物样品中的 Hg 含量进行 Grubbs 检验。除沉积物中 Hg 的测量结果有 4 个存在异常值 外,其他数据的偏差均在允许误差范围内(表 1)。

#### 2.2 粒度的平面分布特征

本研究对渤海中部海域沉积物的中值粒度进行 分析。如图 2 所示,研究海域沉积类型复杂,中值粒 径为 7.064–189.204 µm。从分布趋势看,西北部和东 南部海域中值粒径较小,沉积类型以粘土和淤泥为

表 1 Hg 的浓度异常分析 Tab.1 Analysis of abnormal concentration of Hg element

| 统计参数                      | 分析数据量                     | 异常数据量              | 异常率                        |
|---------------------------|---------------------------|--------------------|----------------------------|
| Parametric statistics     | Amount of analytical data | Amount of outliers | Percentage of outliers (%) |
| Hg-水体 Hg in water column  | 40                        | 0                  | 0                          |
| Hg-沉积物 Hg in the sediment | 33                        | 4                  | 12.1                       |



主; 东北部海域中值粒径最大并向西南部沿线过渡, 以粗粉砂和细砂为主相贯通,调查区域的东南角,粒 度梯度变化明显。

#### 2.3 Hg 的平面分布特征

**2.3.1** 校正前 Hg 的平面分布特征及影响因素 渤海中部海域,表层沉积物中 Hg 的含量为(1.058–9.256)×10<sup>-3</sup> mg/kg,平均值为4.781×10<sup>-3</sup> mg/kg。从分布趋势看(图 3),最高值出现在 529 站位,而粒度较大的东北部海区,Hg 的含量普遍偏低。

**2.3.2** 校正后 Hg 的平面分布特征及影响因素 早期研究指出重金属污染物主要富集于中值粒径小于



Fig.3 Horizontal distribution of Hg in the sediment





20 μm 的沉积物中(Ackermann *et al*, 1983),所以,本研 究对中值粒径小于 20 μm 的沉积物百分含量进行归一 化校正。归一化的目的是为了减小沉积物中值粒径改变 引起的沉积物中重金属含量的波动,以确定沉积物中重 金属的污染程度。校正后,每单位中值粒径小于 20 μm 的沉积物中 Hg 的含量为(0.015–0.266)×10<sup>-3</sup> mg/kg,平 均含量为 0.111×10<sup>-3</sup> mg/kg。分布趋势如图 4 所示,校 正后,Hg 的浓度呈现西北低东南高的特点,该特点 与 2009 年渤海污染监测网资料数据(霍素霞, 2011)<sup>1)</sup> 显示的分布趋势差异明显,而最大值为 530 站位与 2011 年于 120.09°E, 38.37°N 附近发生过的重大溢油 事故相对应(王欣颖, 2013)<sup>2)</sup>。故推测, 渤海中部表层 沉积物中的 Hg 主要来源于溢油事故。在溢油事故中, 富含 Hg 的石油因比重大、难溶于水而沉淀于油田附 近, Hg<sup>2+</sup>在迁移过程中被悬浮颗粒物吸收, 进而沉降 到水底被埋藏保存(Zhang *et al*, 2013; Liu *et al*, 2011), 从而表现出以上的分布趋势。

# 2.4 沉积物中的 Hg 含量与水体中 Hg 含量的相关性

对渤海中部海域水体中 Hg 的含量进行分析。结果 显示,其含量为 0.0047-0.24 µg/L,平均值为 0.09 µg/L。 有 36 个站位的 Hg 含量超过国家 I 类海水水质标准, 超标率为 87.80%。其中, 位于油田附近的 530 站位 Hg 含量最高(超过Ⅱ类海水水质标准)。Hg 在水体中 的分布趋势见图 5。从图 5 可以看出, Hg 的浓度从 西北向东南方向呈上升趋势。该分布趋势与修正以后 沉积物中 Hg 的浓度分布趋势相近。对水体和沉积物 中的 Hg 进行相关性分析,结果如图 6 所示,虽然在 修正以前二者的相关性不显著(R=0.319, P<0.001, n=29),但是在修正以后二者相关性显著(R=0.634, P<0.001, n=29)。由于渤海中部海域水体的平均存留 时间为 400-500 d (马倩, 2014)3, 远小于调查时间与 溢油事故的间隔,所以推测水体中的 Hg 并非直接来 源于溢油事故。但是,在溢油事故中赋存于沉积物中 的 Hg 可能转化为 Hg<sup>2+</sup>, 并在微生物的作用下转化为 CH<sub>3</sub>Hg 和(CH<sub>3</sub>)<sub>2</sub>Hg (沈国英等, 2002; Sin et al, 2001)。



<sup>1)</sup> 霍素霞. 渤海沉积物重金属分布特征及生态风险研究. 中国海洋大学硕士研究生学位论文, 2011

<sup>2)</sup> 王欣颖. 海上石油开发污染损害赔偿法律制度研究——以墨西哥湾溢油事故和渤海湾溢油事故为视角. 内蒙古大学硕士研究生学位论文, 2013

<sup>3)</sup> 马倩. 大风作用下渤海环流和水交换的数值模拟研究. 中国海洋大学硕士研究生学位论文, 2014





甲基汞可溶于水中,并借助春季较为强烈的上升流作用,扩散开来,造成水体"二次污染"(廖永志等,2014)。

### 3 结论

由于沉积物中 Hg 的含量受粒度影响较大,为得 到较为真实的平面分布特征,需要利用粒度数据进行 校正。从校正的结果看,Hg 的浓度呈现西北低东南 高的特点,最高值附近曾在 2011 年发生过重大溢油 事故,推测沉积物中的 Hg 来自于石油污染。将校正 后沉积物中 Hg 的平面分布特征与水体中 Hg 的分布 特征进行比较,发现二者相关性显著。说明该海域水 体中的 Hg 主要来自于沉积物的溶出,即由溢油事故 造成的 Hg 污染在短期治理之后仍然会对周边海域造 成影响。这种"二次污染"会对周边环境造成长期危 害,在治理的过程中需要引起重视。

# 参考文献

中华人民共和国国家质量监督检验检疫总局,中国国家标 准化管理委员会.海洋监测规范 第 4 部分:海水分析 (GB17378.4-2007).北京:中国标准出版社,2007

- 中华人民共和国国家质量监督检验检疫总局,中国国家标 准化管理委员会.海洋监测规范 第 5 部分: 沉积物分 析(GB17378.5-2007).北京:中国标准化出版社,2007
- 李永琪. 中国区域海洋学——海洋生态环境学. 北京: 海洋 出版社, 2012, 49
- 沈国英, 施并章. 海洋生态学. 北京: 科学出版社, 2002, 387
- 张志锋, 王燕, 韩庚辰, 等. 北部湾沉积物中重金属元素的地 球化学特征及物源初探. 海洋学报, 2013, 35(2): 72-81
- 高之国. 中国海洋发展报告. 北京: 海洋出版社, 2011, 311-315
- 郭福星, 吕颂辉, 滕德强, 等. 黄海表层沉积物中重金属的分 布特征与生态风险评价. 安徽农业科学, 2011, 39(15): 9212–9216, 9313
- 廖永志, 冯少波, 冯钊, 等. 广西合浦廉州湾贝类养殖区表层 沉积物重金属汞和砷污染评价. 南方农业学报, 2014, 45(2): 305-308
- Ackermann F, Bergmann H, Schleichert U. Monitoring of heavy metals in coastal and estuarine sediments: a question of grain size: <20 μm versus <60 μm. Environ Tech Let, 1983, 4:317–328
- Bing H, Wu Y, Nahm WH, et al. Accumulation of heavy metals in the lacustrine sediment of Longgan Lake, middle reaches of Yangtze River, China. Environ Earth Sci, 2013, 69(8): 2679–2689
- Fang TH, Li JY, Feng HM, et al. Distribution and contamination of trace metals in surface sediments of the East China Sea. Mar Environ Res, 2009, 68(4), 178–187
- Liu S, Shi X, Liu Y, *et al.* Concentration distribution and assessment of heavy metals in sediments of mud area from inner continental shelf of the East China Sea. Environ Earth Sci, 2011, 64(2): 567–579
- Sheng Y, Sun Q, Bottrell SH, et al. Anthropogenic impacts on reduced inorganic sulfur and heavy metals in coastal surface sediments, north Yellow Sea. Environ Earth Sci, 2013, 68(5): 1367–1374
- Sin SN, Chua H, Lo W, et al. Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environ Int, 2001, 26(5–6): 297–301
- Sun QL, Liu DY, Liu T, et al. Temporal and spatial distribution of trace metals in sediments from the northern Yellow Sea coast, China: implications for regional anthropogenic processes. Environ Earth Sci, 2012, 66(3): 697–705
- Udayakumar P, Jose JJ, Krishnan KA, *et al.* Heavy metal accumulation in the surficial sediments along southwest coast of India. Environ Earth Sci, 2014, 72(6): 1887–1900
- Zhang R, Zhang F, Ding Y, *et al.* Historical trends in the anthropogenic heavy metal levels in the tidal flat sediments of Lianyungang, China. J Environ Sci, 2013, 25(7): 1458–1468

(编辑 马璀艳)

# Normalization and Spatial Distribution of Mercury in the Sediments and Seawater of the Central Bohai Sea

YANG Qian, XIA Bin, YANG Shu, SUN Yao, ZHOU Mingying, ZHU Jianxin,

GUO Feng, LIU Chuanxia, QU Keming, ZHAO Jun, CUI Zhengguo<sup>®</sup>

(Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Shandong Provincial Key Laboratory of Fishery Resources and Eco-Environment; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071)

To study the spatial distribution of mercury (Hg) in the central Bohai Sea, the surface Abstract sediment and the seawater were sampled in the survey in May of 2013. The result showed that the concentration of Hg in the sediment was (1.058–9.256)×10<sup>-3</sup> mg/kg with an average of 4.781×10<sup>-3</sup> mg/kg. In seawater it varied between 0.005 and 0.240  $\mu$ g/L with a mean value of 0.090  $\mu$ g/L. According to the national water quality standards (GB3097–1997) the concentration of Hg often failed the first (0.05  $\mu$ g/L) and the second  $(0.20 \ \mu g/L)$  water quality standards, which demonstrated noticeable water pollution in the central Bohai Sea. There was no significant correlation between the Hg concentrations in the sediment and in the seawater at investigation stations (R=0.319, P<0.001, n=29). Grain size of solids was one of the most impactful factors that control the sedimentary variability of heavy metals; hence we normalized Hg concentration by the percentage of grains  $<20 \mu m$ . A significant correlation was then observed between the normalized Hg concentrations in the sediment and in the seawater (R=0.634, P<0.001, n=29). This suggested that Hg in the seawater came from the deposit Hg in the sediment. This "secondary pollution" in the sediment may cause long-term harm to the surroundings in the central Bohai Sea. Therefore we suggest policy makers should fully evaluate the environmental risks and bioavailability in the future economic activities in the central Bohai Sea.

**Key words** Bohai Sea; Sediment; Water column; Mercury (Hg); Secondary pollution

① Corresponding author: CUI Zhengguo, E-mail: cuizg@ysfri.ac.cn

DOI: 10.11758/yykxjz.20150602002

http://www.yykxjz.cn/

# 渤海中部海域水体中 Hg、As 的时空分布特征<sup>\*</sup>

# 杨 茜 夏 斌 孙 耀 陈聚法 张 艳 曲克明 赵 俊 崔正国<sup>①</sup>



(农业部海洋渔业可持续发展重点实验室山东省渔业资源与生态环境重点实验室 中国水产科学研究院黄海水产研究所 青岛 266071)

**摘要** 本研究分析了 2013 年 5 月(春季)、7 月(夏季)、11 月(秋季)、12 月(冬季)渤海中部海域表、 中、底层海水中汞(Hg)、砷(As)两种元素的时空分布特征。结果显示,Hg 的含量范围为 0.0029-0.3926 µg/L,平均含量为 0.0676 µg/L。从垂直分布来看,水体中 Hg 的含量呈现底层>中层>表层的 变化特点;从四季的变化特点看,水体中 Hg 的含量呈现春季>冬季>秋季>夏季的变化规律,其中, 仅有夏季表层水体达到国家海水水质标准(GB3097-1997),其余水体中 Hg 的含量均有超标现象发 生。As 的含量范围为 0.65-10.83 µg/L,平均含量为 1.50 µg/L,除夏季表层水体中的 As 含量较高外, 水体中的 As 均呈现均匀的分布模式。从垂直分布来看,As 在四季的平均含量均表现为表层>中层> 底层,且均未超出国家海水水质标准。研究表明,渤海中部海域水体中,As 的含量均达到 I 类水 质标准(20 µg/L),而 Hg 含量却频频超出 I 类水质标准(0.05 µg/L)或 II 类水质标准(0.20 µg/L)。渤海 中部海域水质已经受到了重金属的污染,推测该现象主要源于人类活动的影响。

关键词 渤海中部; 汞; 砷; 影响因素

中图分类号 X824 文献标识码 A 文章编号 2095-9869(2016)04-0054-06

近年来,随着工农业的发展,重金属对海洋环境 带来的污染也日益加重,汞(Hg)元素和砷(As)元素因 具有累积性效应(Bing et al, 2013),能够通过食物链的 富集作用危害人类健康。柴松芳(1998)对胶州湾海水 中的总 Hg 含量进行分析,发现 Hg 的含量无明显季 节性差异,且各个站位及表、底层含 Hg 量基本一致; 贺志鹏等(2008)对南黄海表层海水中 Hg、As 等重金 属的变化特征及影响因素进行了分析,认为重金属在 水体中的分布与人类输入有着密切的关系,呈现近岸 高、离岸低的特点;杨东方等(2008)对胶州湾水体重 金属 Hg 进行分析,发现四季中 Hg 含量呈现春季>冬 季>秋季>夏季的变化规律。通过以上研究发现,水体 中 Hg、As 等重金属元素在水体中的分布时效性较强, 即使在相同的研究海域,因调查时间的差异,也会表 现出不同的分布规律。而渤海作为我国海上油气开发 的重要海区,曾发生过多次溢油事故。由于石油中含 有大量的 Hg、As,能通过物理、化学或生物途径在 水相和固相中相互运移,并通过食物链的富集作用危 害人类健康。为了保护渤海渔业生态系统和确保食物 安全,必须对水体中 Hg、As 的空间变化进行系统的 研究(Fang *et al*, 2009; 郭福星等, 2011; Sun *et al*, 2012; Sheng *et al*, 2013)。本研究于 2013 年分 4 个季 节对渤海中部海区进行调查,分析了 Hg、As 在海水 表、中、底层的分布特点,为了解和掌握周边海域实 时渔业水域生态环境变动情况提供重要数据。

1 材料与方法

# 1.1 样品采集

调查海域为整个渤海中部海区(118.61°-

<sup>\*</sup> 农业部溢油专项"渤海生态环境监测与评估"(农办渔【2012】117号)和"应对溢油关键技术专项研究"(2012-NZ-5739) 共同资助。杨 茜, E-mail: yangqian@ysfri.ac.cn

① 通讯作者: 崔正国, 副研究员, E-mail: cuizg@ysfri.ac.cn 收稿日期: 2015-06-02, 收修改稿日期: 2015-07-02

120.83°E, 38.20°-39.21°N), 调查站位见图 1。采集 时间为 2013 年春季(5月 13-15日)、夏季(7月 31日-8月 2日)、秋季(11月 1-6日)、冬季(11月 30日-12月 5日), 采用的调查船为海监船只,利用采水器 取水。0-10 m 的水样为表层水体,10-25 m 的水样为 中层水体,大于 25 m 水深的为底层水体。所取站位 为 41 个,总样品数为 123 个。将水体封装于聚乙烯 瓶中,低温保存并带回实验室进行分析。



Fig.1 Investigated stations in the Bohai Sea

### 1.2 实验方法

1.2.1 Hg 的分析方法 本研究参照海洋监测规范 (GB17378.4-2007)(2007),采用原子荧光法,在硼氢化 钾的作用下将水样还原,Hg离子被还原成单质Hg, 以氩气为载气将Hg蒸气带入原子荧光光度计的原子 化器中,测定Hg原子荧光强度,检出限为0.007 μg/L, 准确度为5.5%。

**1.2.2** As 的分析方法 本研究参照海洋监测规范 (GB17378.4-2007)(2007),采用原子荧光法,在酸性 介质中,As<sup>5+</sup>被硫脲抗坏血酸还原成As<sup>3+</sup>,用KBH<sub>4</sub> 将As<sup>3+</sup>转化为AsH<sub>3</sub>气体,由氩气做载气将其导入原 子荧光光度计的原子化器,进行原子化,测定As原 子的荧光强度,检出限为0.5 μg/L。

#### 1.3 评价方法

采用单因子污染指数法,依据《海水水质标准》 (GB3097-1997)(1997),对溢油区域生态环境质量进 行评价。其中,第一类标准适用于海洋渔业水域,海上 自然保护区和珍稀濒危海洋生物保护区,标准分别为 0.05 µg/L (Hg)、20 µg/L (As);第二类标准适用于海水 养殖区,海水浴场,人体直接接触的海上运动或娱乐区,标准分别为 0.20 µg/L (Hg)和 30 µg/L (As)。

#### 2 结果与讨论

#### 2.1 Hg的水平变化特征及影响因素

春季,调查水域表层水体中的 Hg 含量为 0.005-0.240 μg/L,平均值为 0.090 μg/L,有 36 个站位的 Hg 含量超过国家 I 类海水水质标准,超标率为 87.80%, 表层 530 站位的 Hg 含量超过 II 类海水水质标准;中层 的 Hg 含量为 0.006-0.190 μg/L,平均值为 0.100 μg/L, 有 35 个站位的 Hg 含量超过国家 I 类海水水质标准, 超标率为 85.37%;底层的 Hg 含量为 0.012-0.390 μg/L, 平均值为 0.100 μg/L,有 35 个站位的 Hg 含量超 过国家 I 类海水水质标准,超标率为 85.37%,底层 529 站位的 Hg 含量超过 II 类海水水质标准。

夏季,调查水域表层海水中的 Hg 浓度为 0.029-0.030 μg/L,平均值为 0.030 μg/L,所有站位的 Hg 含 量均符合国家 I 类海水水质标准;中层的 Hg 浓度为 0.010-0.14 μg/L,平均值为 0,有 14 个站位的 Hg 含 量超过国家 I 类海水水质标准,超标率为 34.15%; 底层的 Hg 浓度 0.010-0.130 μg/L, 平均值为 0, 有 18 个站位的 Hg 含量超过国家 I 类海水水质标准, 超 标率为 43.90%。

秋季,调查水域表层水体中的 Hg 含量为 0.014-0.096 μg/L,平均值为 0.052 μg/L,有 19 个站位的 Hg 含 量超过国家 I 类海水水质标准,超标率为 47.50%;中 层的 Hg 含量为 0.014--0.101 μg/L,平均值为 0.054 μg/L, 有 22 个站位的 Hg 含量超过国家 I 类海水水质标准, 超标率为 55%;底层的 Hg 含量为 0.019--0.118 μg/L, 平均值为 0.055 μg/L,有 21 个站位的 Hg 含量超过国 家 I 类海水水质标准, 超标率为 52.50%。

冬季, 调查水域表层水体中的 Hg 含量为 0.054-0.153 μg/L, 平均值为 0.075 μg/L, 有 23 个站位的 Hg 含量超过国家 I 类海水水质标准, 超标率为 57.50%; 中层的 Hg 含量为 0.003-0.153 μg/L,平均值为 0.075 μg/L, 有 23 个站位的 Hg 含量超过国家 I 类海水水质标准,超 标率为 57.5%; 底层的 Hg 含量为 0.004-0.155 μg/L, 平 均值为 0.077 μg/L, 有 24 个站位的 Hg 含量超过国家 I 类 海水水质标准, 超标率为 60.00%。

从图 2 可以看出, Hg 的最大值位于 120.09°E,



Fig.2 Horizontal distribution of Hg in four seasons

38.37°N 附近,推测该海域由于曾发生过重大溢油事 故,事故中富含 Hg 的石油污染物,因比重大、难溶 于水而沉淀于油田附近。Hg<sup>2+</sup>在迁移过程中也能被底 泥和悬浮物中的微粒所吸附沉淀下来,从水相进入沉 积相(胡宁静等,2010)。赋存于沉积物中的各种形态 的 Hg 可能转化为 Hg<sup>2+</sup>,其在微生物的作用下可转化 为 CH<sub>3</sub>Hg 和(CH<sub>3</sub>)<sub>2</sub>Hg(沈国英等,2002; Sin *et al*, 2001)。CH<sub>3</sub>Hg 可以溶于水中,借助风场的混匀作用, 将 Hg 离子带入水体中,并随着水流扩散向上输送。 Hg 在四季的平均含量均呈现底层>中层>表层的特点 (图 3),推断 Hg 污染主要来源于沉积物中 Hg 的释放 (廖永志等, 2014)。

比较四季 Hg 的平均含量(图 3)发现,春季>冬季> 秋季>夏季,该趋势与杨东方等(2008)及张正斌(2004) 对周边海域的研究结果相似。这可能与四季降水量有 关(李月等,2010),春季为枯水期,海水中 Hg 的浓度 较高。夏季为丰水期,故海水中 Hg 的浓度受到稀释, 含量相对较低;再者夏季由于温度跃层的存在(马倩, 2014)<sup>1)</sup>,底层污染物无法向表层输送故夏季表层水体 中 Hg 含量未见超标。而秋季温度跃层逐渐消失,底 层的污染物质持续向上输送,故秋季表层水体的超标 现象较夏季严重。



# 2.2 As 的水平变化特征及影响因素

春季,调查水域表层水体中的 As 含量为 0.39-2.01 µg/L,平均值为 0.99 µg/L;中层水体中的 As 含量为 0.16-2.16 µg/L,平均值为 0.91 µg/L;底层 的 As 含量为 0.31-1.99 µg/L,平均值为 0.90 µg/L。

夏季,调查水域表层海水中的 As 浓度为 4.19-

10.83 μg/L, 平均值为 5.66 μg/L; 中层水体中的 As 浓 度为 0.34–3.51 μg/L, 平均值为 1.53 μg/L; 底层的 As 浓度为 0.57–4.06 μg/L, 平均值为 1.38 μg/L。

秋季,调查水域表层水体中的 As 含量为 0.31-2.49 μg/L,平均值为 1.19 μg/L;中层水体中的 As 含量为 0.42-2.06 μg/L,平均值为 1.13 μg/L;底层 的 As 含量为 0.43-1.50 μg/L,平均值为 1.06 μg/L。

冬季,调查水域表层水体中的 As 含量为 0.73-1.73 μg/L,平均值为 1.05 μg/L;中层水体中的 As 含量为 0.69-1.68 μg/L,平均值为 1.09 μg/L;底层 的 As 含量为 0.65-1.65 μg/L,平均值为 1.04 μg/L。



Fig.4 Average values of As concentration

比较 As 的平均含量(图 4),除冬季外,均表现出 表层 > 中层>底层的变化规律。其中,夏季渤海表层 水体中 As 的含量最高,曾一度达到 10.83 μg/L。该 现象与第 2 次全国海洋污染基线调查数据一致 (陈江麟等, 2004),这可能与 As 的陆源输入有关。 据调查,环渤海地区每年陆源入海的 As 高达 5.3 万 t (张小林, 2001)。由农村发展起的小城镇基础设施建 设较差,绝大多数没有排污管网,大多数由农用杀虫 剂带来的 As 从污水沟直接排入河道,或者通过降雨 径流进入河道(Sun *et al*, 2012;黄现民等, 2008)。从而 造成生活垃圾、生产污水在夏季的丰水期大量进入渤 海,并随着水流扩散到渤海中部,造成污染。整体而 言,As 在渤海中部海域水体中分布均匀(图 5),且该 海域各站位及水层均未出现 As 含量超标现象。

#### 3 结论

通过对渤海中部海域四季的表、中、底层水体中

1) 马倩. 大风作用下渤海环流和水交换的数值模拟研究. 中国海洋大学硕士研究生学位论文, 2014



图 5 As 的四季平面分布 Fig.5 Horizontal distribution of As in four seasons

Hg、As 的变化特点的分析发现,Hg 的污染较为严重, 在水体中的平均含量为底层>中层>表层,除夏季的表 层水体外,均超出 I 类或 II 类海水水质标准,整体呈现 春季>冬季>秋季>夏季的变化规律;As 并未表现出超标 现象,除夏季表层水体中含 As 量较高外,均呈现均匀的 分布模式,As 的平均含量为表层>中层>底层。

# 参考文献

中华人民共和国国家质量监督检验检疫总局,中国国家标

准化管理委员会.海洋监测规范 第 4 部分:海水分析 (GB17378.4-2007).北京:中国标准出版社,2007

- 中华人民共和国国家质量监督检验检疫总局,中国国家标 准化管理委员会.海洋监测规范 第 5 部分: 沉积物分 析(GB17378.5-2007).北京:中国标准出版社,2007
- 李月,谭丽菊,王江涛.山东半岛南部近海表层海水中镉、 铅、汞、砷的时空变化.中国海洋大学学报,2010,40(Sup.): 179–184
- 杨东方,曹海荣,高振会,等.胶州湾水体重金属 Hg I.分布 和迁移.海洋环境科学,2008,27(1):37-39
- 沈国英, 施并章. 海洋生态学. 北京: 科学出版社, 2002, 387
- 张小林. 渤海海域海水、沉积物中铅、镉、汞、砷污染调查. 黑

龙江环境通报, 2001, 25(3): 87-90

- 张正斌. 海洋化学. 青岛: 中国海洋大学出版社, 2004, 164
- 陈江麟, 刘文新, 刘书臻, 等. 渤海表层沉积物重金属污染评价. 海洋科学, 2004, 28(12): 16–21
- 国家环境保护局.海水水质标准(GB3097-1997).北京:中 国环境科学出版社,1997
- 胡宁静,石学法,黄朋,等. 渤海辽东湾表层沉积物中金属元 素分布特征. 中国环境科学,2010,30(3):380-388
- 贺志鹏, 宋金明, 张乃星, 等.南黄海表层海水重金属的变化 特征及影响因素, 环境科学, 2008, 29(5): 1153–1162
- 柴松芳. 胶州湾海水总汞含量及其分布特征. 黄渤海海洋学报, 1998, 16(4): 60-63
- 郭福星, 吕颂辉, 腾德强, 等. 黄海表层沉积物中重金属的分 布特征与生态风险评价. 安徽农业科学, 2011, 39(15): 9212–9216, 9313
- 黄现民,王洪涛.山东省环渤海地区农业面源污染防治对策 研究.安徽农业科学,2008,36(15):6300-6303
- 廖永志, 冯少波, 冯钊, 等. 广西合浦廉州湾贝类养殖区表层 沉积物重金属汞和砷污染评价. 南方农业学报, 2014,

45(2): 305-308

- Bing H, Wu Y, Nahm WH, et al. Accumulation of heavy metals in the lacustrine sediment of Longgan Lake, middle reaches of Yangtze River, China. Environ Earth Sci, 2013, 69(8): 2679–2689
- Fang TH, Li JY, Feng HM, et al. Distribution and contamination of trace metals in surface sediments of the East China Sea. Mar Environ Res, 2009, 68(4): 178–187
- Sheng Y, Sun Q, Bottrell SH, et al. Anthropogenic impacts on reduced inorganic sulfur and heavy metals in coastal surface sediments, north Yellow Sea. Environ Earth Sci, 2013, 68(5): 1367–1374
- Sin SN, Chua H, Lo W, et al. sessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environ Int, 2001, 26: 297–301
- Sun Q, Liu D, Liu T, *et al.* Temporal and spatial distribution of trace metals in sediments from the northern Yellow Sea coast, China: implications for regional anthropogenic processes. Environ Earth Sci, 2012, 66(3): 697–705

(编辑 马璀艳)

# The Temporal and Spatial Distribution of Mercury and Arsenic in the Central Bohai Sea

YANG Qian, XIA Bin, SUN Yao, CHEN Jufa, ZHANG Yan,

QU Keming, ZHAO Jun, CUI Zhengguo<sup>®</sup>

 (Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Shandong Provincial Key Laboratory of Fishery Resources and Eco-Environment,
 Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071)

Abstract To study the temporal and spatial distribution of Mercury (Hg) and Arsenic (As) in the central Bohai Sea, we collected water samples of the surface, middle, and bottom layers in four survey cruises in May (spring), July (summer), November (autumn) and December (winter) in 2013. The results showed that the content of Hg was in the range of  $0.0029-0.3926 \,\mu\text{g/L}$  with an average of  $0.0676 \mu g/L$ . The vertical distribution of Hg concentration followed the order: bottom layer > middle layer > surface layer; the seasonal distribution showed the pattern: spring > winter > autumn >summer. Except for the surface layer in summer, Hg concentration in all water samples failed to meet the national water quality standard (GB3097-1997). The concentration of As ranged from 0.65 to 10.83  $\mu$ g/L with the mean value of 1.50  $\mu$ g/L, which met the requirement for the national water quality standard (GB3097–1997). The vertical distribution of As followed the order: surface layer > middle layer > bottom layer, and the seasonal distribution displayed an even pattern. The limit of As concentration is 20  $\mu$ g/L according to the national water quality standards, thus the As level met the first water quality standard. However, the Hg level was readily higher than the first (0.05  $\mu$ g/L) or second water quality national water quality standard (0.20  $\mu g/L$ ). These data suggested that the overall water quality of the central Bohai Sea was unsatisfying, and there was obvious pollution probably caused by human activities. Therefore the environmental risks in the Bohai Sea should be carefully evaluated in the future economic activities.

Key words The central Bohai sea; Mercury; Arsenic; Influence factor

① Corresponding author: CUI Zhengguo, E-mail: cuizg@ysfri.ac.cn

DOI: 10.11758/yykxjz.20150817003

http://www.yykxjz.cn/

# 19-3 油田溢油对辽东湾浮游植物群落的影响

宋广军"李爱吴金浩王召会

(辽宁省海洋水产科学研究院 辽宁省海洋生物资源与生态学重点实验室 辽宁 大连 116023)

**摘要** 根据 2012-2014 年对辽东湾浮游植物群落的调查,分析了 19-3 油田溢油事故发生后辽东 湾浮游植物种类、细胞丰度、生物多样性和优势种的变化以及影响因素。调查发现,辽东湾浮游植 物种类数在 2012 年有明显的降低,而在 2013 年和 2014 年浮游植物种类数明显上升。辽东湾浮游 植物细胞丰度在夏季异常升高,中肋骨条藻(Skeletomema costatum)出现暴发性繁殖,这可能与海水 中油类含量的升高有一定关系。

关键词 石油污染;辽东湾;浮游植物;群落结构;多样性指数

中图分类号 Q948.1 文献标识码 A 文章编号 2095-9869(2016)04-0060-07

近年来,由于石油工业、海上运输业的迅速发展, 海上油田泄露、船舶溢油事故不断发生,对海域生态 环境造成了严重影响。在海洋生态环境中,海洋浮游 植物作为最主要的初级生产力,海洋食物链的起点, 研究石油污染后期浮游植物群落结构的变化至关重 要。国内外学者已就石油污染对浮游植物的短期影响 做了大量相关研究(Djomo et al, 2004; Parab et al, 2008; 王君丽等, 2011; 黄逸君等, 2011), 但是对石油 污染后海洋中浮游植物群落结构的长期影响报道较 少。2011年6月蓬莱19-3油田发生溢油事故,造成 渤海约 620 km<sup>2</sup> 的海域污染,使渤海中部蓬莱 19-3 油田周边海域和西北部海域,以及辽东湾绥中沿岸水 域环境和生物群落受到影响。作者通过对 2012-2014 年辽东湾海域连续 3 年的浮游植物以及相关环境因 子监测数据分析,研究了石油污染发生后3年时间辽 东湾海域浮游植物群落结构的变化,以及石油污染对 浮游植物群落结构是否产生后续影响,也为今后相关 的研究工作提供参考。

# 1 材料与方法

#### 1.1 调查海区和监测方法

调查范围在渤海(辽东半岛南端)老铁山角至(绥

中)止锚湾连线以北辽东湾全部海域,调查站位 38 个 (图 1)。自 2012-2014 年,连续 3 年对该海域浮游植物 和相关影响环境因子(石油类、DIN、DIP、温度、DO 和 COD)进行监测。监测时间为每年 5 月、8 月和 10 月。



浮游植物采集使用国际标准 20 号(孔径 0.076 mm) 筛绢制成的浅水Ⅲ型浮游生物网(网口直径为 37 cm,网 长 1.4 m),由底至表垂直拖网,采集到的样品装到采样 瓶中,加入 5%浓度为 40%的甲醛进行固定,带回实 验室进行分类和计数。

<sup>\*</sup> 辽宁省海洋与渔业厅科研项目(201418)、辽宁省海洋与渔业厅科研项目(201303)和辽宁省海洋与渔业厅科研项目 (201416)共同资助。

① 通讯作者: 宋广军, 副研究员, E-mail: sgj666@qq.com 收稿日期: 2015-08-17, 收修改稿日期: 2015-11-09

石油类、DIN、DIP、温度、DO和COD等环境 影响因子的样品采集、保存及分析方法均按《海洋监 测规范》(GB17378-2007)和《海洋调查规范》 (GB/T12763-2007)进行。

#### 1.2 数据处理

浮游植物群落指数采用香农-威纳指数 H'(Shan-non-Wiener index), 计算公式为:

$$H' = -\sum_{i=1}^{s} P_i \log_2 P_i$$

物种优势度 Y 的计算:根据各物种出现的频率及 丰度来计算,计算公式为:

$$Y = \frac{n_i}{N} f_i$$

式中, N 为采集样品中所有物种的总体个数; S 为样品中的物种个数;  $P_i$ 为第 i 种的个体数与样品中的总个数的比值;  $n_i$ 为第 i 种的总体个数;  $f_i$ 为第 i 种在各样品中出现的频率。以优势度 Y > 0.02的标准来确定优势种(徐兆礼等, 1989)。

采用 SPSS19 统计软件对浮游植物种类、细胞丰度 以及生物多样性与环境影响因子做 Pearson 相关性分析。

## 2 结果

#### 2.1 浮游植物群落结构的变化

2.1.1 浮游植物种类与细胞丰度的变化 2012-2014年 调查海域 3 个季节浮游植物种类与细胞丰度的变化见 表 1。调查结果显示,辽东湾浮游植物种类最低值出 现在 2012 年 5 月,最高值出现在 2013 年 10 月,2012 年 3 个季节浮游植物种类分别为 26 种、32 种和 38 种,均 低于 2013 年和 2014 年同期水平。浮游植物细胞丰度 最高值出现在 2012 年 8 月,最低值出现在 2012 年 5 月。 从 3 年总体结果来看,2012 年辽东湾海域浮游植物

表 1 2012-2014 年辽东湾海域 3 个季节的浮游植物 平均丰度和种类数

Tab.1 Number of species and average abundance of phytoplankton in three seasons in the Liaodong Bay from 2012 to 2014

| 调查时间(年-月)<br>Sampling time (Y-M) | 种类数<br>Amount of<br>species | 细胞丰度<br>Average abundance<br>(×10 <sup>4</sup> ind/m <sup>3</sup> ) |
|----------------------------------|-----------------------------|---------------------------------------------------------------------|
| 2012-05                          | 26                          | 27                                                                  |
| 2012-08                          | 32                          | 3072                                                                |
| 2012-10                          | 38                          | 242                                                                 |
| 2013-05                          | 43                          | 168                                                                 |
| 2013-08                          | 35                          | 142                                                                 |
| 2013-10                          | 59                          | 75                                                                  |
| 2014-05                          | 39                          | 63                                                                  |
| 2014-08                          | 55                          | 465                                                                 |
| 2014-10                          | 56                          | 34                                                                  |

种类数处于低水平,细胞丰度波动最大(图 2)。 2.1.2 浮游植物优势种的变化 2012-2014 年调查 海域3个季节浮游植物优势种变化情况见表2。表2中 列出各季节优势度前三位的优势物种。从调查结果来 看, 辽东湾 5 月浮游植物优势种主要为具槽帕拉藻 (Melosira sulcata),角毛藻属(Chaetoceros spp.)和夜光 藻(Noctiluca scintillans), 8 月中肋骨条藻(Skeletonema costatum)优势度明显, 10 月主要优势种为圆筛藻属 (Coscinodiscus spp.),具槽帕拉藻和角毛藻属,连续3年 的调查结果基本一致。所不同的是, 2012 年 5 月和 8 月两 种易引发赤潮的藻类夜光藻和中肋骨条藻优势度非常高。 2.1.3 浮游植物多样性的变化 2012 年 5 月辽东 湾海域浮游植物多样性指数的范围在 0.66-3.77 之 间,多样性指数平均值为2.58,辽东湾近岸海域多样 性指数较高, 辽东湾中部多样性指数低(图 3-a); 8 月多 样性指数的范围在 0.13-3.41 之间, 多样性指数平均 值为1.34,多样性指数由湾外向湾内递减,湾顶部多样 性最低(图 3-b); 10 月多样性指数的范围在 1.35-3.79



国立 2012-2014 中起小街海域 5 十半节时行伽植物时十岁中发 种种天妖

Fig.2 Number of species and average abundance of phytoplankton in three seasons in the Liaodong Bay from 2012 to 2014

之间,多样性指数平均值为 2.99, 整个湾内多样性指数较高,在湾外呈递减趋势(图 3-c)。

2013 年 5 月辽东湾海域浮游植物多样性指数变化 范围在 1.14-3.66 之间,均值为 2.52(图 3-d); 8 月多样性 指数变化范围在 1.81-3.61 之间,均值为 2.76(图 3-e); 10 月多样性指数变化范围在 1.70-3.72 之间,均值为 2.94(图 3-f)。2013 年各季节浮游植物多样性指数平面 分布状况与 2012 年基本一致,2013 年 8 月多样性指 数要明显好于 2012 年同期。

2014 年 5 月辽东湾海域浮游植物多样性指数变 化范围在 0.56-3.22 之间,均值为 1.76(图 3-g);8 月多 样性指数变化范围在 0.76-3.48 之间,均值为 2.47(图 3-h);10 月多样性指数变化范围在 0.91-4.05 之间, 均值为 2.50(图 3-i)。2014 年 3 个季节浮游植物多样 性指数平面分布与 2012 年和 2013 年变化不大,多样 性指数略低。

#### 2.2 浮游植物群落结构与水环境因子的相关性分析

2.2.1 辽东湾油类及营养结构的变化 图 4 分别

给出了辽东湾海域 2012-2014 年各项环境因子总体 平均值的季节变化情况。从连续 3 年整体结果来看, 辽东湾油类含量最高监测值达到 2889 μg/L,最低值 为 5 μg/L。其中,2012 年油类的监测均值 8 月最高, 达到 36 μg/L,10 月最低,为16 μg/L。2013 年 5 月 和10 月油类监测均值为3 年监测中最高,分别为39 μg/L 和 38 μg/L,2014 年油类监测最高均值出现在 5 月,为 25 μg/L。从区域分布来看,油类浓度高值区出现在辽 东湾西部和北部近岸海域,低值区出现在辽东湾中部 和东南部海域。

无机氮和活性磷酸盐监测值呈明显季节性变化, 无机氮监测值 5 月和 10 月高, 8 月有明显降低,活 性磷酸盐监测值 5 月和 8 月低,在 10 月监测值有明 显升高。从年际变化来看,2013 年无机氮的监测值要 高于 2012 年和 2014 年同期水平,活性磷酸盐 2014 年 最高,2012 年最低。调查区域 N/P 比值平均值在 12.8:1-4.3:1 之间,除 2014 年 10 月 N/P 比值平均值 低于大洋海水和浮游生物体的 Redfield 比值 16:1 外

| 调查时间(年-月) Sampling time (Y-M) | 优势种    | Dominant species     | 优势度 Dominance degree |
|-------------------------------|--------|----------------------|----------------------|
| 2012-05                       | 夜光藻    | N. scintillans       | 0.372                |
|                               | 窄隙角毛藻  | Chaetoceros affinis  | 0.092                |
|                               | 具槽帕拉藻  | M. sulcata           | 0.063                |
| 2012-08                       | 中肋骨条藻  | S. costatum          | 0.840                |
| 2012-10                       | 圆筛藻    | Coscinodiscus spp.   | 0.156                |
|                               | 角毛藻    | Chaetoceros spp.     | 0.115                |
|                               | 密联角毛藻  | Chaetoceros densus   | 0.063                |
| 2013–05                       | 具槽帕拉藻  | M. sulcata           | 0.204                |
|                               | 柔弱几内亚藻 | Guinardia delicatula | 0.153                |
|                               | 角毛藻    | Chaetoceros spp.     | 0.102                |
| 2013–08                       | 角毛藻    | Chaetoceros spp.     | 0.362                |
|                               | 中肋骨条藻  | S. costatum          | 0.102                |
|                               | 窄隙角毛藻  | Chaetoceros affinis  | 0.079                |
| 2013-10                       | 圆筛藻    | Coscinodiscus spp.   | 0.179                |
|                               | 具槽帕拉藻  | M. sulcata           | 0.131                |
|                               | 角毛藻    | Chaetoceros spp.     | 0.102                |
| 2014–05                       | 角毛藻    | Chaetoceros spp.     | 0.271                |
|                               | 具槽帕拉藻  | M. sulcata           | 0.196                |
|                               | 夜光藻    | N. scintillans       | 0.070                |
| 2014–08                       | 中肋骨条藻  | S. costatum          | 0.212                |
|                               | 短角弯角藻  | Eucampia zodiacus    | 0.091                |
|                               | 泰晤士扭鞘藻 | Streptotheca tamesis | 0.045                |
| 2014–10                       | 具槽帕拉藻  | M. sulcata           | 0.384                |
|                               | 圆筛藻    | Coscinodiscus spp.   | 0.119                |
|                               | 布氏双尾藻  | Ditylum brightwelli  | 0.056                |

表 2 2012-2014 年辽东湾海域 3 个季节浮游植物的优势种及优势度 Tab.2 The dominant species and the corresponding dominance degrees in three seasons in the Liaodong Bay from 2012 to 2014





(Redfield, 1958), 其他航次 N/P 比值远高于 16:1。 营养盐结构呈现明显的 P 限制。

2.2.2 浮游植物群落结构数据与环境因子的 Pearson 相关性分析 调查海域浮游植物群落结构数据与 环境因子的 Pearson 相关性分析结果见表 3。从表 3 可以看出,浮游植物群落结构的变化受多种环境因子 的影响。2012 年辽东湾浮游植物群落结构的变化与 水温、COD、溶解氧以及油类相关性显著;2013 年 浮游植物群落结构变化与 COD、无机氮、活性磷酸 盐相关性显著;2014 年浮游植物群落结构变化与水 温、溶解氧、活性磷酸盐以及油类相关性显著。

# 3 讨论

2011 年 6 月蓬莱 19-3 油田发生的溢油事故,对 辽东湾直接污染区域较小,但是考虑到渤海属于半封 闭海域,海水交换能力差,渤海大面积溢油污染造成 的水质和生物群落的影响,是否波及整个辽东湾海域 浮植物群落结构,有必要进行系统性研究。

本次调查辽东湾浮游植物群落结构在种类组成上, 2012 年 5 月、8 月、10 月 3 个航次浮游植物种类数分 别为 26 种、32 种和 38 种,均低于 2013 年和 2014 年同 期水平。而宋伦等(2007)对辽东湾 2005 年 7-9 月浮游植



图 4 2012-2014年辽东湾海域环境因子季节性变化 Fig.4 Seasonal variation of environmental factors in the Liaodong Bay from 2012 to 2014

| Tal     | p.3 Pearson correlation  | on between the j | phytoplankton c | ommunity struc | ture and the env | ironmental facto | ors $(R)$ |
|---------|--------------------------|------------------|-----------------|----------------|------------------|------------------|-----------|
| 年份 Year | 项目 Item                  | DIN              | DIP             | Oil            | Т                | DO               | COD       |
| 2012    | 种类数<br>Amount of species | -0.162           | -0.188          | 0.284*         | 0.389**          | -0.087           | 0.599**   |
|         | 细胞丰度<br>Cell abundance   | -0.037           | -0.030          | -0.218         | -0.324**         | -0.320*          | 0.360     |
|         | 多样性指数<br>Diversity index | 0.217            | 0.066           | -0.376**       | -0.383**         | 0.097            | -0.279    |
| 2013    | 种类数<br>Amount of species | -0.275**         | 0.308**         | 0.079          | -0.192           | -0.062           | -0.311**  |
|         | 细胞丰度<br>Cell abundance   | 0.013            | -0.058          | 0.059          | -0.114           | 0.174            | -0.105    |
|         | 多样性指数<br>Diversity index | -0.277**         | 0.099           | 0.080          | 0.126            | -0.084           | -0.127    |
| 2014    | 种类数<br>Amount of species | -0.108           | 0.326**         | -0.148         | 0.278**          | -0.385**         | -0.044    |
|         | 细胞丰度<br>Cell abundance   | 0.052            | -0.147          | -0.203*        | 0.311**          | -0.043           | 0.091     |
|         | 多样性指数<br>Diversity index | 0.032            | 0.242*          | -0.005         | 0.268**          | -0.323**         | 0.086     |

| 表 3 | 浮游植物群落结构与环境因子的 | Pearson | 相关系数 |
|-----|----------------|---------|------|
|-----|----------------|---------|------|

\*\*为在 0.01 水平(双侧)上显著相关, \*为在 0.05 水平(双侧)上显著相关

\*\*denoted significant correlation at 0.01 level (double side), \* denoted significant correlation at 0.05 level (double side)

物调查, 辽东湾浮游植物种类数为 56 种, 以及栾莎等 (2012)、高伟等(2012)2009年对辽东湾西部春、夏、冬 季网采浮游植物群落结构进行的分析结果为浮游植物 种类春季(5月)32种,夏季(8月)82种,冬季(12月)60 种。从上述结果看,溢油发生后一年的2012年,辽东 湾浮游植物种类数在各季节均有明显的降低,而2013 年和2014年浮游植物种类数的上升,表明了浮游植 物群落很强的自我修复能力。

从优势种组成上看,连续3年的调查结果基本一致。辽东湾5月浮游植物优势种均为具槽帕拉藻,角毛 藻属和夜光藻,8月中肋骨条藻优势度明显,10月主要 优势种以圆筛藻属、具槽帕拉藻和角毛藻属为主。其中 5月和10月优势种的组成,与以往有关该海域的文献 报道结果差异不大(孙军等,1998;栾莎等,2012;高伟 等,2012;傅明珠等,2014)。而8月航次连续3年均以 中肋骨条藻为主要优势种,这在溢油发生前的文献报道 中是罕见的。中肋骨条藻的大量繁殖使整个辽东湾浮游 植物细胞丰度分布和生物多样性指数均产生了严重影 响。尤其是2012年8月整个辽东湾海域中肋骨条藻的 优势度达到0.840、浮游植物细胞丰度均值达3072× 10<sup>4</sup> ind/m<sup>3</sup>,生物多样性指数均值降低到1.34,浮游植 物群落结构受到了明显的影响。

通过浮游植物种类、细胞丰度以及生物多样性指数与 环境因子的 Pearson 相关性分析结果发现,浮游植物群落 结构的变化,除与水温、COD、溶解氧以及营养盐的相关 性显著外,与海水中油类含量的变化也有显著相关性。

从连续 3 年的调查结果来看,调查区域 N/P 比值 平均值在 12.8:1-74.3:1之间,除 2014 年 10 月 N/P 比 值平均值低于 16:1外,其他航次 N/P 比值均高于 16:1, 大量的氮源有利于中肋骨条藻的大量繁殖(霍文毅等, 2001)。溢油事故发生后,导致辽东湾海域油类的监 测值整体升高,高值区主要集中在辽东湾西部和北部 近岸海域。根据黄逸君等(2010、2011)对浮游植物进行 原油污染慢性毒性效应研究发现,高浓度的原油胁迫对 浮游植物的生长有极显著抑制作用,而低浓度的原油污 染不会抑制浮游植物生长,反而可促进其生长。在高浓 度 WAF(≥2.28 mg/L)和低浓度 WAF(≤1.16 mg/L)胁迫 下,各季节浮游植物群落中中肋骨条藻的优势度均呈升 高趋势,而其他优势种大都呈下降趋势。本次调查中 油类监测值虽有所升高,但整体低于 1.16 mg/L 的水平, 符合促进中肋骨条藻生长的条件。因此中肋骨条藻能暴发性繁殖可能与海水中油类含量的升高也有一定关系。

综上所述, 19-3 油田溢油事故发生后, 辽东湾浮游植物种类数在 2012 年有明显的降低, 而 2013 年和 2014 年浮游植物种类数的上升, 表明了浮游植物群 落很强的自我修复能力。中肋骨条藻在夏季出现暴发 性繁殖, 可能与海水中油类含量的升高有一定关系。 除此之外, 溢油后浮游植物主要物种没有出现较大变 化, 浮游植物群落较稳定, 生物多样性变化不大。

# 参考文献

- 王君丽, 刘春光, 冯剑丰, 等. 石油烃对海洋浮游植物生长的 影响研究进展. 环境污染与防治, 2011, 4(4): 81-86
- 宋伦,周遵春,王年斌,等.辽东湾浮游植物多样性及与海洋 环境因子的关系.海洋环境科学,2007,26(4):365-368
- 栾莎, 宫相忠, 双秀芝, 等. 2009 年春季辽东湾网采浮游植物 群落结构. 海洋科学, 2012, 36(5): 57-64
- 高伟, 宫相忠, 双秀芝, 等. 2009 年夏、冬季辽东湾网采浮游 植物群落结构分析. 海洋湖沼通报, 2012 (4): 162–169
- 黄逸君, 陈全震, 曾江宁, 等. 石油污染对海洋浮游植物群落 生长的影响. 生态学报, 2011, 31(2): 513-521
- 傅明珠, 孙萍, 孙霞, 等. 锦州湾浮游植物群落结构特征及其 对环境变化的响应. 生态学报, 2014, 34(13): 3650-3660
- 黄逸君, 江志兵, 曾江宁, 等. 石油烃污染对海洋浮游植物群 落的短期毒性效应. 植物生态学报, 2010, 34(9): 1095-1106
- 徐兆礼, 陈亚瞿. 东黄海秋季浮游动物优势种聚集强度与鲐 鲹渔场的关系. 生态学杂志, 1989, 8(4): 13-15
- 霍文毅, 俞志明, 邹景忠, 等. 胶州湾中肋骨条藻赤潮与环境 因子的关系. 海洋与湖沼, 2001, 32(3): 311–318
- Djomo JE, Dauta A, Ferrier V et al. Toxic effects of some major polyarom atic hydrocarbons found in crude oil and aquatic sediments on *Scenedesmus subspicatus*. Water Res, 2004, 38(7): 1817–1821
- Parab SR, Pandit RA, Kadam AN, *et al.* Effect of Bombay high crude oil and its water-soluble fraction on growth and metabolism of diatom *Thalassiosira* sp. Indian J Mar Sci, 2008, 37(3): 251–255
- Redfield AC. The biological control of chemical factors in the environment. Am Sci, 1958, 46(11): 150–170

(编辑 江润林)

# Influence of 19-3 Oil Spill Accident on Phytoplankton Community in the Liaodong Bay

# SONG Guangjun<sup>®</sup>, LI Ai, WU Jinhao, WANG Zhaohui

(Liaoning Ocean and Fisheries Science Research Institute, Liaoning Key Laboratory of Marine Biological Resources and Ecology, Dalian, Liaoning 116023)

Abstract In this study we investigated the changes and contributing factors of species composition, cell abundance, biological diversity and dominant species of phytoplankton community in the Liaodong Bay, with emphasis on their correlation with the 19-3 oil spill accident in Penglai. Our analysis was based on the field data about phytoplankton community collected in the Liaodong Bay in May (Spring), August (Summer) and October (Autumn) from 2012 to 2014. It was found the number of phytoplankton species was the lowest in May 2012, and the highest in October 2013. Overall the number in 2012 was lower than those in 2013 and 2014. The cell abundance of the phytoplankton community rose unexpectedly in all three summer seasons. The maximum reached 3072×10<sup>4</sup> ind/m<sup>3</sup> in August 2012, and the minimum  $(27 \times 10^4 \text{ ind/m}^3)$  appeared in May 2012. The dominant species in different seasons were nearly unchanged between 2012 and 2014. The dominant species in May were Paralia sulcata, Chaetoceros, Noctiluca scintillans, and it was Skeletonema costatum in August. In October Coscinodiscus, P. sulcata, and Chaetoceros gained the dominance. Interestingly, S. costatum, a dominant microalga, underwent explosive reproduction in August 2012, which might be associated with the increased oil concentration in surface seawater in the Liaodong Bay. Correlation analysis was performed to explore the links between the environmental factors and parameters such as species composition, cell abundance, and biological diversity index. The results indicated that the alteration in phytoplankton community structure was significantly correlated with water temperature, COD, dissolved oxygen and nutrients. Furthermore, the community structure was also strongly affected by the oil concentration in surface seawater.

Keywords Oil pollution; Liaodong Bay; Phytoplankton; Community structure; Biological diversity index

① Corresponding author: SONG Guangjun, E-mail: sgj666@qq.com

http://www.yykxjz.cn/

# 蓬莱 19-3 溢油后莱州湾浮游植物群落结构

程 玲 王月霞 马元庆" 何健龙 刘爱英 宋秀凯 由丽萍

(山东省海洋资源与环境研究院 山东省海洋生态修复重点实验室 烟台 264006)

**摘要** 2012-2014年,对莱州湾浮游植物进行了9个航次调查,并同步监测其他环境因子。共鉴 定浮游植物125种,隶属5大门类,以硅藻和甲藻为主,优势种主要为硅藻;浮游植物丰度和种类 数均在8月达到最高值,多样性指数和丰富度指数年际变化趋势基本一致。春季(5月)浮游植物种 类数与透明度呈显著负相关(P<0.01),与COD呈显著正相关(P<0.01);夏季(8月)与表层水温和无机 氮呈显著负相关(P<0.01);秋季(11月)浮游植物丰度与水深、盐度、溶解氧呈显著负相关(P<0.01), 与石油类呈显著正相关(P<0.01)。

关键词 莱州湾; 浮游植物; 环境因子; 相关性分析; 溢油 中图分类号 S932.7 文献标识码 A 文章编号 2095-9869(2016)04-0067-07

莱州湾位于山东半岛西北、渤海南部,总面积 6966.93 km<sup>2</sup>(夏东兴等,1993),海底平坦,水浅滩阔, 有黄河、小清河、潍河和胶莱河等众多河流汇入湾内, 是黄渤海渔业生物的主要产卵场、栖息地和传统渔场 (邓景耀等,2000)。曾是渤海初级生产力最高的区域, 也是我国初级生产力最高的海域之一,渔业资源十分 丰富。2011 年蓬莱 19-3 油田溢油事故发生后,莱州 湾内 3400 km<sup>2</sup>海域水质由第一类下降为第三、四类。 其中,870 km<sup>2</sup>海水受到严重污染(超第四类海水水质 标准)(刘慧敏等,2012)。

浮游植物是海洋食物链的基础环节,对栖息生境 中的各种环境因子有着较强的依赖性,其种类组成和 数量分布等生态特征在一定程度上反映了海域生态 环境的基本特征(Lalli et al, 1993),同时环境条件的改 变也直接或间接地影响到浮游植物的群落结构。石油 在水中不易分解,会较长时间存在于海水中,持续改 变海洋环境质量,影响海洋生物食物链和群落结构, 损害海洋生态系统。作者通过 2012-2014 年连续 3 年 共9个航次的浮游植物调查,分析了溢油事故发生后莱 州湾内浮游植物群落变化及其与环境因子关系,以期为 莱州湾生态环境保护和渔业资源修复等提供基础资料。

# 1 材料与方法

#### 1.1 采样时间与地点

2012-2014年,每年的5月、8月和11月,在莱 州湾海域(118.3°-120.6°E, 37.1°-38.3°N)进行9个航 次监测,共设35个监测站位(图1)。

按《海洋调查规范》(GB12763.6-2007)规定,用 浅水Ⅲ型浮游生物网自底层至表层垂直拖网采集浮





<sup>\*</sup>山东省科技发展计划(2014GSF117030)和山东省渤海海洋生态修复及能力建设项目(20140601)共同资助。程 玲, E-mail: linger19891028@126.com

①通讯作者:马元庆,高级工程师, E-mail: erma0402@163.com 收稿日期: 2015-05-25、收修改稿日期: 2015-07-27

游植物,样品用鲁格氏溶液固定,实验室内进行分类、 鉴定、计数和统计。同步调查水温(Water Temperature, WT)、盐度(Salinity)、透明度(Trans Parency)、溶解氧 (Dissolved Oxygen, DO)、化学耗氧量(Chemical Oxygen Demand, COD)、pH、石油类(Oil)、总氮(Total Nitrogen, TN)及总磷(Total Phosphorus, TP)等环境参数,所有操作 均按照《海洋监测规范》(GB17378.4-2007)进行。

#### 1.2 数据分析

浮游植物丰度以每立方米出现的个体数表示(cells/m<sup>3</sup>)。

优势种的优势度:  $Y = (n_i / N') \times f_i$ 

式中,  $n_i$ 为第 i种的丰度,  $f_i$ 为该种在各站位中出现的频率, N'为总丰度。根据种类优势度公式计算各种生物的优势度, 将 Y > 0.02的生物定为优势种(钱迎倩等, 1994)。

物种多样性指数 H'的计算采用 Shannon-Winner 指数(Shannon et al, 1949):

$$H' = -\sum_{i=1}^{S} P_i \log_2 P_i$$

物种丰度指数  $d_{Ma}$ 采用 Margalef 指数计算公式 (Margalef *et al*, 1968):  $d_{Ma} = (S-1)/\log_2 N$ 

均匀度指数J采用Pielou指数计算公式(Pielou *et al*, 1969):

$$J = H'/\log_2 S$$

式中, *N* 为采集样品中所有物种的总个体数, *S* 为样品中的种类总数, *P<sub>i</sub>*为第*i* 种的个体数与样品中的总个体数的比值。

数据用 PRIMER6.0 软件统计分析,浮游植物丰 度平面分布图用 Surfer11.0 软件绘制,浮游植物密度 及种类数与环境因子相关关系用 SPSS19.0 软件分析。

#### 2 结果

# 2.1 浮游植物种类组成及优势种

9个航次共鉴定浮游植物 125 种(包含 1 个变种, 2 个变型),隶属于硅藻(Bacillariophyceae)、甲藻 (Pyrrophyta)、金藻(Chrysophyta)、蓝藻(Cyanophyta)、 绿藻(Chlorophyta)5大门类,以硅藻(101 种)和甲藻 (21 种)居多,优势种大多为硅藻,主要包括圆筛藻属 (Coscinodiscus sp.)、角毛藻属(Chaetoceros sp.)、尖刺拟 菱形藻(Pseudo-nitzschia pungens)、斯氏几内亚藻 (Guinardia striata)等(表 1)。按其生态特征可分为五类。 2.1.1 广温、广盐的广布种 如尖刺拟菱形藻、丹 麦 细 柱 藻(Leptocylindrus danicus)、派格 棍 形 藻 (Bacillaria paxillifera)、中肋骨条藻 (Skeletonema costatum)、柔弱角毛藻(Chaetoceros debilis)、冕孢角 毛藻(Chaetoceros diadema)、中心圆筛藻(Coscinodiscus centralis)、星脐圆筛藻(Coscinodiscus asteromphalus var. asteromphalus)、布氏双尾藻(Ditylum brightwellii)、 刚毛根管藻(Rhizosolenia setigera)、斯氏几内亚藻和

扁多甲藻(Protoperidinium depressum)等。

2.1.2 温帶內湾种和沿岸种 如中华半管藻 (Hemiaulus sinensis)、中华齿状藻(Odontella sinensis)、 窄隙角毛藻(Chaetoceros affinis)、丹麦角毛藻 (Chaetoceros danicus)、卡氏角毛藻(Chaetoceros castracanei)、短角弯角藻(Eucampia zodiacus)、绕孢 角毛藻(Chaetoceros coarctatus)、柔弱几内亚藻(Guinardia delicatula)和翼根管藻印度变型(Proboscia indica)等。

**2.1.3** 热带近岸种 如拟旋链角毛藻(Chaetoceros pseudocurvisetus)、旋链角毛藻(Chaetoceros curvisetus)、劳氏角毛藻(Chaetoceros lorenzianus)和窄面角毛藻 (Chaetoceros paradoxus)等。

**2.1.4** 远洋性种 如密连角毛藻(Chaetoceros densus)、虹彩圆筛藻(Coscinodiscus oculus-iridis)和伏氏海线藻(Thalassionema frauenfeldii)等。

**2.1.5** 半咸水种 如波罗的海布纹藻(Gyrosigma balticum)。

浮游植物种类组成呈现较为明显的单峰型季节 变化规律(图 2),8月种类数最多,11月次之,5月最 少。2012-2014年年际间变化不大,种类数相对稳定, 种类组成上硅藻均占绝对优势,其次为甲藻,偶尔出 现金藻、蓝藻等。

#### 2.2 浮游植物群落参数变化

图 3 为 2012-2014 年浮游植物群落结构参数(细胞丰度、多样性指数、丰富度指数和均匀度指数)变化情况。浮游植物丰度年际变化与种类数的变化趋势 基本一致,均呈现单峰型。5 月细胞丰度均值较低, 8 月有大幅升高,11 月又有所回落,但依然远高于同 年 5 月浮游植物丰度;2013 年 8 月细胞丰度是其他 年份的近 20 倍,主要源自大量出现的拟旋链角毛藻 和旋链角毛藻,平均细胞丰度分别达到 2.30×10<sup>7</sup>、 1.75×10<sup>7</sup> cells/m<sup>3</sup>,接近赤潮阈值。

多样性指数与丰富度指数年际变化趋势相似。 2012 年呈单峰型, 8 月多样性指数和丰富度指数均为 最高,分别为 2.51 和 0.82; 2013 年和 2014 年指数均 呈上升趋势,5 月最低,11 月最高。2012 年与 2013 年 均匀度指数呈现下降趋势,5 月均为同年最高值,分 别为 0.69 和 0.75; 2014 年均匀度指数与同年的多样 表 1 2012-2014 年莱州湾浮游植物主要优势种

| 航次(年-月) Time (Y-M) | 优势种 Dominant species | 拉丁名 Latin name         | 优势度 Dominance |
|--------------------|----------------------|------------------------|---------------|
| 2012-05            | 短柄曲壳藻                | Achnanthes brevipes    | 0.313         |
|                    | 舟形藻属                 | Navicula sp.           | 0.068         |
|                    | 具槽直链藻                | Melosira sulcata       | 0.022         |
| 2012-08            | 旋链角毛藻                | C. curvisetus          | 0.213         |
|                    | 小环藻属                 | Cyclotella sp.         | 0.069         |
|                    | 舟形藻属                 | Navicula sp.           | 0.048         |
| 2012-11            | 圆筛藻属                 | Coscinodiscus sp.      | 0.209         |
|                    | 丹麦细柱藻                | L. danicus             | 0.154         |
|                    | 三角角藻                 | Ceratium tripos        | 0.102         |
| 2013-05            | 舟形藻属                 | Navicula sp.           | 0.050         |
|                    | 辐射圆筛藻                | Coscinodiscus radiatus | 0.034         |
|                    | 圆筛藻属                 | Coscinodiscus sp.      | 0.032         |
| 2013-08            | 拟旋链角毛藻               | C. pseudocurvisetus    | 0.190         |
|                    | 旋链角毛藻                | C. curvisetus          | 0.107         |
| 2013-11            | 丹麦细柱藻                | L. danicus             | 0.264         |
|                    | 尖刺拟菱形藻               | P. pungens             | 0.213         |
|                    | 旋链角毛藻                | C. curvisetus          | 0.021         |
| 2014-05            | 斯氏几内亚藻               | G. striata             | 0.748         |
|                    | 夜光藻                  | Noctiluca scintillans  | 0.046         |
| 2014-08            | 伏氏海线藻                | T. frauenfeldii        | 0.280         |
|                    | 角毛藻属                 | Chaetoceros sp.        | 0.081         |
|                    | 卡氏角毛藻                | C. castracanei         | 0.045         |
| 2014-11            | 尖刺拟菱形藻               | P. pungens             | 0.218         |
|                    | 短角弯角藻                | E. zoodiacus           | 0.147         |
|                    | 旋链角毛藻                | C. curvisetus          | 0.040         |







性指数及丰富度指数趋势一致,随季节呈上升趋势。 综合浮游植物各群落参数, 2014 年 8 月及 11 月 莱州湾浮游植物多样性指数、丰富度指数及均匀度指 数均相对较高,浮游植物群落结构稳定。

#### 2.3 浮游植物平面分布

莱州湾浮游植物的平面分布极不均匀。河口及近 岸海域浮游植物丰度远大于远海。黄河口近岸海域各 季节浮游植物细胞丰度均较高,其次为广利河、老弥 河和小清河口附近海域, 莱州湾北部海域相对较低 (图 4)。

2012 年 5 月, 浮游植物丰度最高值出现在黄河 口附近海域的 413 站位, 丰度为 23.25×10<sup>5</sup> cells/m<sup>3</sup>; 8月最高值出现在湾底近岸海域的435站位,丰度为 89.53×10<sup>5</sup> cells/m<sup>3</sup>; 黄河口附近海域次之, 丰度为 44.41×10<sup>5</sup> cells/m<sup>3</sup>; 11 月最高值同样出现在 435 站位 (丰度为 14.83×10<sup>6</sup> cells/m<sup>3</sup>)。黄河口附近海域浮游植 物丰度依然较高,丰度为1.65×10<sup>6</sup> cells/m<sup>3</sup>。


图 3 浮游植物群落参数年际变化(细胞丰度、丰富度指数、多样性指数、均匀度指数) Fig.3 Annual variation of the phytoplankton community (cell abundance, richness index, diversity index and evenness index)



Fig.4 Horizontal distribution of phytoplankton in the Laizhou Bay

2013年依然是黄河口和广利河口附近海域浮游 植物丰度较高,5月、8月、11月丰度分别为3.36×10<sup>4</sup>、 10.37×10<sup>7</sup>、3.93×10<sup>5</sup> cells/m<sup>3</sup>,8月浮游植物丰度最高。

2014 年 5 月和 8 月丰度最高值均出现在莱州湾 中部远岸海域,分别为 54.87×10<sup>5</sup> 和 21.57×10<sup>6</sup> cells/m<sup>3</sup>。 11月最高值出现在湾底东南部近岸海域,丰度为 70.70× 10<sup>5</sup> cells/m<sup>3</sup>,远高于黄河口附近海域(丰度为 8.42×10<sup>4</sup> cells/m<sup>3</sup>),最低值出现在湾中部海域,丰度为 1.69×10<sup>4</sup> cells/m<sup>3</sup>。

#### 2.4 浮游植物群落结构与环境因子关系

浮游植物丰度和种类数与水深、表层水温、盐度、

营养盐等环境因子相关关系见表 2。春季,浮游植物 丰度与水深呈负相关(P<0.05),种类数与水深、表层水 温呈负相关(P<0.05),与透明度呈显著负相关(P<0.01), 与化学需氧量(COD)呈显著正相关(P<0.01);夏季, 浮游植物丰度与 pH 呈负相关(P<0.05),与无机氮、 石油类含量呈正相关(P<0.05),种类数与溶解氧呈正 相关(P<0.05),与表层水温、无机氮含量呈显著负相 关(P<0.05),与无油类含量呈显著正相关(P<0.01),标季,浮游植物丰度与 COD 呈正相关 (P<0.05),与石油类含量呈显著正相关(P<0.01),与 水深、盐度、溶解氧呈显著负相关(P<0.01),浮游植 物种类数与石油类呈正相关(P<0.05),与 COD 呈负 相关(P<0.05),与 pH 呈显著负相关(P<0.01)。

| Tab.2 Pearson corre      | lation between the | e phytoplankton | community and | environmental fa | actors in the Laizl | hou Bay     |  |
|--------------------------|--------------------|-----------------|---------------|------------------|---------------------|-------------|--|
| 理化指标                     | 春季 Spring          |                 | 夏季S           | ummer            | 秋季 Autumn           |             |  |
| Environment factors      | 丰度 Abundance       | 种类数 Species     | 丰度 Abundance  | 种类数 Species      | 丰度 Abundance        | 种类数 Species |  |
| 水深 Water depth           | -0.246*            | -0.262*         | -0.174        | 0.098            | -0.481**            | 0.138       |  |
| 表层水温 Surface temperature | -0.066             | -0.339*         | 0.125         | -0.439**         | -0.179              | 0.088       |  |
| 透明度 Transparency         | -0.221             | -0.440**        | -0.118        | -0.141           | 0.105               | 0.042       |  |
| 盐度 Salinity              | -0.186             | -0.352          | -0.054        | 0.189            | -0.422**            | -0.032      |  |
| 酸碱度 pH                   | 0.126              | 0.030           | -0.244*       | 0.092            | -0.015              | -0.335**    |  |
| 溶解氧 DO                   | -0.035             | 0.196           | -0.013        | 0.229*           | -0.277**            | -0.155      |  |
| 化学需氧量 COD                | 0.132              | 0.327**         | -0.102        | -0.009           | 0.234*              | -0.220*     |  |
| 磷酸盐 Phosphate            | 0.114              | 0.133           | 0.097         | 0.006            | -0.129              | -0.374      |  |
| 无机氮 DIN                  | 0.085              | 0.019           | 0.240*        | -0.298**         | 0.078               | 0.070       |  |
| 石油类 Oil                  | 0.147              | 0.149           | 0.270*        | 0.108            | 0.576**             | 0.251*      |  |

表 2 莱州湾浮游植物群落结构与环境因子的相关关系

\*\*表示相关置信度水平<0.01, \* 表示相关置信度水平<0.05

\*\* denoted confidence level < 0.01, \* denoted confidence level < 0.05

#### 3 讨论

#### 3.1 浮游植物群落结构及其参数变化

本次调查共鉴定浮游植物 125 种(包含变型和变种),分属 5 大门类。其中,硅藻门无论是种类还是丰度均占绝对优势,这与刘慧等(2003)、王俊(2003)关于莱州湾浮游植物的调查结果一致。由于硅藻形成的硅质化外壳对其自身生存具有保护作用,同时在不良情况下,硅藻可产生休眠孢子度过不良环境,对环境适应能力较强,使其在整个浮游植物种类组成中占绝对优势。2012 年共鉴定浮游植物 90 种,2013 年共鉴定浮游植物 88 种,2014 年共鉴定浮游植物 69 种。由此可见,浮游植物种类数在溢油后呈现逐年下降趋势,但总种类数仍高于 2009 年的 58 种(宁璇璇等,2011)。

莱州湾海域浮游植物种类主要以温带近岸种和 浮游广布种为主,溢油发生后浮游植物的种类组成未 发生明显变化(李广楼等, 2006; 宁璇璇等, 2011)。

浮游植物的种类和丰度均呈明显的季节变化特征,2012-2014年最高值均在夏季(8月),最低值在秋季(11月)。历史资料显示,1998年莱州湾浮游植物数量高峰出现在春季(5月),最低值出现在夏季(8月)(王俊,2000);2003年莱州湾浮游植物数量均值最高值出现在8月,最低值出现在5月(李广楼等,2006);说明15年间莱州湾浮游植物群落结构的季节演替发生了变化。

浮游植物的群落参数显示,以多样性指数小于1、 均匀度小于 0.3 为多样性较差的标准(李广楼等, 2006),莱州湾浮游植物的多样性指数均大于1,均匀 度指数均大于 0.3。因此可以认为,莱州湾的生物多 样性和丰富度均较好,浮游植物群落结构比较稳定, 种类和数量分布比较均匀。

#### 3.2 环境因子对浮游植物群落结构的影响

海洋环境是海洋生物赖以生存的基础,海洋生物

的活动分布、繁殖和生长都与海洋环境密不可分。浮游植物丰度的平面分布显示莱州湾河口区及近岸海域浮游植物丰度远大于远海。其中黄河口近岸海域各季节浮游植物细胞丰度均较高,河流汇入湾内海水的盐度一般较低,营养盐类比较丰富,有利于浮游植物的繁殖 生长(王俊等,1998;康元德,1981;朱树屏等,1966)。

浮游植物的数量丰度变化与表层水温、透明度、 溶解氧、营养盐、石油类等环境因子密切相关。冬季 水温低,浮游植物繁殖能力弱、丰度低,营养消耗少, 使得春季海水中营养盐积累较多,所以春季营养盐一 般不会成为浮游植物生长繁殖的限制因子,而水深、 透明度和水温是影响浮游植物丰度和种类数的环境 因子。随着气温逐渐升高以及沿岸河流输送营养盐的 增加, 浮游植物生长繁殖速度加快, 夏季浮游植物丰 度大幅升高,此时浮游植物丰度与无机氮等营养盐呈 正相关, 与郝彦菊等 (2005)关于莱州湾营养盐与浮 游植物多样性的调查研究结果一致;浮游植物丰度大 幅度增加时,为了争夺有限的营养物质和生存空间, 种间竞争加剧,浮游植物种类数下降,因而8月浮游 植物种类数与无机氮呈现显著负相关。而随着水温的 下降以及营养盐的消耗,秋季浮游植物丰度又再次下 降,此时影响浮游植物丰度的环境因子为水深、盐度 和溶解氧。Parab 等(2008)、王修林等 (2004)研究显 示,低浓度石油烃对旋链角毛藻的生长表现为促进作 用。本调查中春、秋季莱州湾浮游植物优势种均有旋 链角毛藻,所以夏、秋季莱州湾浮游植物丰度与石油 类含量呈正相关。在一定条件下,低浓度的石油烃污染 物可能导致大量赤潮类浮游植物在短时间内大量繁殖, 这可能是诱发赤潮的因素之一(黄逸君等, 2011)。2013 年8月,莱州湾调查海域拟旋链角毛藻和旋链角毛藻的 大量繁殖可能与此时海水中低浓度石油烃有关。到目 前,关于低浓度的石油烃能促进浮游植物生长的原因尚 未确定,可能与石油烃中含有与浮游植物生长所需营养 相同的成分有关 (王君丽等, 2011)。

本调查结果显示,溢油发生后莱州湾浮游植物群 落结构比较稳定,种类和丰度分布相对较均匀,溢油 未明显改变浮游植物的自然习性。但石油烃与海洋环 境及浮游植物群落的相互作用是一个长期复杂的过 程。目前,有关石油烃对海洋浮游植物的致毒机理和 生物学效应研究仍不够深入,需要获取更多资料进行 更深入的研究。

#### 参考文献

- 王君丽, 刘春光, 冯剑丰, 等. 石油烃对海洋浮游植物生长的 影响研究进展. 环境污染与防治, 2011, 33(4): 81-86
- 王修林,杨茹君,祝陈坚.石油烃污染物存在下旋链角毛藻 生长的粒度效应初步研究.中国海洋大学学报(自然科学 版),2004,34(5):849-853
- 王俊, 康元德. 渤海浮游植物种群动态的研究. 海洋水产研 究, 1998, 19(1): 43-52
- 王俊. 莱州湾浮游植物种群动态研究. 海洋水产研究, 2000, 21(3): 33-38
- 王俊. 渤海近岸浮游植物种类组成及其数量变动的研究. 海 洋水产研究, 2003, 24(4): 44-50
- 邓景耀, 金显仕. 莱州湾及黄河口水域渔业生物多样性及其 保护研究. 动物学研究, 2000, 21(1): 76-82
- 宁璇璇, 纪灵, 王刚, 等. 2009 年莱州湾近岸海域浮游植物群 落的结构特征. 海洋湖沼通报, 2011(3): 97-104
- 朱树屏.黄河口附近海区浮游植物的季节变异.太平洋西部 渔业研究委员会第九次全体会议论文集.北京:科学出 版社,1966,1-10
- 刘慧, 方建光, 董双林, 等. 莱州湾和桑沟湾养殖海区浮游植物的研究Ⅱ. 海洋水产研究, 2003, 24(2): 9–17
- 刘慧敏, 刘广为. 浅析蓬莱 19-3 溢油事故的环境及政治经济 影响. 学理论, 2012(35): 81-82
- 李广楼, 陈碧鹃, 崔毅, 等. 莱州湾浮游植物的生态特征. 中 国水产科学, 2006, 13(2): 293-299
- 郝彦菊, 王宗灵, 朱明远, 等. 莱州湾营养盐与浮游植物多样 性调查与评价研究. 海洋科学进展, 2005, 23(2): 197–204
- 夏东兴,王文海,刘传信,等.中国海湾志(第八分册).北京: 海洋出版社,1993,69
- 钱迎倩,马克平.生物多样性研究的原理和方法.北京:中国 科学技术出版社,1994,141-165
- 黄逸君, 陈全震, 曾江宁, 等. 石油污染对海洋浮游植物群落 生长的影响. 生态学报, 2011, 31(2): 513-521
- 康元德. 渤海浮游植物的数量分布和季节变化. 海洋水产研 究, 1991(12): 31-54
- Lalli CM, Parsons TR. Biological oceanography: An Introduction. New York: Pergamon Press, 1993, 45–79
- Margalef DR. Perspectives in ecological theory. Chicago: University of Chicago press, 1968, 1–111
- Pielou EC. An introduction to mathematical ecology. New York: Wiley–Interscience, 1969
- Parab SR, Pandit RA, Kadam AN, *et al.* Effect of Bombay high crude oil and its water–soluble fraction on growth and metabolism of diatom *Thalassiosira* sp.. Indian J Mar Sci, 2008, 37(3): 251–255
- Shannon CE, Weaver W. The mathematical theory of communication. Urbana: University of Illinois Press, 1949, 144

(编辑 江润林)

### The Structure of the Phytoplankton Community in the Laizhou Bay After the Oil Spills in Penglai 19-3 Oilfield

CHENG Ling, WANG Yuexia, MA Yuanqing<sup>®</sup>, HE Jianlong, LIU Aiying, SONG Xiukai, YOU Liping (Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai 264006)

Ecosystems in the coastal water display high complexity and have been of great human and Abstract ecological interest. Interaction of physical, chemical and ecological factors determines the abundance and specific structures of biological communities, particularly the phytoplankton community, which comprise the lower levels of the oceanic food chain. To better understand the structure of the coastal phytoplankton community as well as its relationship with various environmental factors, a phytoplankton survey was carried out in the Laizhou Bay after the oil spills in Penglai 19-3 oilfield. At thirty-five selected sampling sites the water temperature, salinity, transparency, COD, pH, total nitrogen, and total phosphorus were investigated in May, August, and December from 2012 to 2014. Our sampling and testing methods followed the Specifications for Oceanographic Surveys and Specifications for Marine Monitoring. Correlation analysis (SPSS) was applied in determining the relationships between zooplankton communities and various environmental factors. Phytoplankton was collected using the standing net type III (mesh size 76 µm, the standard sampling tool in Chinese marine phytoplankton studies) with a vertical haul at each grid station. Five classes including 125 species were commonly found in the surveyed area. Diatoms were the dominant species and dinoflagellates also shared importance in the phytoplankton community. Both the abundance and the diversity of phytoplankton reached the maximum in August, and the annual variation of diversity index and richness index tended to be consistent. The diversity of phytoplankton was positively correlated to the chemical oxygen consumption (COD, P < 0.01) and negatively correlated to the transparency (P < 0.01) in spring. There were negative correlations between the phytoplankton diversity and the surface temperature of seawater and inorganic nitrogen (P < 0.01) in summer. As for the abundance of phytoplankton, it was negatively correlated to the depth of water, salinity, and dissolved oxygen (P < 0.01) in autumn, and positively correlated to the petroleum content. These results showed that after the oil spilled, no obvious changes in the abundance and the community structure of the phytoplankton were present in the Laizhou Bay.

Key words Laizhou Bay; Phytoplankton; Environmental factors; Correlation analysis; Oil spill

① Corresponding author: MA Yuanqing, E-mail: erma0402@163.com

DOI: 10.11758/yykxjz.20150822001

http://www.yykxjz.cn/

# 2013 年春季莱州湾海域理化环境 及水质状况分析<sup>\*</sup>

赵玉庭<sup>①</sup>苏博李佳蕙王立明齐延民孙珊 (山东省海洋资源与环境研究院山东省海洋生态修复重点实验室烟台 264006)

**摘要** 依据 2013 年 6 月对莱州湾海域的调查资料,分析了该海域盐度(S)、pH、溶解氧(DO)、化 学耗氧量(COD)、溶解无机氮(DIN)和活性磷酸盐(PO4-P)等理化因子的分布特征,并采用潜在性富 营养化评价模式和有机污染指数分别对该海域的营养水平和有机污染状况进行了评价。结果显示, 2013 年春季莱州湾所有站位溶解氧、化学耗氧量均符合 I 类海水水质标准; DIN 污染严重, 31% 站位的 DIN 含量超Ⅳ类海水水质标准; PO4-P 含量较低,所有站位 PO4-P 含量均符合 I 类海水水质 标准。由评价结果来看, 2013 年春季莱州湾海域 N/P 比值总体处于高值, P 相对缺乏,营养水平处 于磷限制潜在性富营养(VI<sub>P</sub>)水平,有机污染程度属于 II 级,表明该调查海域开始受到有机污染,但 有机污染程度轻于 2007 年夏季。

关键词 莱州湾; DIN; PO<sub>4</sub>-P; N/P 比值; 潜在富营养化; 有机污染 中图分类号 X145 文献标识码 A 文章编号 2095-9869(2016)04-0074-07

莱州湾是渤海三大海湾之一,位于山东半岛西北 部,总面积为 6966.93 km<sup>2</sup>,约占渤海的 10%,沿岸 有黄河、小清河、胶莱河等10余条河流注入(刘义豪 等,2011;刘慧等,2003)。莱州湾三面环陆,入海径流 带来了丰富的营养物质,是黄、渤海渔业生物的主要 产卵场(米铁柱等, 2001)。近 20 年来, 伴随着海水养 殖排污增大、入湾陆源排污量的迅猛增加及河流入海 量的锐减(高会旺等, 2003)等原因, 莱州湾海域海洋 环境生态系统明显恶化(郝彦菊等, 2005), 从而给莱 州湾生态环境和生物群落造成严重危害(沈志亮等, 1989; 李永琪等, 1991)。因此, 本研究基于 2013 年 6月在莱州湾进行的生态环境调查,分析了该海域盐 度(S)、pH、溶解氧(DO)、化学耗氧量(COD)、溶解 无机氮(DIN)和活性磷酸盐(PO4-P)等理化因子的平面 分布特征,并对该海域的营养水平和有机污染状况进 行了评价,旨在了解莱州湾及附近海域的环境质量状 况,为该海域资源开发和环境保护提供科学依据。

#### \*山东省科技发展计划课题(2014GSF117030)资助 ① 通讯作者:赵玉庭, E-mail: zhaoyutingnihao@126.com 收稿日期: 2015-08-22,收修改稿日期: 2015-10-28

#### 1 材料与方法

#### 1.1 调查时间与站位设置

2013 年 6 月对莱州湾海域进行调查,调查船为 鲁昌渔 64193,调查海域内布设 16 个站位(图 1)。



Fig.1 Location of sampling stations in the Laizhou Bay

#### 1.2 调查项目及分析评价方法

调查项目包括盐度、pH、溶解氧、化学耗氧量、 硝酸盐(NO<sub>3</sub>-N)、亚硝酸盐(NO<sub>2</sub>-N)、氨氮(NH<sub>4</sub>-N)和 活性磷酸盐。采样层次为表底层。样品的采集、现场 处理及分析方法均按照海洋监测规范(GB17378.4– 2007)中所规定的方法进行。

海水富营养化评价采用郭卫东等(1998)提出的 以氮、磷营养盐作为评价参数的潜在性富营养化评价 模式(表 1)对莱州湾海域营养状况进行评价。水质有 机污染风险评价采用蒋岳文等(1991)提出的有机污染 指数(式 1)及有机污染等级(表 2)对有机污染状况进行 评价。

 $A = \text{COD}_i / \text{COD}_s + IN_i / IN_s + IP_i / IP_s - DO_i / DO_s$ (1)

式中, *A* 为有机污染指数; COD<sub>i</sub>、*IN*<sub>i</sub>、*IP*<sub>i</sub>和 *DO*<sub>i</sub> 分别为实测值; COD<sub>s</sub>、*IN*<sub>s</sub>、*IP*<sub>s</sub>和 *DO*<sub>s</sub>分别为相应要素 I 类海水水质标准, 分别为 2.0、0.2、0.015、6.0 mg/L。

|                           | rab.r rotential europhication assessment standards                    |               |                              |                    |
|---------------------------|-----------------------------------------------------------------------|---------------|------------------------------|--------------------|
| 等级<br>Grade               | 营养级<br>Nutrient level                                                 | DIN<br>(µg/L) | PO <sub>4</sub> -P<br>(µg/L) | N/P 值<br>N/P value |
| Ι                         | 贫营养 Poor nutrient                                                     | <200          | <30                          | 8–30               |
| П                         | 中度营养 Medium nutrient                                                  | 200-300       | 30-45                        | 8-30               |
| Ш                         | 富营养 Rich nutrient                                                     | >300          | >45                          | 8-30               |
| ${\rm I\!V}_{\rm P}$      | 磷限制中度营养 Medium nutrient with phosphorous limiting                     | 200-300       | /                            | >30                |
| $\mathbf{V}_{P}$          | 磷中等限制潜在性富营养 Potential eutrophication with medium phosphorous limiting | >300          | /                            | 30–60              |
| $V\!I_{\rm P}$            | 磷限制潜在性富营养 Potential eutrophication with phosphorous limiting          | >300          | /                            | >60                |
| ${\rm I\!V}_{\rm N}$      | 氮限制中度营养 Medium nutrient with nitrogen limiting                        | /             | 30-45                        | <8                 |
| $\mathbf{V}_{\text{N}}$   | 氮中等限制潜在性富营养 Potential eutrophication with medium nitrogen limiting    | /             | >45                          | 4-8                |
| $\mathbf{W}_{\mathrm{N}}$ | 氮限制潜在性富营养 Potential eutrophication with nitrogen limiting             | /             | >45                          | <4                 |
|                           |                                                                       |               |                              |                    |

表 1 潜在性富营养化评价标准

Tab.1 Potential eutrophication assessment standards

| Tab.2     Grading of organic pollution |                                  |                                |  |  |  |  |  |  |
|----------------------------------------|----------------------------------|--------------------------------|--|--|--|--|--|--|
| A 值 A value                            | 有机污染程度分级 Organic pollution level | 水质质量评价 Water quality evalution |  |  |  |  |  |  |
| < 0                                    | 0                                | 良好 Good                        |  |  |  |  |  |  |
| 0-1                                    | 1                                | 较好 Preferable                  |  |  |  |  |  |  |
| 1–2                                    | 2                                | 开始受到污染 Began to be polluted    |  |  |  |  |  |  |
| 2-3                                    | 3                                | 轻度污染 Slightly polluted         |  |  |  |  |  |  |
| 3–4                                    | 4                                | 中度污染 Moderately polluted       |  |  |  |  |  |  |
| 4–5                                    | 5                                | 严重污染 Seriously polluted        |  |  |  |  |  |  |

表 2 有机污染评价分级

#### 2 结果与分析

#### 2.1 理化环境状况

2.1.1 盐度 海水盐度是海洋水文学的最基本要 素之一,盐度决定水质的理化性质(夏斌等,2008)。海 水盐度一般受降水、蒸发、径流和水系影响,盐度主 要通过水的密度和渗透压影响海洋生物的形态、生 长、发育和繁殖。

调查海域表层盐度的变化范围为27.253-30.058, 平均值为28.672±0.965;底层盐度的变化范围为27.329-30.236,平均值为29.005±0.964。由平面分布来看,表 底层高盐度区均位于莱州湾的东北部海域。表底层低盐度区位于黄河口和小清河口附近海域,表层在胶莱河河口海域也存在一个低盐度区。分布趋势呈现自西南向东北方向递增趋势,这与黄河、小清河等入海河流的淡水注入和黄海的高盐水混合有关(张洪亮等,2006)(图 2)。

2.1.2 pH pH 是海水中氢离子活度的一种度量, 海水正常的 pH 在 7.5-8.2 之间,各种生物都有其生 长发育的最适 pH 范围,过高或过低的 pH 对海洋生 物活动均有害。

调查海域表层 pH 的变化范围为 7.82-8.09, 平均

值为 7.94±0.07; 底层 pH 的变化范围为 7.91-8.04, 平均值为 7.97±0.04。由水平分布看, 表层 pH 低值区位于黄河口和小清河口附近海域, 变化梯度较大, 逐渐向东北部递增, 高值区出现在东北部海域; 底层 pH 分布相对较均匀, 北部海域略高于其他海域(图 3)。

**2.1.3** 溶解氧 海水溶解氧的分布变化与大气分 压、海水物理、化学、生物因子有着密切联系,是进行 海洋环境评价的重要指标之一。海水中充足的溶解氧是 海洋生物生存的必要条件,其含量的高低是评价水体 质量的重要指标(夏斌等,2009)。

调查海域表层 DO 的浓度变化范围为 8.18-9.85 mg/L, 平均值为(8.95±0.46) mg/L; 底层 DO 的 浓度变化范围为 8.01-9.60 mg/L,平均值为(8.80±0.42) mg/L,调查站位表底层 DO 含量均符合 I 类海水水质标准。由水平分布来看,表底层 DO 均呈自西南部沿岸海域向东北部递增趋势,等值线较为密集,变化梯度较大;表底层 DO 均在湾口处出现一个低值区,该海域缺氧区形成的主要原因可能是由于有机物的降解耗氧或者水体的层化作用所致(李绪录等,1992; Tian *et al*, 1993)(图 4)。

**2.1.4** 化学耗氧量 化学耗氧量是表示海水中还 原性物质多少的1个指标。化学耗氧量越大,说明水 体受有机物的污染越严重。

调查海域表层 COD 的浓度变化范围为 1.05-



Fig.4 Horizontal distribution of dissolved oxygen

1.76 mg/L,平均值为(1.45±0.22) mg/L;底层 COD 的浓度变化范围为(1.05–1.76) mg/L,平均值为(1.37±0.21) mg/L,调查站位表底层 COD 含量均符合 I 类海水水质标准。由水平分布看,表层 COD 呈斑块状分布特征,西南部、东北部和中部部分海域浓度较低,其他海域浓度较高;底层西南部和东南部海域浓度较低,中部海域浓度较高(图 5)。

2.1.5 溶解无机氮 无机氮是海洋生物繁殖、生长 所必需的营养物质,与海洋初级生产力有着密切的关系 (Ketchum *et al*, 1958),在正常情况下,海水中的 DIN 含量远远达不到引起海洋生物受危害程度。然而,由于 陆源排污的增加,富营养化水域在适宜的条件下有可 能发生赤潮。

调查海域表层 DIN 的浓度变化范围为 0.281-0.584 mg/L, 平均值为(0.429±0.106) mg/L; 底层 DIN 的浓度变化范围为 0.248-0.585 mg/L, 平均值为(0.398± 0.108) mg/L。由水平分布来看,表层 DIN 平面分布 基本呈中西部近岸高、东部近岸低,沿岸向离岸方向 逐渐降低的特征,西部海域明显高于东部海域。高值 区主要位于小清河口、老弥河口附近海域,呈舌状向 外延伸,其 DIN 含量逐渐降低,其主要受小清河等 径流输入的影响(刘义豪等, 2011); 底层 DIN 平面分 布与表层相似,基本呈中西部近岸高、东部近岸低, 沿岸向离岸方向逐渐降低的特征(图 6)。

2.1.6 活性磷酸盐 活性磷酸盐是海洋生物必不 可少的营养元素。海水中磷的含量太低将抑制浮游植 物的正常生长,从而妨碍海洋生产力的发展。如果水 中磷酸盐含量超过一定限度,会刺激藻类生长,引发 赤潮。水体中浮游植物的生长受磷酸盐的含量限制更 为明显,磷污染对水体富营养化影响更大。

调查海域表层 PO<sub>4</sub>-P 的浓度变化范围为(2.32– 5.22)×10<sup>-3</sup> mg/L, 平均值为(3.50±1.09)×10<sup>-3</sup> mg/L。底 层 PO<sub>4</sub>-P 的浓度变化范围为(2.32–5.22)×10<sup>-3</sup> mg/L, 平 均值为(3.46±1.01)×10<sup>-3</sup> mg/L。由水平分布来看,表层 PO<sub>4</sub>-P 平面分布特征仍呈近岸高离岸低的分布特征,调 查海域没有明显的 PO<sub>4</sub>-P 高值区,只在莱州湾中部海 域出现一个 PO<sub>4</sub>-P 的低值区,整个莱州湾海域 PO<sub>4</sub>-P 含 量整体较低;底层 PO<sub>4</sub>-P 平面分布与表层相似(图 7)。

#### 2.2 营养状况分析

2.2.1 富营养化状况分析 2013 年春季莱州湾海 域水质 DIN、PO<sub>4</sub>-P 浓度和 N/P 值及营养类型评价见 表 3。从表 3 可以看出, 2013 年春季莱州湾海域 DIN 污染较重,所有站位 DIN 含量均超 I 类海水水质标 准,表层有 31%的站位 DIN 含量超Ⅳ类海水水质标 准,底层有 21%的站位 DIN 含量超Ⅳ类海水水质标



Fig.6 Horizontal distribution of dissolved inorganic nitrogen



Fig.7 Horizontal distribution of phosphorus concentration

| ◎莱州湾海域 DIN、PO₄-P 含量、N/P 比值及营养类型评f | ▶比值及营养类型评价         |
|-----------------------------------|--------------------|
| ◎莱州湾海域 DIN、PO₄-P 含量、N/P 比值及营养类型评f | <b>?</b> 比值及营养类型评价 |

| Tab.3 | Concentrations of DIN, | $PO_4$ -P, and N/P and | evaluation of | nutritional type | in the Laizhou | Bay in spring 2013 |
|-------|------------------------|------------------------|---------------|------------------|----------------|--------------------|
|-------|------------------------|------------------------|---------------|------------------|----------------|--------------------|

| 水层 Water layer | DIN (mg/L)        | $PO_4$ -P (×10 <sup>-3</sup> mg/L) | N/P 值 N/P value | 级别 Grade |
|----------------|-------------------|------------------------------------|-----------------|----------|
| 表层 Surface     | $0.429 \pm 0.106$ | 3.50±1.09                          | 299±118         | IV P     |
| 底层 Bottom      | $0.398 \pm 0.108$ | 3.46±1.01                          | 279±122         | IV p     |
| 平均 Average     | $0.415 \pm 0.106$ | 3.48±1.04                          | 289±118         | IV P     |

准;整个莱州湾海域 PO<sub>4</sub>-P 含量整体较低,表底层所 有站位 PO<sub>4</sub>-P 含量均符合 I 类海水水质标准;表底层 所有站位 N/P 比值(原子比,以下同)总体处于高值, 根据表 1 的划分标准,对莱州湾海域的总体富营养化 水平评价结果显示,2013 年春季莱州湾海域营养水 平基本属于磷限制潜在性富营养(VI<sub>P</sub>)水平。

2.2.2 有机污染状况分析 根据有机污染综合指数公式计算,2013 年春季莱州湾海域各站位表层有机污染指数见图 8。从图 8 可以看出,表层有 31%的站位有机污染程度为Ⅲ级,主要位于黄河、小清河和胶莱河河口区域,受到轻度污染;有 56%的站位有机污染程度为Ⅱ级,开始受污染;有 2%的站位有机污

染程度为1级,主要位于东北部海域,水质较好。莱 州湾调查海域表层的有机污染指数平均为1.61,属有 机污染程度Ⅱ级,表明该调查海域开始受到有机污 染,但有机污染程度轻于2007年夏季(夏斌等,2009)。

#### 3 讨论

按照 Redfield 公式, 浮游植物按 N/P 比为 16/1 的比例从海水中吸收生源元素(Redfield, 1958)。莱州 湾海水中氮磷比值近 30 年总体呈升高趋势, 从 1982 年的 4.2 (5、8、10 月表底层平均值)上升到 2009 年 的 199 (5、8 月表层平均值)(刘义豪等, 2011), 到 2013 年的 289(6 月表底层平均值), 远远超过 Redfield





公式正常 N/P 比的 16/1, 莱州湾海域营养盐结构由氮 限制演化为现今的磷限制,较高的 N/P 比值可能会引 起浮游植物种群结构变化,影响整个生态系统。研究 发现,造成氮磷比值不断升高的原因,一方面是氮肥 在农业中大量使用,导致陆源氮输入量的增加(王修 林等, 2008), 氮成为我国陆源排污的主要污染物(国 家海洋局, 2009)。相关性分析表明, 表层 DIN 含量与 盐度呈显著负相关,相关系数 R 为 0.61 (P<0.05, n=16), 表明 DIN 主要来自河流径流的输送; 另一方面 是浮游植物间的藻间竞争作用和化感效应(彭喜春等, 2007; 康燕玉等, 2006; Chen et al, 2004; Nuccio et al, 2003)等引起种类和优势种的改变, 需磷浮游植物数 量和种类受到限制, 噬氮浮游植物大量繁殖; 另外渤 海1年净营养盐收支为 DIN 含量增加而 PO<sub>4</sub>-P 含量 降低(赵亮等, 2002), 也是造成氮磷比值不断升高的 原因之一。

中国近岸海域普遍具有营养盐限制的特征,只是 表现为一种潜在性的富营养化(郭卫东等,1998),因 此,本研究采用潜在性富营养化评价模式和有机污染 综合指数公式对莱州湾海域状况进行评价,评价结果 表明,2013 春季莱州湾海域营养水平处于磷限制潜 在性富营养(VI<sub>P</sub>)水平,有机污染程度属于 II 级,表明 该调查海域开始受到有机污染,但有机污染程度轻于 2007 年夏季,污染状况有所好转。

#### 4 结论

(1) 2013 年春季莱州湾所有站位溶解氧、化学耗 氧量均符合 I 类海水水质标准; DIN 污染严重, 31% 的站位 DIN 含量超IV 类海水水质标准, 主要受陆源 输入显著影响; PO<sub>4</sub>-P 含量较低, 所有站位 PO<sub>4</sub>-P 含 量均符合 I 类海水水质标准。

(2) N/P 比值总体处于高值,P 相对缺乏;2013 春季整个莱州湾海域营养水平处于磷限制潜在性富 营养水平,有机污染程度属于Ⅱ级,表明该调查海域 开始受到有机污染,但有机污染程度轻于2007年夏 季,污染状况有所好转。

#### 参考文献

- 王修林, 崔正国, 李克强, 等. 环渤海三省一市溶解态无机氮 容量总量控制. 中国海洋大学学报(自然科学版), 2008, 38(4): 619-622
- 刘义豪,杨秀兰,靳洋,等.莱州湾海域营养盐现状及年际变

化规律. 渔业科学进展, 2011, 32(4): 1-5

- 刘慧,方建光,董双林,等. 莱州湾和桑沟湾养殖海区主要营 养盐的周年变动及限制因子. 中国水产科学,2003,10(3): 227-234
- 米铁柱,于志刚,姚庆祯,等.春季莱州湾南部溶解态营养盐 研究.海洋环境科学,2001,20(3):14-18
- 李永琪, 丁美丽. 海洋污染生物学. 北京: 海洋出版社, 1991, 404-415
- 李绪录,吴英霞.夏季珠江口海区贫氧现象的初步分析.广 东海岛调查研究文集.广州:广东科学出版社,1992
- 沈志亮, 陆家平, 刘兴俊, 等. 黄河口及附近海域的无机氮和 磷酸盐. 海洋科学集刊, 1989(30): 51-79
- 张洪亮,杨建强,崔文林,等.莱州湾盐度变化现状及其对海 洋环境与生态的影响.海洋环境科学,2006,25(增刊): 11-14
- 郭卫东,章小明,杨逸萍,等.中国近岸海域潜在性富营养化 程度的评价.台湾海峡,1998,17(1):64-70
- 国家海洋局. 2009 年中国海洋环境质量公报. 海洋开发与管理, 2010, 27(4): 3-6
- 赵亮, 魏皓, 冯士筰. 渤海氮磷营养盐的循环和收支. 环境科 学, 2002, 23(1): 78-81
- 郝彦菊, 王宗灵, 朱明远, 等. 莱州湾营养盐与浮游植物多样 性调查与评价研究. 海洋科学进展, 2005, 23(2): 197–204
- 高会旺, 吴德星, 白洁, 等. 2000 年夏季莱州湾生态环境要素 的分布特征. 青岛海洋大学学报(自然科学版), 2003, 33(2): 185~191
- 夏斌,张晓理,崔毅,等.夏季莱州湾及附近水域理化环境及 营养现状评价.渔业科学进展,2009,30(3):103-111
- 康燕玉,梁君荣,高亚辉,等.氮、磷比对两种赤潮藻生长特性的影响及藻间竞争作用.海洋学报,2006,28(5): 117-122
- 蒋岳文, 王永强, 尚龙生, 等. 大连湾海水营养盐的含量及有 机污染状况分析. 海洋学报, 1991, 10(1): 100-103
- 彭喜春,杨维东,刘洁生.赤潮期间藻类的化感效应.海洋科 学,2007,31(2):84-88.
- Chen YLL, Chen HY, Karl DM, *et al.* Nitrogen modulates phytoplankton growth in spring in the South China Sea. Cont Shelf Res, 2004, 24(4–5): 527–541
- Ketchum BH, Vaccaro R F, Corwin N. The annual cycle of P and N in new England coastal waters. J Mar Res, 1958, 17: 282– 301
- Nuccio C, Melillo C, Massi L, *et al.* Phytoplankton abundance, community structure and diversity in the eutrophicated Orbetello lagoon (Tuscany) from 1995 to 2001. Oceanol Acta, 2003, 26(1): 15–25
- Redfield AC. The biological control of chemical factors in the environment. Sci Prog, 1960(11): 150–170
- Tian RC, Hu PX, Martin JM. Summer nutrient fronts in the Changjiang (Yangtze River) Estuarine. Coast Shelf Sci, 1993, 37(1): 27–41

(编辑 陈严)

## Evaluation of Physicochemical Environment and Water Quality in the Laizhou Bay in Spring of 2013

ZHAO Yuting<sup>(1)</sup>, SU Bo, LI Jiahui, WANG Liming, QI Yanmin, SUN Shan

(Shandong Marine Resource and Environment Research Institute, Shandong Key Lab of Marine Ecological Restoration, Yantai 264006)

Abstract In recent years, the marine environment and ecosystem in the Laizhou Bay have obviously deteriorated, which caused serious damage to the ecological environment and biological community. In order to understand the environmental qualities of the Laizhou Bay and the adjacent sea areas, we analyzed the distribution of salinity, pH, dissolved oxygen (DO), chemical oxygen demand (COD), disolved inorganic nitrogen (DIN) and PO<sub>4</sub>-P based on field data obtained from the Laizhou Bay in June 2013. The nutrition level and organic pollution in this area were also evaluated with potential eutrophication assessment standards and grading of organic pollution respectively. The results showed that DO and COD concentrations at all surveyed stations met the first class seawater quality standard. DIN pollution was serious mainly caused by the terrestrial input. At approximate 31% of investigated stations the DIN concentration exceeded the limit of the fourth class seawater quality standard. The level of  $PO_4$ -P was lower and satisfied the first class seawater quality standard at all investigated stations. Our results suggested that the N/P ratio was higher than the Redfield value 16, and that phosphate was the limiting factor in the growth of phytoplankton. The nutritional pattern in the Laizhou Bay had evolved from nitrogen limiting to phosphorus limiting. The higher N/P ratio may alter the phytoplankton population, which will consequently affect the whole ecosystem. The nutrition status in the Laizhou Bay was phosphorus limiting potential eutrophication, and the organic pollution remained at the second level in spring 2013. These indicated organic pollution in this sea area; however, the pollution was alleviated compared to the summer 2007.

**Key words** Laizhou Bay; Dissolved inorganic nitrogen; Phosphorus; N/P ratio; Potential eutrophication; Organic pollution

① Corresponding author: ZHAO Yuting, E-mail: zhaoyutingnihao@126.com

DOI: 10.11758/yykxjz.20150312002

# 盐度对云纹石斑鱼(Epinehelus moara ♀)×鞍带 石斑鱼(Epinehelus lanceolatus ♂)受精卵孵化 的影响及杂交仔稚幼鱼形态发育观察<sup>\*</sup> ◀

张梦淇<sup>1,2</sup> 陈 超<sup>20</sup> 李炎璐<sup>2</sup> 孔祥迪<sup>1,2</sup> 刘 莉<sup>1,2</sup> 翟介明<sup>3</sup>
(1. 上海海洋大学水产与生命学院 上海 201306; 2. 农业部海洋渔业可持续发展重点实验室
中国水产科学研究院黄海水产研究所 青岛市海水鱼类种子工程与生物技术重点实验室 青岛 266071;
3. 莱州明波水产有限公司 烟台 261400)

**摘要** 以云纹石斑鱼(Epinehelus moara)为母本、鞍带石斑鱼(Epinehelus lanceolatus)为父本进行种间杂交,观察比较了不同盐度(5、10、15、20、25、30、35、40、45)条件下受精卵的孵化率、初 孵仔鱼畸形率,以及仔、稚、幼鱼的生长发育及形态变化;测定了盐度为 30 时,正常初孵仔鱼的 不投饵存活系数(SAI)。结果显示,受精卵孵化的最适盐度范围是 35-37,初孵仔鱼最适生存盐度为 20-30。盐度为 20-35 时,仔鱼不投饵存活系数值较高(均在 30 以上);盐度为 5、10、45 时,仔鱼 的 SAI 值较低。胚后发育根据卵黄囊的有无、第 2 背鳍棘和腹鳍棘的伸长与收缩、鳞片及体色的变 化,分为仔、稚、幼鱼 3 个时期。在本研究条件下,初孵至 2 日龄为前期仔鱼,初孵仔鱼全长为(1.959± 0.152) mm,主要特征为卵黄囊和油球未被吸收消化; 3-30 日龄为后期仔鱼,3 日龄仔鱼全长为 (2.765±0.108) mm,主要特征是第 2 背鳍棘与腹鳍棘的绝对长度已达到仔、稚鱼阶段的最大值;31-45 日龄为稚鱼期,31 日龄稚鱼全长为(18.130±1.565) mm,主要特征为内脏器官发育完善、鱼体呈 透明状;46 日龄后进入幼鱼期,此时全长为(39.850±2.565) mm,体色形成、开始被鳞、体表布满 细小的棕色斑点。

关键词 云纹石斑鱼; 鞍带石斑鱼; 杂交; 形态观察; 盐度胁迫 中图分类号 S961.2 文献标识码 A 文章编号 2095-9869(2016)04-0081-09

杂交作为一种有效的选育手段在鱼类育种中已 得到广泛应用(刘筠, 1993)。通过杂交以获得亲本(或 超出亲本)的优良性状也是杂交育种的首要目的之 一。Glamnzina 等(2001)进行了地中海石斑鱼 (*Epinehelus costae*)×东大西洋石斑鱼(*Epinehelus marginatus*)的杂交研究;刘付永忠等(2007)进行了斜 带石斑鱼(*Epinehelus coioides*♀)×赤点石斑鱼 (*Epinephelus akaara* ♂)的杂交。为探究云纹石斑鱼 (Epinehelus moara) 与 鞍 带 石 斑 鱼 (Epinehelus lanceolatus)杂交的可行性,以期使杂交种具有前者的 耐低温性能和后者的快速生长特性。作者尝试进行了 云纹石斑鱼 $Q \times$ 鞍带石斑鱼d的杂交实验,并获得成 活子代。本研究对云纹石斑鱼 $Q \times$ 鞍带石斑鱼d杂交 F<sub>1</sub> 仔稚幼鱼的发育和形态变化进行了系统的记录和 观察,旨在为石斑鱼的杂交育种增添参考资料。

盐度是制约鱼类在自然水体中分布的重要环境

<sup>\*</sup>科技部国际合作项目(2012DFA30360)、农业部东海海水健康养殖重点实验室 ESHML07 项目和青岛市市南区科技发展资金项目(2014-14-011-SW)共同资助。张梦淇, E-mail: 502883675@qq.com

① 通讯作者: 陈 超, 研究员, E-mail: ysfrichenchao@126.com 收稿日期: 2015-03-12, 收修改稿日期: 2015-06-30

因子,直接影响着水产动物的生长和繁殖(叶金聪, 1997)。石斑鱼在胚胎发育阶段及仔鱼期对盐度的变 化极其敏感,若水体盐度超出其自身的耐受范围,将 导致胚胎发育异常、孵化率下降、初孵仔鱼畸形率升高、 鱼苗活力下降(曲焕韬等,2009;赵明等,2011;李炎璐 等,2013)。研究石斑鱼受精卵的适宜孵化盐度,对于 指导石斑鱼的生产和推广具有重要意义(蔡文超等, 2010)。本研究通过观察云纹石斑鱼(♀)×鞍带石斑鱼 (♂)杂交 F<sub>1</sub> 受精卵在不同盐度梯度海水中的沉浮情 况,测定不同盐度海水中受精卵的孵化率、初孵仔鱼的 畸形率以及仔鱼不投饵存活系数(Survival activity index,SAI),为在今后的苗种培育过程中,拓展环境 条件、提高成功率,提供可借鉴的资料。

#### 1 材料与方法

#### 1.1 受精卵获得及孵化

实验于 2014 年 5 月在山东省莱州明波水产有限公司进行,所用的亲鱼均为驯养多年、发育成熟的种鱼。 在繁殖季节,挑选性腺发育良好的亲鱼进行催产,催产 剂采用人绒毛膜促性腺激素(HCG)和促黄体激素释放 激素类似物(LHRH-A<sub>2</sub>)混合注射。40-48 h 后挑选成熟 度较好的亲鱼,用 MS-222 麻醉,轻压亲鱼腹部,收 集成熟精卵进行人工授精。授精后,经冲洗、过滤、 上浮后去除沉卵,挑选部分上浮的受精卵进行不同盐 度下的孵化实验。其余上浮受精卵放入孵化桶中孵 化,孵化水温为 24-25℃,盐度为 30, 微充气、流水孵化。

#### 1.2 不同盐度条件下受精卵的胚胎发育观察

在盐度为 5-45 范围内,共设置 9 个盐度梯度组, 每个盐度梯度为 5,低盐度海水用过滤后的海水添加 曝气后的淡水配制而成;高盐度海水用过滤后的海水 添加海水晶配制而成,待充分溶解后,用手持数字式 盐度计测定并进行盐度的微调,保证各实验组盐度数 值准确。盐度 30 为经过滤后的自然海水组,设为对 照组,每个盐度梯度设置 3 个平行。实验容器为1 L 烧杯,每个烧杯放入挑选好的 100 粒受精卵,然后, 将烧杯置于恒温(24-25℃)室内静水孵化。记录受精卵 在不同盐度海水中的分布状态。待仔鱼全部孵出后, 记录不同盐度下每个烧杯中孵出的仔鱼数和畸形仔 鱼数。畸形仔鱼标准:油球数多于1 个或不位于卵黄 囊中央、鳍膜破裂、脊柱弯曲、尾部呈 Z 或 W 形等。

#### 1.3 不同盐度条件下仔鱼 SAI 值的测定

仔鱼活力以 SAI 值作为衡量指标(Kamler, 2002)。

盐度条件设计与 1.2 相同。待孵化桶中的仔鱼正常孵化出膜后,取肉眼观察无异常的仔鱼放入已配置好不同盐度海水的烧杯中,每个平行组烧杯中放入仔鱼的数量为 100 尾。培育中不投饵、无充气、阴凉通风, 温度为 24-25℃。发现死鱼,及时用吸管吸除。每天记录死亡的仔鱼数,直至仔鱼全部死亡,比较各组的 SAI 值。仔鱼不投饵存活系数 SAI 值计算公式如下:

$$SAI = \sum_{i=1}^{k} (N - h_i) \times i / N$$

式中, *N* 为起始的仔鱼数; *k* 为仔鱼全部死亡所 需的天数; *h*<sub>i</sub>为第 *i* 天时仔鱼的累积死亡数。

#### 1.4 仔稚幼鱼培育条件

仔鱼全部孵化出膜后,将其转入长、宽均为6.85 m, 深1m的方形水泥池中培育。水温控制在25-27℃, 盐度为29-31,溶解氧≥5 mg/L。育苗期间,每天向 池内定量泼洒浓度为 2.5×10<sup>10</sup>/ml 的小球藻(*Chlorella vulgaris*)液 200 ml、乳酸菌酶素溶液(江苏沃纳生物科 技有限公司) 200 ml。仔鱼孵出后 10 d 内不换水,每 天适量添加经过处理的新鲜海水。10 d 后开始换水, 根据仔鱼的生长状况逐渐增大充气量和换水量。出膜 3 d 后仔鱼开口,开口饵料为 SS 型褶皱臂尾轮虫 (*Brachionus plicatilis*);出膜 5 d 后,过渡到投喂 S 型 褶皱臂尾轮虫;出膜 16 d 后,混合投喂经小球藻强 化过的 L 型褶皱臂尾轮虫;仔鱼培育至 19 d 后,交 叉投喂卤虫(*Artemia* sp.)无节幼体。此后,逐渐过渡 到投喂卤虫成体及微囊饲料。

#### 1.5 取样和观察

在盐度实验中,一个平行组用于定期取样,观察 不同盐度下受精卵的发育情况,并显微拍照。从仔鱼 孵化出膜后开始,每天直接从育苗池中取生长发育较 快的个体,进行测量和拍照观察,详细记录其生长发 育状况和形态变化。1-17 d的仔鱼在 Nikon E200 显 微镜下观察并拍摄,18-38 d的仔、稚鱼在 Olympus 解剖镜下观察并拍摄,38 d 以后的稚、幼鱼直接用数 码相机近距离拍摄。每次取样 15 尾,测量全长、肛 前距、卵黄囊长径、卵黄囊短径、油球直径、第1 腹 鳍棘长和第 2 背鳍棘长。本研究中,仔、稚、幼鱼的 划分参照张海发等(2006b)的划分标准。

#### 1.6 数据处理

仔鱼孵化率(Hatching rate, HR)=孵出总仔鱼数/ 总受精卵数

仔鱼畸形率(Deformity rate, DR)=畸形仔鱼数/总

仔鱼数

孵化率和畸形率数据均用 SPSS17.0 软件进行单因素方差分析(One-way ANOVA)及 Duncan 多重比较,结果用平均值±标准差(Mean±SD)形式表示。

#### 2 结果

#### 2.1 不同盐度对受精卵孵化的影响

2.1.1 不同盐度水体中受精卵的分布状态 云纹 石斑鱼(♀)×鞍带石斑鱼(♂)杂交F<sub>1</sub>受精卵为透明、无 色的浮性卵,中央具油球1个。不同盐度条件下受精 卵的发育状态见图1。在相对静止的水体中,盐度为 5-25组的受精卵,全部沉于烧杯底;盐度为30的自 然海水中,3/4漂浮在水表层,1/4悬浮于中上层;盐 度为35-45组的受精卵,全部漂浮在水表层。

2.1.2 不同盐度胁迫下受精卵的孵化率和畸形率

从表 1 可以看出,当盐度低于 20 时,受精卵不能正 常孵化出仔鱼;在 20-35 盐度范围内,随着盐度升高, 孵化率增加;受精卵的适宜孵化盐度为 30-35,盐度 为 35 时的孵化率为 31.33%;盐度为 40、45 时,孵 化率较低,仅为 7.33%、4.33%。孵化率对盐度的回归 曲线呈抛物线型分布(图 2),其回归关系为:

 $y=-0.131x^2+7.368x-84.810$ ,  $R^2=0.700$ 

式中, y 为孵化率, x 为盐度。

从表 1 可以看出,盐度为 20-30、40-45 时,仔 鱼畸形率较高,都在 50%以上;盐度为 35 时畸形率 相对最低,为 43%。盐度在 20-35 条件下,随着盐度 的升高,仔鱼畸形率降低;盐度为 35-45 时反之。对 仔鱼畸形率进行多项式回归分析,得到回归方程为:

*y*=0.004*x*<sup>3</sup> - 0.300*x*<sup>2</sup> + 2.753*x* + 117, *R*<sup>2</sup>=0.907 式中, *y* 为仔鱼畸形率, *x* 为盐度。

因此,以受精卵孵化率和仔鱼畸形率为指标,杂



图 1 不同盐度条件下受精卵的发育 Fig.1 The development of fertilized eggs at different salinities

盐度为 20 时,发育至桑椹期的死亡胚胎,动物极呈絮团状;2.盐度为 30 时,发育至桑椹期的正常胚胎;
 盐度为 15 时,发育至原肠早期的死亡胚胎,卵的颜色为乳白色;5.盐度为 30 时,发育至原肠早期的正常胚胎;
 盐度为 45 时,未分裂的死亡胚胎,原生质集中变得模糊;7.盐度为 30 时,即将开始分裂的正常胚胎;

8-9. 盐度为 45 时,未分裂的死亡胚胎,失水皱缩; 10. 盐度为 30 时,刚受精结束后的正常胚胎
1. Dead embryo of morula at salinity 20, the animal pole was like a floc; 2. Normal embryo of morula at salinity 30;
3-4. Dead embryo of early gastrula at salinity 15, the color of the eggs was milky white; 5. Normal embryo of early gastrula at salinity 30; 6. Undivided dead embryo at salinity 45, the protoplasm focus became blurred; 7. Normal embryo of upcoming split at salinity 30; 8-9. Undivided dead embryo at salinity 45, which was dehydrated and wrinkled; 10. Normal embryo right after the ending of fertilization at salinity 30

| 主 1   | て日か府久仲下たっ。       | ⊾ 密转佩的解化 |
|-------|------------------|----------|
| - A Y | 小山 m 皮 ま H ト ま V |          |

Tab.1 Hatching of fertilized eggs of the hybrid F<sub>1</sub> at different salinities (Mean±SD)

| 项目 Items               |                 |                 |                 |                        | 盐度 Salini           | ity                 |                    |                    |                      |
|------------------------|-----------------|-----------------|-----------------|------------------------|---------------------|---------------------|--------------------|--------------------|----------------------|
|                        | 5               | 10              | 15              | 20                     | 25                  | 30                  | 35                 | 40                 | 45                   |
| 孵化率 Hatching rate (%)  | $0.0{\pm}0.0^a$ | $0.0{\pm}0.0^a$ | $0.0{\pm}0.0^a$ | $13.0{\pm}2.6^{\circ}$ | $18.7 \pm 1.5^{d}$  | $21.7 \pm 2.1^{d}$  | $31.3 \pm 3.0^{e}$ | $7.3 \pm 2.5^{b}$  | 4.3±1.1 <sup>b</sup> |
| 畸形率 Deformity rate (%) |                 | _               | _               | $88.7 \pm 7.6^{d}$     | $72.7{\pm}10.8^{c}$ | $60.3{\pm}6.2^{bc}$ | $40.0{\pm}7.4^a$   | $55.7{\pm}5.1^{b}$ | $62.2{\pm}3.8^{bc}$  |

注:同行数值右上角标有不同字母表示有显著差异,P<0.05

Note: Data in the same row with different superscript were significantly different, P<0.05



图 2 不同盐度条件下杂交 F<sub>1</sub>胚胎孵化率和畸形率 Fig.2 The hatching rate and deformity rate of the hybrid F<sub>1</sub> embryo at different salinities

交 F<sub>1</sub>受精卵孵化的适宜盐度为 30-35,此时的孵化率 相对较高,畸形率相对较低。

#### 2.2 仔稚幼鱼形态观察

2.2.1 前期仔鱼 初孵仔鱼平均全长为(1.959±0.152) mm,刚孵出的仔鱼身体透明,中间有 1 条细长的脊索横贯全身。鱼体前端有 1 个卵黄囊,卵黄囊 长径为(1.210±0.039) mm,短径为(0.655±0.045) mm。 卵黄囊后端有油球 1 个,油球直径为(0.182±0.020) mm。 鱼体头部可见少量黑色素聚集,消化道细长,肛门尚 未与外界相通。此时的仔鱼无游泳能力,仅靠尾部的 摆动在水中旋转。

1 d 仔鱼(图 3-1)全长为(2.652±0.160) mm, 鱼体 变得更加细长,脊索逐渐伸直,肌节变清晰。头部增 大,黑色素变多。消化道稍变粗,末端呈 90°弯曲。 随着卵黄囊等营养物质的消耗,体积变小,卵黄囊长 径为(0.900±0.025) mm,短径为(0.442±0.035) mm,油 球变化不大,直径为(0.180±0.019) mm。仔鱼在池中 均匀分布,多悬浮于水中。

2 d 仔鱼(图 3-2)全长为(2.922±0.085) mm,眼部 黑色素增多,胸鳍膜出现,背鳍、腹鳍和尾鳍鳍褶基 本相连。卵黄囊体积明显变小,长径缩短为(0.427± 0.020) mm,短径变为(0.332±0.017) mm,油球直径为 (0.177±0.015) mm。仔鱼运动能力加强,可做垂直于水 面的上下运动。

2.2.2 后期仔鱼 3 d 仔鱼(图 3-3)全长为(2.765±0.108) mm,仔鱼口裂形成,吻端突出,腹部黑色素 变多。消化道明显膨胀变粗,有时可见胃蠕动,肛门 与外界相通。卵黄囊消耗完全,油球仍可见,油球直 径为(0.127±0.016) mm,仔鱼开始由内源性营养向外 源性营养过渡,进入后期仔鱼。由于食性的转变,仔 鱼出现了负增长。仔鱼活动能力增强,开始集群游动。

4 d 仔鱼(图 3-4)全长为(2.840±0.127) mm, 口裂 逐渐增大,上下颌可做开闭动作。眼囊内黑色素明显 加深,消化道上端以及尾部前端脊索上出现大量深黑 色分枝状色素团。油球消失,胸鳍变大,仔鱼可借助 胸鳍的扇动做水平游动,消化道进一步缩短变粗。此 时开始向池中投放充足的开口饵料,仔鱼摄食良好, 镜检可见肠道呈饱满状态。

6 d 仔鱼(图 3-5)全长为(2.940±0.165) mm, 头部 鳃盖骨分化明显,背鳍原基出现,尾部前端脊索上的 黑色素细胞团逐渐扩展为半圆形。背鳍膜和腹鳍膜变 窄,胸鳍进一步发育呈扇形,仔鱼游泳能力增强,在 池中可清晰的看到黑点状的集群仔鱼。

8 d 仔鱼(图 3-6)全长为(3.085±0.207) mm, 口裂 明显增大,心脏跳动快速、有力。腹鳍原基出现,腹 部树枝状黑色素区域扩大,消化道呈圆筒状,尾鳍上 出现透明状鳍条原基。仔鱼游泳速度加快,反应灵敏, 摄食能力增强。

10 d 仔鱼(图 3-7)全长为(3.527±0.305) mm,鱼体 颜色变深,黑色素已覆盖至整个消化道及其上端,消 化道结构逐渐完善。下颌骨明显发达,主动捕食能力 增强。仔鱼生长差异显著,生长速度快慢不一。第 2 背鳍棘和腹鳍棘长出,背鳍棘长为(0.200±0.105) mm,腹 鳍棘长为(0.387±0.120) mm,鳍棘末端布有点状色斑 并长有许多倒钩状尖刺。仔鱼集群明显,多在池角和 池壁活动。

14-16 d 仔鱼(图 3-8)全长为(6.512±0.520) mm, 背鳍棘、腹鳍棘明显伸长,背鳍棘增长至(3.644± 0.360) mm,腹鳍棘增长至(2.724±0.385) mm。第2背 鳍棘的增长速度加快,绝对长度已超过腹鳍棘。仔鱼 的口裂进一步增大,开始摄食L型褶皱臂尾轮虫。头 部明显发达,骨骼轮廓清晰。镜检腹部呈褐色,消化 道已容易观察。尾下骨开始形成,脊索末端尾椎上弯。 头背部以及肛门前的鳍膜消退。

20-25 d 仔鱼(图 3-9)生长迅速,至 25 d 仔鱼全 长已达到(12.497±1.170) mm,第 2 背鳍棘长为(6.597± 0.0455) mm,腹鳍棘长为(3.852±0.265) mm。仔鱼开 鳔,消化道部位的黑色素已基本消退,镜检观察到腹 部更加透亮。眼眶上缘出现锯齿状突起,头部上端及 鳃盖处开始出现黑色素细胞。第 1 背鳍及第 3 背鳍棘 已长出,长棘上长有许多倒钩状小刺,末端长有 1 根 细长尖刺。仔鱼在池中游动迅速,不易捕捞。

30 d 仔鱼(图 3-10)全长为(18.130±1.565) mm, 第 2 背鳍棘长为(6.603±1.120) mm, 腹鳍棘长为(4.427± 0.850) mm, 鳍棘末端的黑色斑点消退, 第 2 背鳍棘 与腹鳍棘的绝对长度已达到仔、稚鱼阶段的最大值。 头部发育完善,鼻孔清晰可见,眼球圆滑、外突。鱼体大部分器官已发育成型,头腹部、体背部以及尾柄部色斑增多,胸鳍与尾鳍的鳍条清晰可见。仔鱼体型已与稚鱼相似,进入稚鱼期。

**2.2.3** 稚鱼期 36 d 稚鱼(图 3-11)全长为(23.642± 1.783) mm, 第 2 背鳍棘和腹鳍棘的绝对长度变小, 开始收缩, 长度分别为(5.055±0.862) mm 和(4.170±

0.960) mm, 鳍棘上的钩状小刺数目也逐渐减少。鱼体体型为梭型, 尾部摆动强劲有力, 能在水中做快速游动。

40-45 d 稚鱼(图 3-12)生长明显加快,体表形态 特征变化明显,至45 d 时全长已达到(39.850±2.565) mm。 第 2 背鳍棘和腹鳍棘再次伸长,长度分别为(4.095± 0.185) mm 和(5.755±1.020) mm,腹鳍棘长度再次超过



图 3 云纹石斑鱼(♀)×鞍带石斑鱼(♂)杂交 F1 仔、稚、幼鱼发育形态

Fig.3 Morphological development of the larvae, juvenile, and young fish of the hybrid F<sub>1</sub> from *E.moara*  $\Im \times E.lanceolatus$ 

1. 1 d; 2. 2 d; 3. 3 d; 4. 4 d; 5. 6 d; 6. 8 d; 7. 10 d; 8. 16 d; 9. 25 d; 10. 30 d; 11. 36 d; 12. 45 d

第2背鳍棘, 鳍棘上的小刺已完全消退。内脏器官发 育完善, 肉眼观察腹部表层反光性变强。尾柄处的黑 色斑块消失, 体表色素加深, 体色形成, 为淡褐色。 鱼体背部可清楚地看到6条黑色斑带, 镜检可见鱼体 表面有鳞片形成。此时, 稚鱼的活动水层转入中下层, 开始寻找躲避物, 已基本具备幼鱼的特征, 进入幼鱼期。 2.2.4 幼鱼期 50 d 幼鱼全长为(43.080±3.255) mm, 第2背鳍棘和腹鳍棘继续伸长。眼球突出, 鳞片长齐, 体表布满细小、棕色斑点。取样时, 因胁迫鱼体体色 稍有加深。幼鱼各器官发育相对完善,形态已接近于 成鱼,投饵时集群抢食。

#### 2.3 仔、稚、幼鱼的生长

育苗期间 F<sub>1</sub>的仔、稚、幼鱼全长及肛前距与孵 化后天数的关系见图 4。从图 4 可以看出, 1–13 d 的 仔鱼全长变化较小, 14–45 d 是仔鱼发育成稚鱼的变 态期,此期间生长迅速, 46 d 起进入幼鱼期, 全长稳 定增长。







图 5 第 1 腹鳍棘和第 2 背鳍棘长度的变化

Fig.5 Changes in the length of the first pelvic fin spine and the second dorsal fin spine

表 2 不同盐度条件下杂交 F<sub>1</sub> 初孵仔鱼的存活率及 SAI 值

Tab.2 The survival rate and SAI of newly-hatched the hybrid  $F_1$  larvae at different salinities (Mean±SD)

| 盐度       | 饥饿条(           | 牛下仔鱼卵          | <b>呼化后的</b> 同  | 戓活率 Su         | rvival rate     | e of larval    | cobia afte       | r hatching     | in a state     | of starvati     | on (%)        | SAI                    |
|----------|----------------|----------------|----------------|----------------|-----------------|----------------|------------------|----------------|----------------|-----------------|---------------|------------------------|
| Salinity | 1 d            | 2 d            | 3 d            | 4 d            | 5 d             | 6 d            | 7 d              | 8 d            | 9 d            | 10 d            | 11 d          | 5711                   |
| 5        | $0.0{\pm}0.0$  | $0.0{\pm}0.0$  | $0.0{\pm}0.0$  | $0.0{\pm}0.0$  | $0.0{\pm}0.0$   | $0.0{\pm}0.0$  | $0.0{\pm}0.0$    | $0.0{\pm}0.0$  | $0.0{\pm}0.0$  | $0.0{\pm}0.0$   | $0.0{\pm}0.0$ | $0.0{\pm}0.0^{a}$      |
| 10       | 87±2.6         | 75.7±1.1       | $71.3 \pm 0.6$ | $63.3 \pm 3.8$ | $60.0{\pm}3.0$  | $49.0{\pm}2.6$ | $14.3 \pm 2.9$   | $0.0 \pm 0.0$  | $0.0{\pm}0.0$  | $0.0 \pm 0.0$   | $0.0{\pm}0.0$ | $14.0\pm0.4^{c}$       |
| 15       | $83.7 \pm 3.2$ | $81.7 \pm 3.5$ | $79.3 \pm 3.0$ | 78.7±2.5       | $77.7 \pm 2.3$  | $72.3 \pm 3.5$ | $67.3 {\pm} 2.0$ | $24.7 \pm 3.7$ | $0.0 \pm 0.0$  | $0.0 {\pm} 0.0$ | $0.0{\pm}0.0$ | $22.9{\pm}0.9^d$       |
| 20       | 96.7±2.3       | 95.7±1.5       | $95.0{\pm}2.0$ | 92.7±2.5       | $92.3 \pm 3.0$  | $92.0{\pm}2.6$ | $91.3 \pm 3.0$   | $87.0 \pm 3.5$ | 43.7±1.5       | $0.0 {\pm} 0.0$ | $0.0{\pm}0.0$ | $36.8{\pm}0.9^g$       |
| 25       | $98.0{\pm}1.7$ | $94.0{\pm}1.0$ | $93.3{\pm}0.6$ | $93.0{\pm}1.0$ | $92.3{\pm}1.5$  | $91.0{\pm}1.0$ | $88.7{\pm}2.3$   | 75.7±5.5       | 53.3±4.0       | $0.0 {\pm} 0.0$ | $0.0{\pm}0.0$ | $36.5{\pm}1.1^g$       |
| 30       | $96.0{\pm}2.6$ | 95.0±1.7       | 90.7±0.6       | $89.7 \pm 0.6$ | $89.3 \pm 0.6$  | 86.7±1.1       | 77.7±2.3         | 69.3±3.5       | $62.0{\pm}2.6$ | $29.3 \pm 1.5$  | $0.0{\pm}0.0$ | $38.3{\pm}0.7^h$       |
| 35       | 95.7±1.1       | $94.0{\pm}1.0$ | 91.3±2.3       | $86.3 \pm 3.0$ | $83.0 \pm 3.6$  | $82.0{\pm}2.6$ | $80.0{\pm}3.0$   | 76.0±1.7       | $20.3 \pm 6.0$ | $0.0 {\pm} 0.0$ | $0.0{\pm}0.0$ | $31.6{\pm}0.8^{\rm f}$ |
| 40       | $93.7 \pm 3.5$ | $89.7 \pm 3.8$ | $87.0{\pm}1.7$ | $84.3 \pm 2.1$ | $81.7 \pm 1.1$  | $77.3 \pm 3.2$ | $71.3 \pm 1.1$   | $39.0{\pm}2.6$ | $0.0 \pm 0.0$  | $0.0 {\pm} 0.0$ | $0.0{\pm}0.0$ | $25.5{\pm}0.3^e$       |
| 45       | 89.7±3.5       | 85.7±1.5       | 78.3±1.5       | 72.3±2.5       | $0.0 {\pm} 0.0$ | $0.0{\pm}0.0$  | $0.0{\pm}0.0$    | $0.0{\pm}0.0$  | $0.0{\pm}0.0$  | $0.0{\pm}0.0$   | $0.0{\pm}0.0$ | $7.8{\pm}0.1^{b}$      |

第 2 背鳍棘和腹鳍棘的变化过程见图 5。从图 5 可以看出,孵化后 9 d 鳍棘长出,此时腹鳍棘长度长 于背鳍棘。随后,背鳍棘发育迅速,至 13 d 时长度 超过腹鳍棘。第 2 背鳍棘和腹鳍棘的绝对长度在第 30 天时达到最大,随后逐渐收缩,分别在 40 d 和 36 d 时缩到最短。此后腹鳍棘长度再次超过背鳍棘, 进入幼鱼期后增长较为缓慢。

#### 2.4 盐度对饥饿条件下仔鱼存活的影响

不同盐度条件下初孵仔鱼存活率和 SAI 值测定见 表 2。从表 2 可以看出,初孵仔鱼在不投饵条件下存 活的时间越长,其 SAI 值就越高。结果显示,在盐度 为 5-45 范围内,随着盐度的升高,仔鱼的 SAI 值呈 先上升后下降的变化趋势。盐度为 5 时仔鱼的 SAI 值为 0,活力最弱;盐度为 10、45 时,仔鱼的 SAI 值偏低,分别为 14.0、7.8;仔鱼的 SAI 值最高的盐 度组为 30,达到了 38.3,活力最强,生存时间最长。

#### 3 讨论

#### 3.1 盐度对杂交 F<sub>1</sub>胚胎发育的影响

海水鱼类的胚胎发育需要适宜的盐度条件,盐度

不适则会造成胚胎发育过程的异常。在实际生产中, 由于盐度过高或过低,造成发育过程中胚胎不能正常 分裂或者存活,引起胚胎死亡或者仔鱼畸形的现象时 有发生,给生产造成严重损失。有文献报道,海水鱼 类受精卵的原生质层是调节渗透压平衡和保持胚胎 正常发育的重要物质(麦贤杰等,2005),在胚胎的耐 受范围之内会随着外界盐度的变化做出相应的功能 性调整抵御对自身的迫害,超出调节能力之外都会使 渗透压调节失衡造成卵细胞损伤或破损(王宏田等, 1998)。本研究中出现的低盐度时胚体模糊现象、高 盐度时胚胎发育停止等异常,都是由于盐度的胁迫超 出了胚胎自身调节范围所致。

产浮性卵的海水鱼类,其卵的沉浮性对于这类鱼的产卵和孵化有着重要的意义(Nissling *et al*, 1994)。 杂交 F<sub>1</sub>受精卵是典型的硬骨鱼类浮性卵,从受精卵 的沉浮性判断适宜孵化盐度为 30。此时,仔鱼主要 分布在水体中上层,在生产中对于吸除池底残饵粪便 是有利的。要注意仔鱼集中分布容易造成局部缺氧, 在苗种培育过程中要调整好用水的盐度、给予足够氧 气,使受精卵悬浮于水体中上层,有助于提高孵化率。 同时,受精卵的孵化率和仔鱼畸形率是反映受精卵孵 化好坏最直接的两个衡量指标。为求杂交 F<sub>1</sub>的最适 孵化盐度,在盐度为 25-40 范围内对孵化率和畸形率 再做多项式回归分析(图 6),求得孵化率回归方程为:

 $y=-0.052x^{3}+4.800x^{2}-145.100x+1459$ ,  $R^{2}=1.000$ 

式中, y 为孵化率, x 为盐度;

畸形率回归方程为:

 $y=0.057x^{3}-5.300x^{2}+158.400x-1472$ ,  $R^{2}=1.000$ 

式中, y 为孵化率, x 为盐度。根据这两个方程 求得当孵化率最高时的盐度为 35; 畸形率最低时的 盐度为 37。对两个盐度数值取平均数再取±1 (施兆鸿 等, 2009),得出 35-37 是杂交 F<sub>1</sub> 受精卵孵化的最适盐 度。

不同石斑鱼种在最适盐度下的孵化率和仔鱼畸 形率也大不相同,如点带石斑鱼(Epinephelus coioiaes) 受精卵在最适盐度 30–33 时的孵化率为 55.65%,仔鱼 畸形率为 19.88% (施兆鸿等, 2008);斜带石斑鱼在最 适盐度 25–30 时的孵化率为 76.40%,仔鱼畸形率为 0 (张海发等, 2006a);赤点石斑鱼在最适盐度 30–32 时 的孵化率为 85.20%,仔鱼畸形率为 21.60% (王涵生 等, 2002)。杂交 F<sub>1</sub>与上述几种石斑鱼相比,最适孵化 盐度与点带石斑鱼相近,较斜带石斑鱼对高盐度的适 应性强,在最适孵化盐度下的孵化率较低,仔鱼畸形 率较高,这可能与孵化的条件、亲鱼的培育条件以及 杂交的亲和性有关,具体原因有待进一步研究。



图 6 25-40 盐度条件下杂交 F<sub>1</sub>胚胎孵化率和畸形率 Fig.6 The hatching rate and deformity rate of the hybrid F<sub>1</sub> embryo at salinities of 25-40

#### 3.2 盐度对杂交 F<sub>1</sub>仔鱼生存活力的影响

SAI 值反映的是仔鱼的活力,可以用来判断受精 卵的卵质,仔鱼存活时间越长,SAI 值就越高。仔鱼 孵出后,在不投饵的情况下,依靠卵黄囊和油球的营 养可以存活一段时间。仔鱼开口前处于内源性营养 期,生长发育所需的营养全部由卵黄囊和油球供给; 仔鱼从开口至卵黄囊和油球未完全消失之前,处于混 合营养期,依靠自主觅食和残留卵黄生活;待卵黄囊 和油球完全消失后,仔鱼进入外源性营养期,所需的 营养物质完全从外界环境摄取。若仔鱼在卵黄囊和油 球消失前,还未得到充足的营养,仔鱼就会因营养缺 失死亡。仔鱼营养期的过渡也是苗种培育过程中的危 险期,生产上要求及时供给适口、营养全面的饵料。 研究中观察到,盐度为 20-35 时,SAI 值较高,均在 30 以上。与其亲本云纹石斑鱼在最适盐度 25-30 条 件下的 SAI 值 24.52 (宋振鑫等, 2013)相比,杂交 F<sub>1</sub> 初孵仔鱼的活力要好。

综上所述,在实际育苗生产中,结合不同盐度下 受精卵的沉浮性、孵化率、仔鱼畸形率以及不投饵存 活系数,建议杂交 F<sub>1</sub>受精卵孵化和仔鱼培育的盐度 最好控制在 35,并且加强水质调控,以保证较高的 育苗成功率。

#### 3.3 杂交 F<sub>1</sub>与亲本生长发育的比较

同其他石斑鱼一样(张海发等, 2006b; 郭仁湘等, 2011; 陈超等, 2014; 张梦淇等, 2014), 杂交 F1在苗 种培育过程中也出现了第 2 背鳍棘和腹鳍棘的伸长 与收缩,这无疑是石斑鱼仔稚幼鱼培育过程中最显著 的特征。目前,关于鳍棘的生长特性对于鱼体本身的 意义尚无明确定论。陈国华等(2001)认为鳍棘有增加 浮力和惊吓敌害生物的作用; 郭仁湘等(2011)认为鳍 棘能够保持自身的平衡,从而有利于对食物的捕获, 鳍棘的出现对鱼体本身的摄食和生长具有积极作用。 通过 2.3 中仔稚幼鱼的生长可以看出, 1-13 d 的仔鱼 全长变化不大,生长较为缓慢,从第13天开始,仔 鱼生长明显加快, 而此时也正是第2背鳍棘和腹鳍棘 迅速伸长的时期。在此期间,由于饵料的转变增加了 仔、稚鱼对桡足类个体的捕食难度, 而鳍棘的伸长有 助于鱼体在水体中保持稳定,增加了对桡足类的捕食 成功率,也使得仔鱼能够在这一时期快速生长。进入 幼鱼期后,由于习性的改变,鱼苗开始聚集于池底的 遮蔽物中,过长的鳍棘反而不利于其躲藏,遂逐渐收 缩。

生长速度、成活率以及对环境的适应能力等指标,常被用来比较杂交后代与亲本的差别(王新成等,2003)。通过与亲本云纹石斑鱼(宋振鑫等,2012)和鞍带石斑鱼(郭仁湘等,2011)的早期发育比较(表 3-表 4),可以得出杂交 F<sub>1</sub>的生长特点。鞍带石斑鱼早期发育过程中进入各个阶段的时间点最早,杂交 F<sub>1</sub> 仅在进入幼鱼期的时间比云纹石斑鱼提前。尽管培育的水温有差异,但提前进入幼鱼期对于提高育苗成功率、降低成本从而提高经济效益有很大的帮助。从生长速度比较,鞍带石斑鱼最快,杂交 F<sub>1</sub>从进入后期仔鱼生长速度超过云纹石斑鱼,表现出明显的生长优势; 云纹石斑鱼的生长速度最慢。不同苗种对生长环境的 需求不同,其生长会出现差异。对于杂交种是否能在 今后的养殖中体现亲本的优势还有待于进一步实验。

杂交 F1 还未发育为成鱼,所以体型无法与其亲

本进行准确比较,就幼鱼的体型来说,介于云纹石斑 鱼和鞍带石斑鱼之间,头部和尾部与鞍带石斑鱼类 似,躯干部接近于云纹石斑鱼。杂交 F<sub>1</sub>幼鱼的体色 更偏向于鞍带石斑鱼,为棕褐色,受胁迫后体色变深。

| 100.5                                         | The companion of                       | t early development of the hy                                             | ond i i when his pe      | nemes, E. mour      | a ana B. ranceora     | 1115              |
|-----------------------------------------------|----------------------------------------|---------------------------------------------------------------------------|--------------------------|---------------------|-----------------------|-------------------|
| 种类<br>Species                                 | 培育水温<br>Cultivation<br>temperature (℃) | 卵黄囊仔鱼期, 开口时间<br>Yolk sac larvae (d) and the<br>time of starting eating(d) | 后期仔鱼期<br>Post larvae (d) | 稚鱼期<br>Juvenile (d) | 幼鱼期<br>Young fish (d) | 参考文献<br>Reference |
| 云纹石斑鱼<br>E.moara                              | 22–24                                  | 1-4, 5                                                                    | 5-30                     | 31-65               | 66                    | 宋振鑫等,<br>2012     |
| 鞍带石斑鱼<br>E.lanceolatus                        | 27–30                                  | 1–2, 4                                                                    | 3–21                     | 22-30               | 31                    | 郭仁湘等,<br>2011     |
| 杂交 F <sub>1</sub><br>The ybrid F <sub>1</sub> | 25–27                                  | 1–2, 4                                                                    | 3-30                     | 31–45               | 46                    | 本研究<br>This study |

表 3 杂交  $F_1$ 与云纹石斑鱼、鞍带石斑鱼早期发育各阶段经历的时间比较 Tab 3 The comparison of early development of the hybrid  $F_1$  with its parents. *E. moara* and *E. lanceolatus* 

表 4 杂交  $F_1$ 与云纹石斑鱼、鞍带石斑鱼早期进入各发育阶段的时间点及此时全长的比较

Tab.4 The comparison of early development and overall length of the hybrid F<sub>1</sub> with its parents, *E. moara*, and *E. lanceolatus* 

| 种类<br>Species                                  | 初孵仔鱼全长<br>Average length of<br>newly hatched<br>larvae (mm) | 进入后期仔鱼的时间, 全长<br>Time (d) and average<br>length (mm) of post<br>larvae began | 进入稚鱼期的时间,全长<br>Time (d) and average<br>length (mm) of juvenile<br>began | 进入幼鱼期的时间,全长<br>Time (d) and average<br>length (mm) of young<br>fish began | 参考文献<br>Reference |
|------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------|
| 云纹石斑鱼<br>E .moara                              | 1.739                                                       | 5, 2.640                                                                     | 31, 9.992                                                               | 66, 25.000                                                                | 宋振鑫等,<br>2012     |
| 鞍带石斑鱼<br>E. lanceolatus                        | 2.075                                                       | 3, 3.050                                                                     | 22, 18.185                                                              | 31, 32.500                                                                | 郭仁湘等,<br>2011     |
| 杂交 F <sub>1</sub><br>The hybrid F <sub>1</sub> | 2.059                                                       | 3, 2.765                                                                     | 31, 18.130                                                              | 46, 39.850                                                                | 本研究<br>This study |

#### 参考文献

- 王涵生, 方琼珊, 郑乐云. 盐度对赤点石斑鱼受精卵发育的 影响及仔鱼活力的判断. 水产学报, 2002, 26(4): 344-350
- 王宏田,张培军.环境因子对海产鱼类受精卵及早期仔鱼发 育的影响.海洋科学,1998,22(4):50-52
- 王新成, 尤锋, 倪高田, 等. 石鲽与牙鲆人工杂交的研究. 海 洋科学, 2003, 27(1): 33-38
- 叶金聪. 温、盐度对鲈鱼早期仔鱼生长及存活率的影响. 福建 水产, 1997(1): 14–18
- 刘筠. 中国养殖鱼类繁殖生理学. 北京: 农业出版社, 1993, 109-124
- 刘付永忠,赵会宏,刘晓春,等.赤点石斑鱼♂与斜带石斑鱼 ♀杂交初步研究.中山大学学报(自然科学版),2007,46(3): 72-75
- 曲焕韬,李鑫渲,何庆,等.温度和盐度对鞍带石斑鱼受精卵 发育及仔鱼成活率的影响.河北渔业,2009(8):6-9
- 陈超, 孔祥迪, 李炎璐, 等. 棕点石斑鱼(♀)×鞍带石斑鱼(♂) 杂交子代胚胎及仔稚幼鱼发育的跟踪观察. 渔业科学进

展, 2014, 35(5): 135-144

- 陈国华,张本.点带石斑鱼仔、稚、幼鱼的形态观察.海南大 学学报(自然科学版).2001,19(2):151-156
- 张梦淇,陈超,李炎璐,等.驼背鲈(Chromileptes altivelis)的 胚胎发育及仔、稚、幼鱼形态观察.渔业科学进展. 2014, 35(5):145-153
- 张海发,刘晓春,王云新,等. 温度、盐度及 pH 对斜带石斑鱼 受精卵孵化和仔鱼活力的影响. 热带海洋学报, 2006a, 25(2): 31-36
- 张海发,刘晓春,刘付永忠,等.斜带石斑鱼胚胎发育及仔稚 幼鱼形态发育.中国水产科学,2006b,13(5):689-696
- 麦贤杰, 黄伟健, 叶富良, 等. 海水鱼类繁殖生物学和人工繁 育. 北京: 海洋出版社, 2005
- 李炎璐, 王清印, 陈超, 等. 盐度对云纹石斑鱼(♀)×七带石 斑鱼(♂)杂交子—代胚胎发育和仔鱼活力的影响. 渔业科 学进展, 2013, 34(5): 17–22
- 宋振鑫, 陈超, 吴雷明, 等. 盐度与 pH 对云纹石斑鱼胚胎发 育和仔鱼活力的影响. 渔业科学进展, 2013, 34(6): 52-58
- 宋振鑫,陈超,翟介明,等.云纹石斑鱼胚胎发育及仔、稚、 幼鱼形态观察.渔业科学进展,2012,33(3):26–34

- 施兆鸿, 陈波, 彭士明, 等. 盐度胁迫下点带石斑鱼(Epinephelus malabaricus)胚胎及卵黄囊仔鱼的形态变化. 海洋与湖沼, 2008, 39(3): 222–227
- 施兆鸿, 彭士明, 尹彦强, 等. 不同盐度下条石鲷胚胎及卵黄 囊仔鱼的形态变化. 生态学杂志, 2009, 28(3): 471-476
- 赵明, 陈超, 柳学周, 等. 盐度对七带石斑鱼胚胎发育和卵黄 囊仔鱼生长的影响. 渔业科学进展, 2011, 32(2): 16-21
- 郭仁湘, 符书源, 杨薇, 等. 鞍带石斑鱼仔稚(幼)鱼的发育和 生长研究. 水产养殖, 2011, 32(4): 8-13
- 蔡文超, 区又君, 李加儿. 盐度对条石鲷胚胎发育的影响. 生

态学杂志, 2010, 29(5): 951-956

- Glamnzina B, Glavić N, Skaramaca B, et al. Early development of the hybrid *Epinephelus costae×E. marginatus*. Aquaculture, 2001, 198(1–2): 55–61
- Kamler E. Ontogeny of yolk-feeding fish: an ecological perspective. Reviews in Fish Biology and Fisheries, 2002, 12(1): 79–103
- Nissling A, Kryvi H, Vallin L. Variation in egg buoyancy of Baltic cod *Gadus morhua* and its implications for egg survival in prevailing conditions in the Baltic Sea. Mar Eco Prog Ser, 1994, 110: 67–74

(编辑 马璀艳)

# Effects of Salinity on the Hatching of the Fertilized Eggs of *Epinephelus moara* (♀) × *Epinephelus lanceolatus* (♂) and the Observation of the Morphological Development of Larvae, Juvenile and Young Fish

ZHANG Mengqi<sup>1,2</sup>, CHEN Chao<sup>2</sup>, LI Yanlu<sup>2</sup>, KONG Xiangdi<sup>1,2</sup>, LIU Li<sup>1,2</sup>, ZHAI Jieming<sup>3</sup>

 (1. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306; 2. Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071; 3. Laizhou Mingbo Aquatic Co. Ltd., Yantai 261400)

Abstract In this study the hybridization between *Epinehelus moara* ( $\mathcal{Q}$ ) and *Epinehelus lanceolatus*  $(\mathcal{E})$  were manipulated in the laboratory. The hybrid F<sub>1</sub> larvae were hatched at salinity 30. The hatching and deformity rates of fertilized eggs and the survival activity index of newly hatched larvae was observed at salinities 5, 10, 15, 20, 25, 30, 35, 40, and 45. The growth and morphological characteristics of larvae, juveniles, and young fish was recorded. The results suggested that salinity 35–37 was optimum for the hatching of the hybrid F<sub>1</sub>, and salinity 20 to 30 was optimum for larval survival. SAI values of larvae became higher when the salinity was between 20 and 35, and they were lower when the salinity was 5, 10, and 45. The post embryonic development could be divided into the larval stage, the juvenile stage and the young fish stage, based on the features of the yolk-sac, the second dorsal fin spine, the pelvic fin spine, the scale and the body color. The embryo developed into pre-larvae in 2 days, and the average length of newly-hatched larvae was (1.959±0.152) mm. This stage was featured by yolk-sac and unabsorbed oil ball. The post-larvae stage lasted from Day 3 to Day 30, and the average length of 3-day larvae was (2.765±0.108) mm. At this stage the absolute length of the second dorsal fin spine and pelvic fin spine reached the maximum for larvae and juvenile fish. It entered into the juvenile stage starting from Day 31 after hatching and the average length was (18.130±1.565) mm. At this stage the visceral organs had been fully developed and the fish color became transparent. Starting from Day 46 after hatching it entered into the young fish stage when the average length was (39.850±2.565) mm and the body color turned light brown. At this stage brown spots appeared on the body surface and scales could be observed under microscope.

Key words *Epinehelus moara; Epinehelus lanceolatus;* Hybridization; Morphological observation; Salinity stress

① Corresponding author: CHEN Chao, E-mail: ysfrichenchao@126.com

DOI: 10.11758/yykxjz.20150526004

http://www.yykxjz.cn/

# 长牡蛎(Crassostrea gigas)壳宽快速生长选育群体 遗传多样性及遗传结构的微卫星标记分析<sup>\*</sup>

张荣良<sup>1,2</sup> 王卫军<sup>2</sup> 冯艳微<sup>2</sup> 杨建敏<sup>2<sup>①</sup></sup> 唐海田<sup>3</sup> 纪仁平<sup>1,2</sup>
(1. 上海海洋大学水产与生命学院 上海 201306; 2. 山东省海洋资源与环境研究院
山东省海洋生态修复重点实验室 烟台 264006; 3. 国家海洋局烟台海洋环境监测中心站 烟台 264006)

**摘要** 为了监测长牡蛎(Crassostrea gigas)在选育过程中的遗传变异、分析选育对其遗传结构的影响,本研究以选育目标为壳宽快速生长的长牡蛎为实验材料,利用微卫星(Simple Sequence Repeats)标记技术,对长牡蛎基础群体(P0)和连续两代选育群体(F1和F2)进行遗传多样性评估。结果发现,所有微卫星位点在3个群体中都表现出了较高的多态性,P0、F1和F2代群体的平均等位基因数分别为16.5、12.2和12.8;P0、F1和F2代群体多态性信息含量(Pic)的平均数值分别为0.9068、0.8982和0.8836。所有群体10个位点的观测杂合度值(H<sub>e</sub>)均小于期望杂合度值(H<sub>e</sub>),观测杂合度平均值的大小范围为0.5775-0.6484,期望杂合度范围为0.8594-0.9279。哈迪-温伯格平衡(HWE)结果显示,3个群体在10个位点上有24个群体的位点组合显著偏离HWE(P<0.05),说明人工选育对选育群体的遗传结构有一定的影响。3个群体在10个位点上的F<sub>is</sub>值均为正值,平均范围为0.1541-0.2341,表明群体内各位点上的杂合子比例有所下降;各群体间F<sub>st</sub>值范围为0.0093-0.0245,遗传分化程度较弱。此研究表明,以壳宽快速生长为选育目的,长牡蛎连续选育群体仍具有很高遗传多样性,人工选育过程中保持一定选择压力,仍然会使长牡蛎的优良生长性状得到不断提高。

关键词 长牡蛎; 微卫星; 遗传结构; 遗传多样性

中图分类号 S917.4 文献标识码 A 文章编号 2095-9869(2016)04-0090-07

长牡蛎(Crassostrea gigas)也称太平洋牡蛎, 属瓣 鳃纲、珍珠贝目、牡蛎科, 广泛分布于西北太平洋海 域, 是世界上第一大养殖贝类, 也是我国四大养殖贝 类之一。随着牡蛎养殖规模的扩大, 我国牡蛎养殖产 量逐渐跃居到世界首位, 但就牡蛎产业创造的价值而 言, 我国远远落后于欧美等发达国家, 尤其近年来, 养殖长牡蛎出现品质下降、种质退化等现象, 表现为 出肉率低、死亡率高、肉质下降等, 严重影响我国牡 蛎的国际竞争力。为维护行业的健康发展、保护长牡 蛎种质资源, 开展优良群体的选育工作已成为必然。

牡蛎具有繁殖力高、繁殖周期短、野生群体遗传

变异水平高的优点,非常适合开展选育工作(Newkirk, 1983)。有研究表明,通过家系选育或群体选育能实现长牡蛎的快速生长,降低长牡蛎的夏季死亡率,提高生产性能等(Hershberger *et al*, 1984; Dégremont *et al*, 2007; Beattie *et al*, 1980; Ward *et al*, 2000; Langdon *et al*, 2003)。Li等(2006)发现,我国长牡蛎的养殖群体仍保持着较丰富的遗传多样性,这为实施长牡蛎的选择育种计划提供了有利条件。

群体遗传结构的研究是遗传资源利用和物种保 护的基础(李昂等,2002)。进行人工选育时,一定的 人工选择压力或者外部环境会使群体的遗传结构产

<sup>\*</sup>国家自然基金青年项目(31402298)和山东省农业良种工程项目—大宗经济贝类新品种选育及应用共同资助。张荣良, E-mail: zrl11598@163.com

① 通讯作者:杨建敏,研究员, E-mail: ladderup@126.com 收稿日期: 2015-05-26、收修改稿日期: 2015-07-10

生变化, 近交几率增加以及有效亲本数的减少, 导致 选育群体的遗传多样性下降, 甚至出现性状衰退的现 象。虽然一些研究报道了贝类养殖群体的遗传多样性 与野生群体相比未发生明显变化(Li *et al*, 2006; English *et al*, 2000; Durand *et al*, 1993; Zhao *et al*, 2009), 但在贝类的苗种培育和群体选育过程中, 常 因亲本数量过少、亲本贡献不均、雌雄比例不当、配 子质量差异、人工选择交配等因素, 引起有效群体的数 量的降低, 从而降低选育群体的遗传多样性(Hedgecock *et al*, 1990; Boudry *et al*, 2002; Taris *et al*, 2006;

Appleyard *et al*, 2006)。因此,将分子标记技术应用于长 牡蛎遗传育种的研究,对养殖群体的遗传变异进行监 测,对群体间的各遗传参数进行评估,显得尤其重要。

微卫星(Simple Sequence Repeats)技术亦称为简 单重复序列,它由 1-6个碱基组成的基本序列串联而 成,由于具有多态位点多、信息量大、每个位点的多 态性呈共显性遗传、易与 PCR 技术结合、多态性检 测快捷等优点,被广泛应用于水产动物遗传多样性分 析和遗传图谱构建等研究中。本研究以壳宽快速生长 为选育目标的长牡蛎选育群体为材料,利用微卫星 (SSR)分子标记技术,对基础群体(P0)和两代选育群体 (F1 和 F2)的遗传多样性进行跟踪监测,分析人工定 向选育对养殖群体遗传结构的影响,为我国长牡蛎资源 的保护和健康发展及更有效开展选育提供数据和资料。

#### 1 材料与方法

#### 1.1 样品采集

本研究采集的样本为长牡蛎烟台崆峒岛选育基 础群体(P0)和连续两代选育群体(F1和F2),共3个群 体(表1)。基础群体系2012年采自烟台崆峒岛近海的 半人工采苗野生群体,2013-2014年连续两年从壳宽 快速生长的个体中留选亲本进行群体选育,保证雌雄 亲本数目皆不少于50。亲本自海上采集后,经过暂 养促熟阶段后,人工采集精子和卵子,并使之按一定 比例混合,待受精卵孵化后进入幼苗培育及养成阶 段,具体方法参见Li等(2011)和Wang等(2012)的报 道,每个世代的样品分别从连续选育群体的成体个体 中随机选择。样品采集完之后,取长牡蛎的闭壳肌保 存于 95%的酒精中,存放于-20℃低温冰柜中保存。

#### 1.2 DNA 提取

DNA 的提取采用常规酚/氯仿法,具体操作参照 Li 等(2006)的方法,DNA 浓度的检测通过紫外分光 光度计 Ultrospec 2100 pro UV/visible spectrophotometer(Amersham Inc.)来完成。用灭菌水稀释成 100 µg/ml 的模板 DNA, -20℃备用。

#### 1.3 微卫星分析

本研究共选用了 10 个长牡蛎多态性较高的微卫 星位点进行分析: ucdCg-149、ucdCg-138、ucdCg-194、 ucdCg-157、ucdCg-160、ucdCg-162、ucdCg-109、ucdCg-177、ucdCg-175 和 ucdCg-140 (Li *et al*, 2003)(表 2)。

PCR 反应体系为 10 μl, 包含 100 ng 模板 DNA、 1×PCR buffer、0.2 mmol/L dNTP 混合液、1 μmol/L 引物、1 mmol/L MgCl<sub>2</sub>和 0.25 U *Taq* DNA 聚合酶 (TaKaRa Inc.)。

PCR 反应条件: 94℃预变性 3 min; 35 个循环为 94℃ 1 min,退火 1 min,72℃ 1 min;72℃延伸 5 min。 PCR 反应于 GeneAmp ® RCR System 9700 上进行。

PCR 产物在 6%变性聚丙烯酰胺凝胶中电泳,硝酸银法染色。为避免不同凝胶之间条带位置的误差,用同一个参照样品在每一块胶上进行电泳作为对照。用 10 bp DNA ladder (Invitrogen)作为 Marker 检测等位基因位置。

#### 1.4 统计分析

使用软件 POPGENE Version 1.32 计算各微卫星 位点在 3 个群体中的等位基因数 N, 多态性信息含量 (*Pic*)(Botstein *et al*, 1980)、期望杂合度( $H_e$ ),观测杂合 度( $H_o$ ),哈迪温伯格平衡(HWE)的偏离情况(Raymond *et al*, 1995)以及遗传分化( $F_{st}$ ),固定系数( $F_{is}$ )(Levene *et al*, 1949)。用 Genepop 1.4 软件计算 Nei(1987)群体间的相 似性系数(*I*)和群体间遗传距离( $D_A$ )。

表 1 长牡蛎群体的取样时间、地点、群体类型和样本数 Tab.1 The sampling location, population, time and size of *C. gigas* 

|               | F                      | 8 · · · · · , · · , · | 8.8                     |                 |
|---------------|------------------------|-----------------------|-------------------------|-----------------|
| 群体 Population | 采样地点 Sampling location | 采样时间 Sampling time    | 群体类型 Type of population | 样本数 Sample size |
| PO            | 中国烟台 Yantai, China     | 20130525              | 基础群体 Basic population   | 40              |
| F1            | 中国烟台 Yantai, China     | 20140529              | F1 选育群体 F1 population   | 40              |
| F2            | 中国烟台 Yantai, China     | 20151226              | F2 选育群体 F2 population   | 40              |

|           | 140.2                                |                             |                                                  |                    |
|-----------|--------------------------------------|-----------------------------|--------------------------------------------------|--------------------|
| 位点 Locus  | GenBank 登录号<br>GenBank accession No. | 重复位点数 Repeat array          | 引物序列 Primer sequence (5'-3')                     | 退火温度 <i>Tm</i> (℃) |
| ucd-Cg149 | AF468551                             | $(GA)_n (GACA)_N$           | TGATTAAACGTGGGTGATTCAG<br>TTTCTGACTGTCCGTCTGTGA  | 60                 |
| ucd-Cg138 | AF468542                             | (GA) <sub>N</sub>           | CCTCGAACAGCACTCCAAAT<br>TTCAGTTCAACGCTCTTGCT     | 57                 |
| ucd-Cg194 | AF468592                             | $(GAT)_n (GAG)_N$           | CCCAGTGAAAACTTGGAGACA<br>TTTCGAATCGGGAAAATACG    | 52                 |
| ucd-Cg157 | AF468558                             | $(GA)_N (TAGA)_N$           | GGGGGATGTCGGAGAAGTAT<br>AACAGAGAAAGGTGGATTTTAGGA | 58                 |
| ucd-Cg160 | AF468560                             | $(GA)_n (GACA)_n$           | GGAGCCATTAACAACACCACA<br>TCTCTCCCTTCCCCCTCTTA    | 57                 |
| ucd-Cg162 | AF468562                             | $(TTCA)_N(AT-CT)_n(GTCT)_N$ | CCAAATCACCGTTTTAGTTTGTT<br>AGCGACACAGAGACCACCTT  | 52                 |
| ucd-Cg109 | AF468525                             | (CAT) <sub>n</sub>          | GCTATGGTTGTCATCCTCGAA<br>TGCCTTTATCGGTTTTGCTT    | 53                 |
| ucd-Cg177 | AF468575                             | (GA) <sub>n</sub>           | GCTTCCGGGAATTAAACCAT<br>TCAAGAAAAAGTCGACGGGTA    | 57                 |
| ucd-Cg175 | AF468573                             | (CAT) <sub>n</sub>          | GGGCATGGATCAACTCCTAA<br>CCAACCAGCCCTAGTCTGTG     | 55                 |
| ucd-Cg140 | AF468544                             | (CT) <sub>N</sub>           | TGCTCAATTCACAGCAATCAG<br>TCTGACTGCTGAACAGCAAAAT  | 60                 |

表 2 10 对长牡蛎微卫星位点特征

#### Tab.2 Characteristics of the ten microsatellite loci of C. gigas

#### 2 结果

#### 2.1 群体内的遗传多样性

运用 10 对微卫星引物,对长牡蛎基础群体以及 连续选育两代群体的所有采集样本,进行多样性分 析,10 个位点在所有群体中均表现出较高的多态性, P0 的平均等位基因数为 16.5,F1 代和 F2 代选育群体 的平均等位基因数为 12.2、12.8。3 个群体的多态信 息含量(*Pic*)平均值依次为 0.9068、0.8982、0.8836。 所有群体在 10 个位点的观测杂合度均小于期望杂合 度,观测杂合度平均值范围 0.5775–0.6484,期望杂 合度范围为 0.8594–0.9279。经过 Bonferroni (Rice, 1989)校正后,HWE 平衡结果显示,3 个群体在 10 个 位点仍有 24 个群体的位点组合显著偏离 HWE 平衡。 固定系数 *Fis*均为正值,平均范围为 0.1541–0.2341,表 明 3 个群体在所有位点上,表现出了一定程度的杂合子 缺失(详见表 3)。

#### 2.2 群体间的遗传变异分析

计算不同群体配对比较的 F<sub>st</sub>值,均小于 0.05, 遗传分化仍属于较低的弱分化水平,所有 10 个微卫 星位点计算群体间总的遗传分化系数为 0.0487,表明 只有 4.87%的遗传变异来自群体间,95.2%的遗传变 异来自于群体内(表 4)。运用 Genepop1.4 软件计算长 牡蛎 3 个群体间的遗传相似性系数(*I*)和遗传距离 (*D<sub>A</sub>*),不同世代群体间的相似性系数为 0.8814–0.9132, 遗传距离为 0.27121–0.5203,群体间遗传距离大的遗 传相似性低(表 5)。

#### 3 讨论

遗传多样性是生物多样性的基础,与其生存繁衍 和进化潜力密切联系。人工群体选育的目的是在维持 选育群体具有一定遗传多样性的基础上,获得具有目 标性状的选育新品种。在长期累代选育过程中需要保 持足够的遗传变异水平及一定的遗传响应,这就需要 加强对选育群体的遗传结构的研究与监测。本研究结 果中, 选育群体较野生基础群体, 等位基因数及多态 信息含量均略有下降,但二者都保持在较高水平上; 同样,在杂合度方面,选育群体也未出现明显下降的 现象,各群体都表现出了较高的遗传多样性。有很多 学者认为,选育群体较野生群体会出现遗传多样性下 降的现象。王庆志等(2012)在对以快速生长为选育目 标的长牡蛎连续三代选育群体进行研究发现,选育群 体与野生群体和基础群体比较,等位基因丰富度下降 了 14.5%和 8.7%。 赵广泰等(2010)在对大黄鱼连续 4 代 选育群体遗传多样性与遗传结构的微卫星分析时发

| 位占Locus   | 140.5 001       | 主神群休 PO (m-40)            | 选查群休 F1 (n=40) |                |
|-----------|-----------------|---------------------------|----------------|----------------|
| 世点 Locus  | 3.7             | ▲400件件 F0 ( <i>n</i> -40) |                | 此肖研评 r2 (n−40) |
| ucdcg-15/ | N<br>D:         | 16                        |                | 15             |
|           | Pic             | 0.9088                    | 0.8169         | 0.9093         |
|           | $H_o$           | 0.7188                    | 0.7273         | 0.6563         |
|           | $H_e$           | 0.9276                    | 0.8462         | 0.9301         |
|           | $F_{is}$        | 0.2145                    | 0.1321         | 0.2832         |
|           | Р               | 0                         | 0.0711         | 0              |
| ucdcg-160 | N               | 15                        | 11             | 12             |
|           | Pic             | 0.9027                    | 0.8807         | 0.8705         |
|           | $H_o$           | 0.8438                    | 0.6667         | 0.7005         |
|           | $H_e$           | 0.9241                    | 0.9044         | 0.8942         |
|           | $F_{is}$        | 0.0725                    | 0.2611         | 0.5421         |
|           | Р               | 0.1670                    | $0.0030^{*}$   | $0.0020^{*}$   |
| ucdcg-162 | Ν               | 16                        | 11             | 17             |
|           | Pic             | 0.8912                    | 0.8651         | 0.9220         |
|           | $H_o$           | 0.3871                    | 0.6970         | 0.6563         |
|           | $H_{e}$         | 0.9173                    | 0.8909         | 0.9415         |
|           | $F_{is}$        | 0.5697                    | 0.4197         | 0.2919         |
|           | Р               | $0^*$                     | $0^*$          | $0^*$          |
| Ucdcg-194 | Ν               | 18                        | 12             | 8              |
|           | Pic             | 0.9206                    | 0.8772         | 0.8344         |
|           | $H_o$           | 0.2000                    | 0.3939         | 0.4063         |
|           | $H_{e}$         | 0.9412                    | 0.9012         | 0.8651         |
|           | $F_{is}$        | 0.7839                    | 0.5759         | 0.5229         |
|           | Р               | 0*                        | $0^*$          | $0^*$          |
| ucdcg-177 | Ν               | 20                        | 11             | 13             |
| U         | Pic             | 0.9161                    | 0.8651         | 0.8945         |
|           | $H_{o}$         | 0.7188                    | 0.6970         | 0.8438         |
|           | $H_{e}$         | 0.9360                    | 0.8907         | 0.9167         |
|           | $F_{is}$        | 0.2199                    | 0.2134         | 0.0649         |
|           | P               | $0^*$                     | $0^{*}$        | 0.2724         |
| ucdcg-138 | Ν               | 19                        | 10             | 12             |
| ueueg 100 | Pic             | 0.9161                    | 0.8526         | 0.8681         |
|           | Н.              | 0.4688                    | 0.5758         | 0.8750         |
|           | H.              | 0.9360                    | 0.8802         | 0.8938         |
|           | F.              | 0 4913                    | 0.3477         | 0.0055         |
|           | - 15<br>P       | 0*                        | 0*             | 0 1095         |
| uedeg-140 | N               | 16                        | 11             | 11             |
| ucacg-140 | Pic             | 0 9004                    | 0 8461         | 0.8732         |
|           |                 | 0.5000                    | 0.3030         | 0.3438         |
|           |                 | 0.000                     | 0.8737         | 0.8083         |
|           | $\Pi_e$         | 0.9221                    | 0.8727         | 0.8985         |
|           | r <sub>is</sub> | 0.4492<br>0*              | 0.3020         | 0.0115         |
| . 1 100   | r<br>N          | 0                         | 0              | 0              |
| ucdcg-109 | IN<br>D:        | 10                        | 12             | 14             |
|           |                 | 0.91/6                    | 0.8/15         | 0.8903         |
|           | $H_o$           | 0.7813                    | 0.8788         | 0./188         |
|           | $H_e$           | 0.9375                    | 0.8965         | 0.9132         |
|           | $F_{is}$        | 0.1534                    | 0.0050         | 0.2004         |
|           | Р               | 0                         | 0.5421         | 0.0015         |

## 表 3 长牡蛎基础群体和连续选育世代的遗传多样性分析

Tab.3 Genetic diversity of the wild population and successive selection stocks of C. gigas

续表 3 Continued Tab. 3

| 位点 Locus  |          | 基础群体 P0 (n=40) | 选育群体 F1 (n=40) | 选育群体 F2 (n=40) |
|-----------|----------|----------------|----------------|----------------|
| ucdcg-149 | Ν        | 12             | 14             | 15             |
|           | Pic      | 0.8762         | 0.9067         | 0.9157         |
|           | $H_o$    | 0.7188         | 0.6970         | 0.8438         |
|           | $H_{e}$  | 0.8998         | 0.9273         | 0.9360         |
|           | $F_{is}$ | 0.1885         | 0.2446         | 0.0843         |
|           | Р        | $0.0070^{*}$   | $0.0025^{*}$   | 0.0204         |
| ucdcg-175 | Ν        | 17             | 15             | 11             |
|           | Pic      | 0.9181         | 0.9108         | 0.8448         |
|           | $H_o$    | 0.4375         | 0.7273         | 0.4688         |
|           | $H_{e}$  | 0.9380         | 0.9310         | 0.8735         |
|           | $F_{is}$ | 0.5262         | 0.2145         | 0.4549         |
|           | Р        | $0^*$          | $0.0040^{*}$   | $0^*$          |
| MEAN      | Ν        | 16.5           | 12.2           | 12.8           |
|           | Pic      | 0.9068         | 0.8982         | 0.8836         |
|           | $H_o$    | 0.5775         | 0.6188         | 0.6484         |
|           | $H_{e}$  | 0.9279         | 0.8954         | 0.9066         |
|           | $F_{is}$ | 0.1547         | 0.2078         | 0.2341         |
|           |          |                |                |                |

注:哈迪-温伯格平衡偏离水平: \*P < 0.05 /10

Note: Degree of deviation of Hardy-Weinberg equilibrium: P < 0.05 / 10

| Ā<br>Tab.4 | 長 4 不同群体配对<br>F <sub>st</sub> values of pairwis<br>all populat | t比较的 F <sub>st</sub> 值<br>se comparison ar<br>ions | nong |
|------------|----------------------------------------------------------------|----------------------------------------------------|------|
| Pop ID     | P0                                                             | F1                                                 | F2   |
| PO         |                                                                |                                                    |      |
| F1         | 0.0245                                                         |                                                    |      |
| F2         | 0.0149                                                         | 0.0093                                             |      |

表 5 长牡蛎 3 个群体的 Nei's 相似性系数和遗传距离 Tab.5 Nei's genetic identity and genetic distance in

|        | three population | ons of C. gigas |        |
|--------|------------------|-----------------|--------|
| Pop ID | P0               | F1              | F2     |
| P0     |                  | 0.5944          | 0.6599 |
| F1     | 0.5203           |                 | 0.7625 |
| F2     | 0.4175           | 0.2712          |        |

注:对角线以上为相似性系数,以下为遗传距离

Note: Nei's genetic identity was shown above the diagonal, and genetic distances were shown below the diagonal

现,4个世代群体遗传多样性指标值渐次下降,F1-F4 代13个微卫星位点的平均多态信息含量从0.638下降 到0.524,平均等位基因数从5.462下降到4.308。类似 报道在合浦珠母贝(*Pinctada margarififera*)(Durand *et al*, 1993)、大珠母贝(*Pinctada maxima*)(Lind *et al*, 2009)和长 牡蛎(English *et al*, 2000; Hedgecock *et al*, 1990)等种类 也出现过。本研究中的各代群体的遗传多样性程度并 未出现显著性下降,分析原因可能是繁育亲本的数目 较多,而且选育初期经历的世代数比较少的缘故。此 外,本研究未对选育群体自幼虫至成贝养成的各阶段 中的长势弱小的个体进行人工淘汰也是遗传多样性 水平保持相对稳定的原因。

本研究中,在对各位点进行 *F*<sub>is</sub>值分析时发现, 各群体出现了一定程度的杂合子缺失现象,并导致几 乎所有位点显著偏离 HWE 平衡,分析原因可能是在 选育过程中由于人工选择的压力过分注重生长性状, 使得与这些性状有关的基因保留下来,一些无关的基 因丢失了,导致基因纯化加快从而产生杂合子缺失的 现象,另外,实验取样数目过少或者取样不均匀也可 能与之有关联。此外,无效等位基因的存在(Ball *et al*, 1987; 张志伟等,2006)也可能对结果产生干扰。

遗传分化指数 F<sub>st</sub> 是反映群体之间的亲缘关系的 重要参数,本研究中两两比较所得 F<sub>st</sub> 值均小于 0.05, 3 个世代群体间遗传分化较弱,群体间总的遗传分化 系数为 0.0487,根据 Wright(1978)对遗传分化指数的 界定,F<sub>st</sub> 值介于 0-0.05 之间,表示群体遗传分化较 弱,表明经过连续人工选育,群体间的遗传结构差异 不明显,群体仍保持了足够的选育潜力。究其原因, 可能与人工选育过程中亲本数较多,雌雄比例平衡或 者没有将生长迟缓的个体筛除有关,此外,选育的世 代太短也是影响因素(Li *et al*, 2011; Wang *et al*, 2012)。 由 Nei(1987)方法计算的 3 个群体的遗传相似系数为 0.8814-0.9132, 群体间的遗传距离 0.2712-0.5203, 相 邻世代的遗传距离逐步减小,遗传相似性逐步增大(详 见表 4),说明随着选育时间的推进,选育群体的遗传 背景趋于一致,遗传结构也在逐步趋向稳定。以上结 果表明,选育群体的遗传结构在选择压力下会发生 一定程度上的改变,朝向目标性状一致的方向变化, 并逐步趋向稳定,而这恰恰正是选择育种期望取得的 结果。

本研究中的长牡蛎亲本来源于山东烟台崆峒岛 野捕的自然野生个体,具备很高的遗传多样性,是开 展良种选育的理想材料。在继代选育过程中,每一代 都是从上一代中挑选壳宽生长快且体质健壮的优良 个体繁育而来,故选育的后代在生长性状方面有着较 为优良的表现。本研究结果表明,持续的人工选育对 长牡蛎壳宽选育群体的遗传结构产生了显著影响,继 续保持一定的选择压力不会对群体产生不良影响,虽 然人工选育带来的必然结果是遗传多样性的下降,但 此程度处于较低水平,长牡蛎选育群体仍有较大的选 育潜力。在今后的选育工作中,完善各项管理工作的 同时,还应充分考虑增加有效群体数量,以防止近交 几率的提高,以保证长牡蛎良种选育工作的顺利进行。

#### 参考文献

- 王庆志, 李琪, 孔令峰. 长牡蛎 3 代人工选育群体的微卫星分 析. 水产学报, 2012, 36(10): 1529-1536
- 李昂, 葛颂. 植物保护遗传学研究进展: 生物多样性, 2002, 10(1): 61-71
- 张志伟,曹哲明,杨弘,等.草鱼野生和养殖群体间遗传变异 的微卫星分析.动物学研究,2006,27(2):189-196
- 赵广泰,刘贤德,王志勇,等.大黄鱼连续4代选育群体遗传 多样性与遗传结构的微卫星分析.水产学报,2010,34(4): 500-508
- Appleyard SA, Ward RD. Genetic diversity and effective population size in mass selection lines of Pacific oyster (*Crassostrea gigas*). Aquaculture, 2006, 254(1–4): 148–159
- Ball AO, Leonard S, Chapman RW. Characterization of (GT), microsatellite from native white shrimp *Penaeus setiferus*. Mol Ecol, 1987, 7(7): 1251–1253
- Beattie JH, Chew KK, Hershberger WK. Differential survival of selected strains of Pacific oysters (*Crassostrea gigas*) during summer mortality. Proc Natl Shellfish Assoc, 1980, 70: 184–189
- Botstein D, White RL, Skolnick M, *et al.* Construction of a genetic linkage map in man using restricted fragment length polymorphisms. Am J Human Gen, 1980, 32(3): 314–331
- Boudry P, Collet B, Cornette F, et al. High variance in reproductive success of the Pacific oyster (*Crassostrea gigas*) Thunberg

revealed by microsatellite-based parentage analysis of multifactorial crosses. Aquaculture, 2002, 204(3-4): 283-296

- Dégremont L, Ernande B, Bédier E, *et al.* Summer mortality of hatchery-produced Pacific oyster spat (*Crassostrea gigas*). I. Estimation of genetic parameters for survival and growth. Aquaculture, 2007, 262(1): 41–53
- Durand P, Wada KT, Blanc F. Genetic variation in wild and hatchery stocks of the black pearl oyster, *Pinctada margarififera*, from Japan. Aquaculture, 1993, 110(1): 27–40
- English LJ, Maguire GB, Ward RD. Genetic variation of wild and hatchery populations of the Pacific oyster, *Crassostrea gigas* (Thunberg), in Australia. Aquaculture, 2000, 187(3–4): 283–298
- Hedgecock D, Sly F. Genetic drift and effective population sizes of hatchery-propagated stocks of the Pacific oyster, *Crassostrea gigas*. Aquaculture, 1990, 88(1): 21–38
- Hershberger WK, Perdue JA, Beattie JH. Genetic selection and systematic breeding in Pacific oyster culture. Aquaculture, 1984, 39(1–4): 237–245
- Langdon C, Evans F, Jacobson D, *et al.* Yields of cultured Pacific oysters (*Crassostrea gigas*) Thunberg improved after one generation of selection. Aquaculture, 2003, 220(1–4): 227–244
- Levene H. On a matching problem in genetics. Ann Math Stat, 1949, 20(1): 91–94
- Li G, Hubert S, Bucklin K, *et al.* Characterization of 79 microsatellite DNA markers in the Pacific oyster *Crass-ostrea gigas*. Mol Ecol Notes, 2003, 3(2): 228–232
- Li Q, Wang QZ, Liu SK, *et al.* Selection response and realized heritability for growth in three stocks of the Pacific oyster *Crassostrea gigas.* Fisheries Sci, 2011, 77(4): 643–648
- Li Q, Yu H, Yu RH. Genetic variability assessed by microsatellites in cultured populations of the Pacific oyster (*Crassostrea gigas*) in China. Aquaculture, 2006, 259(1–4): 95–102
- Li RH, Li Q, Yu RH. Parentage determination and effective population size estimation in mass spawning Pacific oyster (*Crassostrea gigas*) based on microsatellite loci analysis. J World Aquacult Soc, 2009, 40(5): 667–677
- Lind CE, Evans BS, Knauer J, *et al.* Decreased genetic diversity and a reduced effective population size in cultured silverlipped pearl oysters (*Pinctada maxima*). Aquaculture, 2009, 286(1–2): 12–19
- Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978, 89(3): 583–590
- Newkirk GF. Applied breeding of commercially important molluscs: a summary of discussion. Aquaculture, 1983, 33(1–4): 415–422
- Raymond M, Rousset F. GENEPOP(Version 1.2): Population genetics software for exact tests and ecumenicism. J Hered, 1995, 86(3): 248–249
- Rice WR. Analyzing tables of statistical tests. Evolution, 1989, 43(1): 223–225
- Taris N, Ernande B, McCombie H, et al. Phenotypic and genetic

consequences of size selection at the larval stage in the Pacific oyster (*Crassostrea gigas*). J Exp Mar Biol Ecol, 2006, 333(1): 147–158

Wang QZ, Li Q, Kong LF, *et al.* Response to selection for fast growth in the second generation of Pacific oyster (*Crassostrea gigas*). Journal of Ocean University of China, 2012, 11(3): 1–6
Ward RD, English LJ, McGoldrick DJ, *et al.* Genetic improvement

of the Pacific oyster *Crassostrea gigas* (Thunberg) in Australia. Aquaculture Research, 2000, 31(1): 35–44

Wright S. Variability within and among natural populations. Chicago: The University of Chicago Press, 1978: 121–124

(编辑 冯小花)

## Assessment of Genetic Variability and Microsatellite Analysis of Pacific Oyster (Crassostrea gigas) After Artificial Selection of the Shell Width

ZHANG Rongliang<sup>1,2</sup>, WANG Weijun<sup>2</sup>, FENG Yanwei<sup>2</sup>, YANG Jianmin<sup>20</sup>, TANG Haitian<sup>3</sup>, JI Renping<sup>1,2</sup>

(1. College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306; 2. Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai 264006; 3. Yantai Marine Environment Monitoring Central Station, State Oceanic Administration, Yantai 264006)

**Abstract** In this study we investigated how mass selection would affect the genetic properties of the successive strains such as the fast growth in the shell width. Ten polymorphic microsatellite loci were analyzed to examine the genetic variation within a population, in one base stock, and in two successive mass selection lines of Pacific oyster (*Crassostrea gigas*). All microsatellite loci in the three groups showed high polymorphism, demonstrated by a large number of alleles per locus ( $N_{F0}$ =16.5;  $N_{F1}$ =12.2;  $N_{F2}$ =12.8) and high polymorphism information contents ( $Pic_{F0} = 0.9068$ ,  $Pic_{F1} = 0.8982$ ,  $Pic_{F2} = 0.8836$ ). In all population-locus cases (3 populations × 10 loci), the observed heterozygosity values ( $H_o$ ) of the 10 loci were lower than the expected values ( $H_e$ ) (He=0.8954–0.9297, Ho=0.5775–0.6484). Twenty-four cases deviated from the Hardy-Weinberg equilibrium (P<0.05). The values of  $F_{is}$  ranged from 0.152 to 0.233, resulting in heterozygote deficiencies at the 10 loci in each population.  $F_{st}$  ranged from 0.0093 to 0.0245, indicating a weak genetic differentiation among the populations. The results suggested that the successive selection for rapid growing shell width might not reduce the genetic diversity. Therefore, the growth traits of *C. gigas* could be improved over generations under successive selection strains.

Key words Crassostrea gigas; Microsatellite; Genetic structure; Genetic diversity

Zhao C, Li Q, Kong LF. Inheritance of AFLP markers and their use for genetic diversity analysis in wild and farmed scallop (*Chlamys farreri*). Aquaculture, 2009, 287(1–2): 67–74

① Corresponding author: YANG Jianmin, E-mail: ladderup@126.com

DOI: 10.11758/yykxjz.20150616001

http://www.yykxjz.cn/

# 日本枪乌贼(Loligo japonica)不同温度 冻藏过程中的品质变化<sup>\*</sup>

曹 荣<sup>1</sup> 王凤玉<sup>1,2</sup> 赵 玲<sup>1</sup> 刘 淇<sup>10</sup> 刘玉川<sup>3</sup>

(1. 中国水产科学研究院黄海水产研究所 青岛 266071; 2. 大连海洋大学食品工程学院 大连 116023;3. 蓬莱中柏京鲁船业有限公司 蓬莱 265601)

**摘要** 选取-20℃、-30℃和-50℃ 3 个冻藏温度,以 TVB-N 值、肌原纤维蛋白含量、 Ca<sup>2+</sup>-ATPase 活性、巯基含量、TBARS 值及肌肉组织微观结构为指标,结合感官评分,对比分 析 90 d 内日本枪乌贼(*Loligo japonica*)的品质变化规律。结果显示,在不同冻藏温度下,随着时 间的延长,Ca<sup>2+</sup>-ATPase 活性和感官评分不断下降;肌原纤维蛋白和巯基含量,则先略微上升而 后快速下降;TVB-N 值和 TBARS 值呈不断上升的趋势,且温度越高上升速率越快;肌肉组织 微观结构分析表明,枪乌贼肌纤维结构在冻藏过程中逐渐变得松散。相比-20℃,-30℃和-50℃ 冻藏温度条件下更能长久地保持枪乌贼品质,且品质无显著差异。综合分析认为,冻藏温度低 于-30℃时,可较好地保持枪乌贼品质。

关键词 枪乌贼;温度;冻藏;品质

中图分类号 S986 文献标识码 A 文章编号 2095-9869(2016)04-0097-07

日本枪乌贼(Loligo japonica),又称小鱿鱼,头足 纲软体动物,广泛分布于我国黄、渤海等沿海地区。枪 乌贼具有典型的高蛋白、低脂肪特点,且富含多种人体 必需氨基酸。因此,枪乌贼这种大宗渔业资源的开发 利用具有广阔的市场前景。

水产鲜品的品质不易保持,极易腐败变质。大宗 水产品原料一般采用冷冻贮藏的方式。大量研究表 明,水产品在冷冻贮藏过程中,由于水渗透力的改变、 肌球蛋白变性、机械损伤及肌原纤维蛋白的交联和聚 合,使得水产品原料的一些品质发生劣变(Xia *et al*, 2003)。国内外对鱿鱼冻藏过程中生化变化进行了一定 的研究,Atayeter等(2011)在-20℃、-40℃和-80℃条件 下,对冻藏欧洲鱿鱼触手和酮体的基本成分及脂质氧 化进行了对比分析;路钰希等(2013)研究发现,秘鲁 鱿鱼在-30℃下冻藏能更好保持品质且经济成本低。 虽然研究的鱿鱼种类很多,但目前针对日本枪乌贼冻 藏的研究报道较少。

作为远洋渔获物,枪乌贼一般需要经历较长时间 的冷冻贮藏和运输。对枪乌贼在该冷链环节中品质变 化规律进行研究,有助于监测、控制及预测其品质变 化的程度。本研究以 TVB-N 值、肌原纤维蛋白含量、 Ca<sup>2+</sup>-ATPase 活性、巯基含量、TBARS 值等为指标, 结合感官评定和组织结构观察,研究了不同冻藏温度 下枪乌贼品质的变化情况,以期为枪乌贼冷链流通过 程中的品质控制提供理论依据。

#### 1 材料与方法

#### 1.1 材料

鲜活枪乌贼由捕捞船在黄、渤海海域捕获,靠岸 后冰藏条件下3h内运至实验室。

\* 工信部高技术船舶计划【工信部联装(2012)534 号)】资助。曹 荣, E-mail: caorong@ysfri.ac.cn ① 通讯作者: 刘 淇, 研究员, E-mail: liuqi@ysfri.ac.cn 收稿日期: 2015-06-16, 收修改稿日期: 2015-07-24

#### 1.2 方法

**1.2.1** 样品前处理 将新鲜枪乌贼放入保鲜袋中, 随机分为3组,模拟工厂冻藏模式,分别直接置于-20℃、 -30℃和-50℃的条件下恒温冻藏,每隔15 d进行一 次测定。

原料的解冻采用流水解冻的方式:冷冻枪乌贼经 流水(约18℃)解冻15 min 后,去头去皮去内脏,备用。 **1.2.2** 感官评定 参考 Vaz-Pires 等(2008)方法评 价,将枪乌贼制备成5 cm×5 cm×0.5 cm的薄片,依 据表1的标准,经10 名专业的感官评定员对枪乌贼 的气味、色泽、质地三方面进行感官评分。运用加权 平均的方法,设定权重分别为0.4、0.4、0.3,计算加 权平均分,满分为30分,18分以上为新鲜度良好, 10分以下为腐败不可接受。

|    | 140.1 5 | ensory evaluation of squid (full s | core 50)    |
|----|---------|------------------------------------|-------------|
| 指核 | ⊼ Index | 感官评分<br>Sensory evaluation         | 分值<br>Score |
| 气味 | Smell   | 新鲜无异味                              | 8-10        |
|    |         | 略微变腥,有轻微异味                         | 4–7         |
|    |         | 腐败腥臭味                              | 0–3         |
| 色泽 | Color   | 体表色正常,鱼肉苍白透明                       | 8-10        |
|    |         | 体表色出现斑点,鱼肉暗淡<br>半透明                | 4–7         |
|    |         | 体表出现大量红斑,鱼肉黄<br>色不透明               | 0–3         |
| 质地 | Texture | 坚实有弹性                              | 8-10        |
|    |         | 比较有弹性,指压后恢复慢                       | 4–7         |
|    |         | 肉质很软,几乎没有弹性                        | 0–3         |

表 1 枪乌贼感官评定(满分 30) Tab 1 Sensory evaluation of squid (full score 30)

**1.2.3** 挥发性盐基氮(TVB-N)的测定 根据 GB/T5009.44-2003《肉与肉制品卫生标准分析方法》, 采用微量扩散法测定。

**1.2.4** 肌原纤维蛋白的提取及含量的测定 准确称取 5.00 g 枪乌贼样品,加入 0.1 mol/L KCl-20 mmol/L Tris-HCl 缓冲液 50 ml,匀浆机均质 1 min,4℃条件下 8000 r/min 离心 5 min,弃上清液,重复操作 3 次。沉淀 中加入 0.5 mol/L KCl-20 mmol/L Tris-HCl 缓冲液 50 ml, 浸提 1 h, 8000 r/min 离心 10 min,取上清液即为肌原纤维 蛋白溶液,用双缩脲法测定含量。

**1.2.5** Ca<sup>2+</sup>-ATPase 活性的测定 参照万建荣等 (1993)方法,稍作修改。在离心管中分别加入 0.5 mol/L

Tris-Maleate 5 ml、0.1 mol/L CaCl<sub>2</sub> 0.5 ml、2 mol/L KCl 2.25 ml、肌原纤维蛋白液 1 ml,混合完全后,加入 ATP 开始反应 2 min,最后加入 15% 三氯乙酸(TCA)终止反应。6000 r/min 离心 10 min 后,取上清液 1 ml,加入 2.5 ml H<sub>2</sub>O、1 ml 2.5%硫酸钼酸、0.5 ml Elon 试剂,充分混合,常温放置 45 min,在 640 nm 处比色。空白组为加入 ATP 之前先加入 TCA。以磷酸二氢钠溶液系列浓度(0.0–1.0 mmol/L)制备标准曲线,计算 Ca<sup>2+</sup>-ATPase 活性值。

**1.2.6** 活性巯基含量的测定 根据 Benjakul 等 (2003)的方法,将2.0 ml 肌原纤维蛋白溶液加入8.0 ml 8.0 mol/L 尿素,充分混合。取 3.0 ml 混合液于试管中,加入 0.02 ml DTNB 溶液,混匀,放置 15 min,412 nm 比 色。以未加入 DTNB 的混合液为空白组。根据下式计算 活性巯基含量:

$$C_0 = \frac{A}{\varepsilon} \times \frac{D}{C_1}$$

式中,  $C_0$ 为活性巯基含量(mol/g), A 为 412 nm 处吸光度,  $\varepsilon$ 为分子吸光系数 13600(mol·cm/L), D 为 稀释倍数,  $C_1$ 为肌原纤维蛋白含量(mg/ml)。

**1.2.7** 脂肪氧化(TBARS)的测定 参照 Paola (2014)的方法,称取 10.00 g 研勾后的样品,加入 50 ml 5% TCA 溶液。振荡 2 min 后静置 10 min, 8000 r/min 离 心 10 min,上清液过滤。滤液适度稀释后,取 5 ml 于 25 ml 具塞试管中,加入 5 ml 0.02 mol/L TBA 溶液。95℃ 水浴 45 min 后,冷却。532 nm测定吸光度值。以 1,1,3,3-四乙氧基丙烷(TEP)为标准液绘制标准曲线,并计算 TBARS 值。

**1.2.8** 肌肉组织结构的切片制作 将枪乌贼样品 切成 5 mm×5 mm×1.5 mm的薄片,放入 10%的甲醛 溶液固定 12-24 h,流水冲洗 4-6 h,用浓度梯度分别 为 70%(2 h)、80%(2 h)、90%(2 h)、95%(1.5 h)和 100%(1.5 h)的乙醇溶液进行脱水处理,再用二甲苯溶 液对样品透明处理(30 min),最后石蜡包埋,用切片机 切成厚度为 5 μm 的切片,染色后光学显微镜下观察 (邓敏, 2013)<sup>11</sup>。

**1.2.9** 数据处理 采用 SPSS 11.0 对实验数据进行 统计分析,结果以平均值±标准差表示,组间分析采用 *t* 检验,显著性界值以 *P*<0.01 为极显著,*P*<0.05 为显 著。

<sup>1)</sup> 邓敏. 浸渍冻结流速及冻藏对草鱼块品质影响的研究. 华南理工大学硕士研究生学位论文, 2013, 17-18

#### 2 结果与讨论

#### 2.1 枪乌贼冻藏过程中感官评分变化

枪乌贼的感官评分随冻藏时间的延长呈下降的趋势,且冻藏温度越高,感官评分下降速率越快(图 1)。在冻藏第 15 天时,-20℃、-30℃和-50℃条件下贮藏的枪乌贼样品感官评分无显著差异(P>0.05)。第 30 天时,-20℃组样品的评分明显下降,显著低于-50℃组(P<0.05),而-30℃组与其他两组无显著差异。从第 60 天开始,-20℃组、-30℃组和-50℃组的样品在感官评分上呈现出明显差异(P<0.05)。冻藏第 90 天时,-20℃、-30℃、-50℃下枪乌贼感官评分分别为 20.2、23.7 和 26.0,3 组之间有极显著差异(P<0.01)。



图 1 枪乌贼冻藏过程中感官评分变化 Fig.1 Changes in the sensory scores of squid at different storage temperatures

Nurkhoeriyati 等(2012)研究发现, 冻藏过程中, 肌原纤维蛋白发生变性及凝聚,导致肌肉功能特性的 改变,脂肪氧化则影响了肉的气味和颜色,从而降低 了鱼肉的感官品质。另外,冻藏温度越低,冻结速度 越快,鱼肉品质越好,冻结速率对鱼肉的光泽度、气 味、质地等有着显著影响(Ruiz-Capillas *et al*, 2005)。

#### 2.2 枪乌贼冻藏过程中 TVB-N 含量变化

TVB-N 是衡量水产品及肉类制品新鲜度的常用 指标。新鲜捕获鱼类的TVB-N 值一般在 5-20 mg/100 g 之间,而冷冻贮藏鱼类的可接受极限为 30-35 mg/100 g (Özogul *et al*, 2007)。根据 GB 2733-2005《鲜、冻动物 性水产品卫生标准》,头足类 TVB-N≤30 mg/100 g 为 合格品。

新鲜枪乌贼的 TVB-N 值为 10.91 mg/100 g,这与路钰希等(2013)的研究结果基本一致。枪乌贼的 TVB-N 值较其他水产品高,这可能是由于枪乌贼中 蛋白质含量较高,内源性蛋白酶分解蛋白生成更多的 氨类及三甲胺等挥发性含氮化合物,使得 TVB-N 值 升高(李艳萍等,2014)。不同冻藏温度条件下,枪乌 贼 TVB-N 值均呈上升的趋势(图 2)。冻藏第 30 天时, 3个温度组的 TVB-N 值变化不大,无显著性差异(P>0.05)。 -20℃组冻藏枪乌贼的 TVB-N 值从第 30 天开始快速 增大。而-30℃组和-50℃组的 TVB-N 值则从第 60 天 开始明显增大。第 45 天时,3 组之间差异显著(P<0.05)。 至冻藏第 90 天时,-20℃、-30℃、-50℃ 3 组对应 的 TVB-N 值分别为 18.28 mg/100 g、14.93 mg/100 g 和 13.97 mg/100 g,均小于 30 mg/100 g,符合国家标准。



图 2 枪乌贼冻藏过程中 TVB-N 值的变化 Fig.2 Changes in the TVB-N values of squid at different storage temperatures

#### 2.3 枪乌贼冻藏过程中肌原纤维蛋白含量的变化

随着冻藏时间的延长,枪乌贼肌原纤维蛋白含量 总体呈下降趋势。水产品冻藏过程中,肌原纤维蛋白 含量的下降与多种因素有关。Pan 等(2010)认为,巯 基氧化成二硫键,使蛋白质重链聚合,导致了肌原纤 维蛋白含量降低。此外,Sriket 等(2007)研究表明, 蛋白质三级结构被破坏,分子间产生交联,也是蛋白 变性的原因之一。

由图 3 所示,与-20℃条件下枪乌贼肌原纤维蛋 白含量一直下降略有不同,-30℃条件下冻藏的枪乌 贼样品,肌原纤维蛋白含量在前 15 d 无明显变化, 第 30 天时略有增加,-50℃条件下的枪乌贼样品,前 15 d 也出现肌原纤维蛋白含量略微增加现象。这一现 象与曾名勇等(2003)的研究结果类似,认为这是由肌 原纤维蛋白提取过程中的实验误差引起的。而陶欢等 (2010)则认为,动物死后肌肉中 ATP 逐渐消耗,使得 肌球蛋白和肌动蛋白发生不可逆的结合,形成大分子 物质沉降所导致。在冻藏第 45 天时,-30℃组与-50℃组



图 3 枪乌贼冻藏过程中肌原纤维蛋白含量的变化 Fig.3 Changes in the myofibrillar protein content of squid at different storage temperatures

肌原纤维蛋白含量差异不大,极显著高于--20℃组 (P<0.01)。至第90天时,-20℃、--30℃、-50℃对应 的肌原纤维蛋白含量分别为72.33 mg/g、79.12 mg/g 和82.44 mg/g,3组之间存在显著差异(P<0.05)。

#### 2.4 枪乌贼在冻藏过程中 Ca<sup>2+</sup>-ATPase 活性的变化

水产动物的肌球蛋白头部具有 ATPase 活性,而 Ca<sup>2+</sup>可以激活酶活性(郭园园等,2011)。冻藏中肌球蛋 白头部构象发生变化,蛋白质分子之间相互作用使得 其空间结构重新排列,造成了 Ca<sup>2+</sup>-ATPase 失活。 Eymard 等(2009)研究发现,脂质在冻藏中产生的过氧 化物会与蛋白质发生反应,导致蛋白变性,从而使 Ca<sup>2+</sup>-ATPase 失活。因此,冻藏过程中,Ca<sup>2+</sup>-ATPase 活性可以表征肌原纤维蛋白的完整性和变性程度。

由图 4 可知, 在冻藏期 90 d 内, 3 个温度条件下, 枪乌贼肌原纤维蛋白 Ca<sup>2+</sup>-ATPase 活性不断下降, 这 与 Benjakul 等(1997)的研究结果类似。冻藏前 15 d 内,





Ca<sup>2+</sup>-ATPase 活性下降的速率最快, -20℃组、-30℃ 组和-50℃组由新鲜鱿鱼的 0.74 µmol/mg·min 分别下 降到 0.47 µmol/mg·min、0.50 µmol/mg·min、0.46 µmol/mg·min,降幅分别达 36.48%、32.43%、37.84%, 但 3 个温度之间 Ca<sup>2+</sup>-ATPase 活性无显著差异 (P>0.05)。冻藏 45 d 后, -20℃下枪乌贼 Ca<sup>2+</sup>-ATPase 活性显著低于其他两个温度组(P<0.05), 而-30℃与 -50℃相比, Ca<sup>2+</sup>-ATPase 活性在冻藏过程中始终无显 著差异(P>0.05)。

#### 2.5 枪乌贼在冻藏过程中活性巯基含量的变化

蛋白质结构中的巯基是所有蛋白质氨基酸残基 中最活泼的基团,在体内抗氧化、亚硝基化等多种重 要生理反应中具有重要作用(Wedemeyer *et al*, 2000)。 通过测定活性巯基含量,可以直观表明蛋白质内部结 构的变化。从图 5 可以看出,冻藏第 15 天时,3 个温 度组活性巯基含量无明显变化。冻藏第 30 天时,鱿鱼 在-30℃和-50℃下的活性巯基含量由最初的 5.56× 10<sup>-5</sup> mol/g 分别增加到 5.61×10<sup>-5</sup> mol/g、5.85×10<sup>-5</sup> mol/g。 这可能是在冻藏初期,过低的温度影响了蛋白质空间 结构,隐藏的巯基暴露出来所造成的。随后,活性巯 基含量快速下降,从第 60 天开始,3 个温度组的活 性巯基含量出现显著差异(*P*<0.05)。至冻藏第 90 天时, -20℃、-30℃和-50℃下活性巯基含量分别下降至 4.75×10<sup>-5</sup> mol/g、4.99×10<sup>-5</sup> mol/g和 5.07×10<sup>-5</sup> mol/g。





活性巯基与肌原纤维蛋白、Ca<sup>2+</sup>-ATPase 活性有 着密切的联系。Benjakul 等(2003)认为,巯基含量下 降是由于蛋白内部结构改变,巯基暴露氧化成二硫键 所致。由于大量巯基和二硫键的存在,使得蛋白分子 间的网络结构得到加强,肌原纤维蛋白发生变性,影响了肌原纤维蛋白的溶解性。此外,冻藏过程中巯基的氧化特别是位于肌球蛋白头部巯基的氧化进一步导致了 Ca<sup>2+</sup>-ATPase 活性的下降(Badii *et al*, 2002)。

#### 2.6 枪乌贼在冻藏过程中 TBARS 含量的变化

脂肪氧化酸败是冻藏过程中水产品发生品质劣 变的主要原因之一。硫代巴比妥酸还原值(TBARS值) 可以准确反映脂质氧化程度。由图6可知,3个温度 下,枪乌贼 TBARS 值随冻藏时间的延长显著升高 (P<0.05)。冻藏第15天时,-20℃条件下冻藏的枪乌 贼 TBARS 值显著高于-30℃和-50℃条件下的样品 (P<0.01)。这可能是由于冻藏过程中,-20℃冻结速率 要远低于其他两个温度,形成的冰晶较大且分布不均 匀,造成肌纤维细胞破裂氧化剂释放,加快了脂肪氧 化。冻藏至第45天时,-30℃组和-50℃组冻藏鱿鱼的 TBARS 值有明显的增加,分别上升了82.46%、49.52%, 但均极显著低于-20℃组(P<0.01)。第90天时,在 -20℃、-30℃和-50℃条件下枪乌贼 TBARS 值分别增 长至 0.58 mg/kg、0.42 mg/kg 和 0.37 mg/kg,均没有 超过脂肪酸败临界值 1-2 mg/kg(迟海等, 2011)。

枪乌贼 TBARS 值在冻藏过程中的变化规律与其 他研究(Hong et al, 2013)一致。肌肉纤维中冰晶逐渐 升华,增加了氧气与脂肪的接触面积,促进了脂肪氧 化的发生。胡亚芹等(2014)研究表明,冻藏的温度不



图 6 不同冻藏温度对 TBARS 值的影响 Fig.6 Effects of different frozen temperatures on the TBARS values

同,脂肪氧化速率存在显著差异;温度越低,对脂肪 氧化的抑制效果越好。

#### 2.7 枪乌贼在冻藏过程中肌肉组织形态变化

从图 7 可以看出, 冻藏 30 d内, -30℃、-50℃ 组枪乌贼肌肉的组织结构与新鲜枪乌贼样品相比, 变 化相差不大, 肌纤维几乎没有间隙, 肌纤维束结合紧 密, 无断裂现象存在, -20℃组, 肌纤维间隙开始加 大, 肌纤维束发生轻微松散。到冻藏第 60 天, -20℃ 组的肌纤维间隙继续增大, 与此同时, -30℃组的肌 纤维束开始松散, 但-50℃组肌肉组织结构依旧完好。 冻藏第 90 天时, -20℃组枪乌贼的肌纤维分离程



图 7 不同冻藏温度对肌肉组织结构的影响 Fig.7 Effects of different frozen temperatures on the structure of muscle tissues

冻藏温度和时间 Storage temperature and time: 1. -20℃, 0 d; 2. -20℃, 30 d; 3. -20℃, 60 d; 4. -20℃, 90 d; 5. -30℃, 0 d; 6. -30℃, 30 d; 7. -30℃, 60 d; 8. -30℃, 90 d; 9. -50℃, 0 d; 10. -50℃, 30 d; 11. -50℃, 60 d; 12. -50℃, 90 d

度进一步变大,轮廓变得模糊,且出现了一定程度的 断裂; -50℃组的枪乌贼,其肌纤维也发生了轻微的分 离,但-30℃和-50℃组的肌纤维并没有出现断裂现象, 肌纤维形状较为完整。

杨利艳(2012)<sup>1)</sup>对凡纳滨对虾在不同冻结方式下 的肌肉组织结构进行研究时发现,不同的冻结方式对 肌肉组织的影响较大,研究表明,在冻结过程中,冻 结速率对肌肉组织结构产生较大影响,速率越慢,对 肌肉结构的破坏程度越大。

#### 3 结论

在冻藏过程中,随着时间的延长,枪乌贼的 TVB-N值、TBARS值不断上升,肌原纤维蛋白含量、 Ca<sup>2+</sup>-ATPase 活性、巯基含量和感官评分呈不断下降 趋势。在冻藏初期 45 d内,除枪乌贼 Ca<sup>2+</sup>-ATPase 活 性外,其他品质指标变化趋势较为平缓,而在 60 d 后,冻藏枪乌贼的各项指标有迅速变化。此外,冷冻 贮藏枪乌贼对其肌肉组织结构和理化特性有显著影 响。在不同的温度下,冻藏肌肉中冰晶均逐渐增大, 脂质发生氧化,降低了枪乌贼的感官品质和营养价 值,破坏了肌肉组织的微观结构,导致枪乌贼品质发 生劣变。

不同冻藏温度对枪乌贼各项指标有不同程度的 影响。总体上,冻藏的温度越低,枪乌贼的品质保持 越好。在冻藏 90 d内,-30℃和-50℃下冻藏枪乌贼 的各项指标均优于-20℃。在相同的冻藏时间内,-20℃ 与其他两个温度相比,加速了枪乌贼脂质和蛋白质的 氧化,使肉质变色,改变了肌原纤维蛋白的结构,降 低了肌原纤维蛋白的功能特性,表明-30℃冻藏枪乌 贼可较好地保持其品质,与-50℃相比又可降低能耗。

#### 参考文献

- 万建荣,洪玉菁,奚印慈,等.水产食品化学分析手册.上海: 上海科学技术出版社,1993,198-202
- 李艳萍, 李振兴, 郭晓华, 等. 鱿鱼丝质构及鲜度指标在加工 中的动态变化. 中国渔业质量与标准, 2014, 4(5): 1-5
- 迟海,杨峰,杨宪时,等.不同解冻方式对南极磷虾品质的影响.现代食品科技,2011,27(11):1291-1295
- 胡亚芹, 胡庆兰, 杨水兵, 等. 不同冻结方式对带鱼品质影响 的研究. 现代食品科技, 2014, 30(2): 23-30
- 陶欢, 陈舜胜. 3 种淡水对虾在冻藏过程中蛋白质特性的变化. 水产学报, 2010, 34(3): 389-394

- 郭园园, 孔保华. 冷冻贮藏引起的鱼肉蛋白质变性及物理化 学特性的变化. 食品科学, 2011, 32(7): 335-340
- 曾名勇,黄海,李八方.不同冻藏温度对鲈鱼肌肉蛋白质生 化特性的影响.青岛海洋大学学报(自然科学版),2003, 33(4):525-530
- 路钰希,李学英,杨宪时,等. 贮藏温度对鱿鱼品质变化的影响及其货架期分析. 食品工业科技,2013,34(14):318-321
- Atayeter S, Ercoşkun H. Chemical composition of European squid and effects of different frozen storage temperatures on oxidative stability and fatty acid composition. J Food Sci Technol, 2011, 48(1): 83–89
- Badii F, Howell NK. Changes in the texture and structure of cod and haddock fillets during frozen storage. Food Hydrocolloids, 2002, 16(4): 313–319
- Benjakul S, Seymour TA, Morrissey MT, et al. Physicochemical changes in Pacific whiting muscle proteins during iced storage. J Food Sci, 1997, 62(4): 729–733
- Benjakul S, Visessanguan W, Thongkaew C, *et al.* Comparative study on physicochemical changes of muscle proteins from some tropical fish during frozen storage. Food Res Int, 2003, 36(8): 787–795
- de Gonzalez MTN, Hafley BS, Boleman RM, et al. Antioxidant properties of plum concentrates and powder in precooked roast beef to reduce lipid oxidation. Meat Sci, 2008, 80(4): 997–1004
- Eymard S, Baron CP, Jacobsen C. Oxidation of lipid and protein in horse mackerel (*Trachurus trachurus*) mince and washed minces during processing and storage. Food Chem, 2009, 114(1): 57–65
- Hong H, Luo Y, Zhou Z, *et al.* Effects of different freezing treatments on the biogenic amine and quality changes of bighead carp (*Aristichthys nobilis*) heads during ice storage. Food Chem, 2013, 138(2): 1476–1482
- Nurkhoeriyati T, Huda N, Ahmad R. Physicochemical properties and sensory analysis of duck meatballs containing duck meat surimi-like material during frozen storage. J Food Sci, 2012, 77(1): S91–S98
- Özogul Y, Özogul F, Olgunoglu IA, *et al.* Bacteriological and biochemical assessment of marinating cephalopods, crustaceans and gastropoda during 24 weeks of storage. Int J Food Sci Nutr, 2007, 59(6): 465–476
- Pan J, Shen H, Luo Y. Changes in salt extractable protein and Ca<sup>2+</sup>-ATPase activity of mince from silver carp (*Hypophthalmichthys mollitrix*) during frozen storage: a kinetic study. J Muscle Foods, 2010, 21(4): 834–847
- Paola AS, Isabel YM. Effect of frozen storage on biochemical changes and fatty acid composition of mackerel (*Scomber japonicus*) muscle. J Food Res, 2014, 4(1): 135

1) 杨利艳. 冻结方式对凡纳滨对虾贮藏特性的影响. 广东海洋大学硕士研究生学位论文, 2012, 37-40

Ruiz-Capillas C, Moral A. Sensory and biochemical aspects of

quality of whole bigeye tuna (*Thunnus obesus*) during bulk storage in controlled atmospheres. Food Chem, 2005, 89(3): 347–354

Sriket P, Benjakul S, Visessanguan W, et al. Comparative studies on the effect of the freeze–thawing process on the physicochemical properties and microstructures of black tiger shrimp (*Penaeus* monodon) and white shrimp (*Penaeus vannamei*) muscle. Food Chem, 2007, 104(1): 113–121

Vaz-Pires P, Seixas P, Mota M, et al. Sensory, microbiological,

physical and chemical properties of cuttlefish (*Sepia officinalis*) and broadtail shortfin squid (*Illex coindetii*) stored in ice. LWT-Food Sci Technol, 2008, 41(9): 1655–1664

- Wedemeyer WJ, Welker E, Narayan M, et al. Disulfidebonds and protein folding. Biochemistry, 2000, 39(15): 4207–4216
- Xia X, Kong B, Liu J, *et al.* Influence of different thawing methods on physicochemical changes and protein oxidation of porcine longissimus muscle. LWT-Food Science and Technology, 2012, 46(1): 280–286

(编辑 刘丛力)

## Qualitative Changes of Squid (*Loligo japonica*) Under Different Frozen Storage Temperatures

CAO Rong<sup>1</sup>, WANG Fengyu<sup>1,2</sup>, ZHAO Ling<sup>1</sup>, LIU Qi<sup>10</sup>, LIU Yuchuan<sup>3</sup>

Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071;
 Department of Food Engineering, Dalian Ocean University, Dalian 116023;
 Penglai Zhongbai Jing Ship Industry Co., Ltd., Penglai 265601)

Abstract Because squid (Loligo japonica) is not one of the traditional food sources in many countries, systematic studies on its nutrition and frozen storage, even in countries where there is a long history of squid consumption, have been lacking. In this study the squids were frozen at  $-20^{\circ}$ C,  $-30^{\circ}$ C, and  $-50^{\circ}$ C for 90 days to investigate the change in the meat quality and stability under different temperatures. The quality was evaluated every 15 days during the frozen storage according to the sensory evaluation and parameters such as the total volatile basic (TVB-N), the myofibrillar protein content, Ca<sup>2+</sup>-ATPase activity, the sulfhydryl content, and thiobarbituric acid reactive substances (TBARS). The results showed that Ca<sup>2+</sup>-ATPase activity and mouth feel decreased with the prolonged time of frozen storage at different temperatures. In the first 15 days, decline in the Ca<sup>2+</sup>-ATPase activity of both samples was the fastest, and it slowed down afterward. The contents of myofibrillar protein and sulfhydryl was first slightly increased and then decreased. The values of TVB-N and TBARS were elevated in frozen storage at all temperatures; the higher the storage temperature, the more rapidly these values rose. The values of TVB-N and TBARS were increased at a much higher rate after about 45 days, which indicated the deterioration in meat quality. Microstructural analysis of squid showed that the muscle fiber bundles became loose during the frozen storage. The storage temperature significantly affected the rate of decline in squid quality. Storage at  $-30^{\circ}$  c and  $-50^{\circ}$  better preserved the quality compared to  $-20^{\circ}$ . Therefore,  $-30^{\circ}$  or below could be the recommended storage temperature.

Key words Squid Loligo japonica; Temperature; Frozen storage; Quality

① Corresponding author: LIU Qi, E-mail: liuqi@ysfri.ac.cn

DOI: 10.11758/yykxjz.20150810002

http://www.yykxjz.cn/

# 中草药复合微生态制剂对吉富罗非鱼(Oreochromis niloticus)生长、肠道菌群及抗病力的影响<sup>\*</sup>

汤菊芬<sup>1,2</sup> 黄 瑜<sup>1,2</sup> 蔡 佳<sup>1,2</sup> 丘金珠<sup>1,2</sup> 孙建华<sup>3</sup> 徐中文<sup>3</sup> 简纪常<sup>1,20</sup>

(1. 广东海洋大学水产学院 湛江 524088; 2. 广东省水产经济动物病原生物学及流行病学重点实验室湛江 524088; 3. 广东绿百多生物科技有限公司 湛江 524022)

摘要 通过在饲料中分别添加 2×10<sup>7</sup> CFU/g 的芽孢杆菌制剂、中草药芽孢杆菌制剂、复合微生态 制剂和中草药复合微生态制剂,研究 4 种微生态制剂对吉富罗非鱼(Oreochromis niloticus)生长、肠 道菌群及抗病力等的影响。结果显示:(1)饲料中添加 4 种微生态制剂均可显著提高罗非鱼的增重 率(P<0.05),对成活率和饲料利用率也有一定程度的提高(P>0.05),而中草药复合微生态制剂对罗 非鱼促进生长效果最佳。(2)饲料中添加 4 种微生态制剂可以显著提高罗非鱼肠道中的细菌总数、 芽孢杆菌、乳酸杆菌和双歧杆菌数量(P<0.05),大肠杆菌数量显著低于对照组(P<0.05),说明饲料 中添加一定量的 4 种微生态制均可改善罗非鱼的肠道菌群结构,以中草药复合微生态制剂的改善效 果最佳。(3)经人工感染无乳链球菌后,罗非鱼对照组全部死亡,4 个实验组只有部分死亡。鉴定发 现,吉富罗非鱼的死亡均由感染无乳链球菌所致,试验组罗非鱼的免疫保护率分别为 51.42% (B 组)、 58.62% (C 组)、58.62% (D 组)和 68.93% (E 组),以中草药复合微生态制剂组的免疫保护率最高。综 上所述,在饲料中添加一定比例的中草药复合微生态制剂可以提高吉富罗非鱼生长指标、改善其肠 道菌群结构和增加抗病力。

关键词 中草药复合微生态制剂; 吉富罗非鱼; 生长; 肠道菌群; 抗病力 中图分类号 \$932.4 文献标识码 A 文章编号 2095-9869(2016)04-0104-06

正常生理状态下,鱼类的消化道中寄生着数量庞 大、种类多样的菌群,它们形成复杂的微生态系统, 与鱼体之间形成互利共生的关系,这是各种生物在漫 长进化过程中相互适应的结果。鱼体消化道中各菌群 比例的相对平衡,对维持其内环境稳态和应答病原入 侵等都起着重要的作用(宋增福等,2007)。益生菌制 剂以其无毒性、无残留、无耐药性、低成本,并可有 效补充动物消化道内的有益菌群、调节微生态平衡, 从而促进养殖动物生长、提高其抗病力等特点,被公 认为是理想的抗生素替代品(向枭等,2000)。而中草 药含有多种营养成分,如蛋白质、氨基酸、维生素、 多糖类、常量和微量元素等,能够提高机体的特异性 和非特异性免疫力,在一定程度上会影响肠道菌群组 成和数量(田海军等,2005),还有一些未知的促生长 活性物质。因此,中草药制剂在水产养殖领域具有广阔 的应用前景(向枭等,2000)。而有关中草药益生菌联合 使用在畜禽上的研究较多(王永芬等,2011;赵乐乐等, 2013;田浪等,2015),在水产方面的研究报道仅见于凡 纳滨对虾(*Litopenaeus vannamei*)(文国樑等,2009;于 明超等,2010;马良骁等,2013;王振怀等,2005)、吉富

① 通讯作者:简纪常,教授, E-mail: jianjc@gmail.com

<sup>\*</sup> 广东省科技计划项目(2015A020209181)和湛江市科技计划项目(2012A0302)共同资助。汤菊芬, E-mail: tjf10002000@163.com

收稿日期: 2015-08-10, 收修改稿日期: 2015-10-27

105

罗非鱼(Oreochromis niloticus) (汤保贵等, 2007)和建鲤 (Cyprinus carpiovar Jian) (肖拉, 2012)<sup>1)</sup>,但上述研究 均为在饲料中联合添加益生菌和中草药,而用复合益 生菌发酵中草药,形成中草药复合微生态制剂产品添 加到饲料中,应用到罗非鱼养殖中的研究尚未见报 道。本研究即采用此种方法,获得中草药复合微生态 制剂后,添加到罗非鱼基础饲料中,经过一段时间的投 喂,测定其对吉富罗非鱼生长、肠道菌群和抗病力等指 标的影响,为中草药复合微生态制剂在罗非鱼养殖业中 的推广应用提供一定的理论基础。

#### 1 材料与方法

#### 1.1 吉富罗非鱼与无乳链球菌

吉富罗非鱼苗由高州朗业畜牧渔业科技养殖公司提供。挑选同批同龄、体格健硕、规格整齐、平均体重为19.5±0.5g的鱼苗作为试验用鱼。暂养与养殖实验均在高州朗业畜牧渔业科技养殖公司提供的15个水泥池中进行,每个水泥池的规格为8.0m(长)×5m(宽)×1.0m(高),水深0.8m。暂养期间投喂商品罗非鱼饲料,7d后进行随机分组实验。无乳链球菌由本实验室提供。

#### 1.2 中草药复合微生态制剂

中草药(ZL 200910132065.0)由本实验室提供, 菌种由广东绿百多生物科技有限公司提供。芽孢杆菌制剂由3株芽孢杆菌(纳豆、枯草、地衣)组成, 中草药芽孢杆菌制剂由中草药经3株芽孢杆菌发酵而成, 复合微生态制剂由3株芽孢杆菌、粪肠球菌和嗜酸乳杆菌等比例混合而成, 中草药复合微生态制剂由中草药经混合菌发酵而成(混合菌由3株芽孢杆菌、粪肠球菌和嗜酸乳杆菌组成)。

#### 1.3 实验设计

将暂养后的吉富罗非鱼随机分到 15 个水泥池

中,每池 200 尾; 实验共分为 5 组,标记为 A、B、 C、D、E 组,每组 3 个重复,分别饲喂基础饲料和 实验饲料(表 1)。

#### 1.4 饲养管理方法

按1.3设计的方案投喂相应饲料,早晚各投饵1次,每天饲料投喂量按罗非鱼体重的 3%-5%计。根据实验鱼的实际生长情况,每7d对投喂量进行适当调整。 全过程不间断充气增氧,使用经消毒、过滤处理的地下水,每7d换水清污1次,水温为(28.5±1.5)℃,试验周期为 56 d。

#### 1.5 样品采集和处理

养殖实验结束后(第 57 天), 先对各个池中的罗 非鱼进行计数、称重, 然后从每个池中随机挑取 10 尾鱼,用酒精对其体表进行消毒处理后,在超净工作 台上采集肠道。各池中采集 10 尾鱼肠道混合成一个 样品,放入灭菌的 10 ml 离心管中待测。

#### 1.6 生长指标测定

生长指标按下面公式计算:

成活率(%)=试验结束时收鱼尾数×100/试验开始 时放鱼尾数

增重率(%)=(终末体重-初始体重)×100/初始体重 饲料系数(FCR)=摄食量/(终末体重-初始体重)

#### 1.7 肠道细菌测定

肠道菌群测定以及方法如表2所示。

#### 1.8 免疫保护率测定

养殖实验结束后(第57天),分别从A、B、C、D和 E组的每个池中随机抽取20尾鱼,用浓度为1×10<sup>8</sup> CFU/ml 无乳链球菌活菌悬液进行腹腔注射感染,注射剂量为 0.1 ml/尾,观察14d,同时记录试验鱼在感染过程中 的发病和死亡情况,对濒临死亡的试验鱼进行解剖

|             | ★ I 头短询科                                                                             |
|-------------|--------------------------------------------------------------------------------------|
|             | Tab.1Design of experimental feeds                                                    |
| 组别 Group    | 饲料配制 Preparation of feed                                                             |
| A 组 Group A | 基础饲料(商品罗非鱼饲料) Basic feed (commercial tilapia feed)                                   |
| B 组 Group B | 基础饲料+芽孢杆菌制剂 Basic feed+ Bacillus subtilis (2×107 CFU/g)                              |
| C 组 Group C | 基础饲料+中草药+芽孢杆菌制剂 Basic feed+ Chinese Herbal Medicine+Bacillus subtilis (2×107 CFU/g)  |
| D 组 Group D | 基础饲料+复合微生态制剂 Basic feed+compound Probiotics (2×107 CFU/g)                            |
| E 组 Group E | 基础饲料+中草药复合微生态制剂 Basic feed+Chinese herbal medicine+compound probiotics (2×107 CFU/g) |

1) 肖拉. 枯草芽孢杆菌 JS01 和黄芪多糖对建鲤生长及免疫功能的影响. 四川农业大学硕士研究生学位论文, 2012
| 1ab.2 Cultural mediums and methods for intestinal flora |                                  |                                              |  |  |  |  |  |  |  |
|---------------------------------------------------------|----------------------------------|----------------------------------------------|--|--|--|--|--|--|--|
| 培养基种类 Medium types                                      | 培养对象 Cultivate objects           | 培养条件 Cultivate conditions                    |  |  |  |  |  |  |  |
| TTC 培养基                                                 | 细菌总数<br>Total number of bostoria | 37℃需氧培养 48 h                                 |  |  |  |  |  |  |  |
|                                                         |                                  | Aerobic culture for 48 n at 3/ C             |  |  |  |  |  |  |  |
| 伊红美监培乔基                                                 | <b>大</b> 肠什困                     | 37 U 击 氧 培 乔 48 h                            |  |  |  |  |  |  |  |
| Eosin-Methy Blue Agar Medium                            | Colibacillus                     | Aerobic culture for 48 h at 37℃              |  |  |  |  |  |  |  |
| BBL 培养基                                                 | 双歧杆菌                             | 37℃厌氧培养 48 h                                 |  |  |  |  |  |  |  |
| BBL Medium                                              | Bifidobacterium                  | Anaerobic culture for 48 h at $37^{\circ}$ C |  |  |  |  |  |  |  |
| MRS 培养基                                                 | 乳酸杆菌                             | 37℃厌氧培养 48 h                                 |  |  |  |  |  |  |  |
| MRS medium                                              | Lactobacillus                    | Anaerobic culture for 48 h at $37^{\circ}$ C |  |  |  |  |  |  |  |
| 甘露醇卵黄多粘菌素琼脂                                             | 芽孢杆菌                             | 37℃需氧培养 48 h                                 |  |  |  |  |  |  |  |
| Mannitol yolk polymyxin AGAR                            | Bacillus                         | Aerobic culture for 48 h at 37°C             |  |  |  |  |  |  |  |

表 2 肠道菌群测定所用培养基及培养方法

和病原分离,以确定实验鱼是否为感染无乳链球菌 而死亡。

死亡率(%)=(死亡鱼体尾数/试验初鱼体尾数)× 100%

免疫保护率(%)=(1-试验组死亡率/对照组死亡 率)×100%

### 1.9 数据处理

用 SPSS 19.0 分析软件对试验数据进行单因素方 差分析处理,实验结果均以平均值±标准差(Mean±SD) 表示,若存在显著性差异,则进行多重比较, P<0.05 为差异显著, P<0.01 为差异极显著。

### 2 结果

### 2.1 中草药复合微生态制剂对吉富罗非鱼生长性能 指标的影响

中草药复合微生态制剂对吉富罗非鱼生长性能指标的影响见表 3。B、C、D、E 4 个实验组罗非鱼成活率分别比对照组 A 提高了 2.33%、3.12%、3.38%和 3.90%,增重率分别比对照组 A 提高了 20%、46%、 39.03%、46.20%和 63.50%,饲料系数分别比对照组 A 降低了 1.65%、3.31%、4.96%和 7.44%。研究结果表明,饲料中添加一定量的芽孢杆菌制剂、中草药芽孢杆菌制剂、复合微生态制剂和中草药复合微生态制剂均可以显著提高罗非鱼的增重率(P<0.05),成活率、饲料利用率也有一定程度的提高,但影响不显著(P>0.05)。中草药复合微生态制剂对罗非鱼的促生长效果最佳。

### 2.2 中草药复合微生态制剂对吉富罗非鱼肠道菌群 的影响

中草药复合微生态制剂对吉富罗非鱼肠道菌群的 影响见表 4。B、C、D、E 4 个实验组罗非鱼肠道中的 细菌总数、芽孢杆菌数量、乳酸杆菌数量和双歧杆菌数 量均显著高于对照组 A(P<0.05),大肠杆菌数量显著低 于对照组(P<0.05)。说明饲料中添加一定量的微生态 制剂、中草药微生态制剂均可以改善罗非鱼的肠道菌 群结构,以中草药复合微生态制剂的改善效果最佳。

### 2.3 中草药复合微生态制剂对吉富罗非鱼感染无乳 链球菌后免疫保护率的影响

经腹腔注射感染无乳链球菌后,对照组 A 的罗 非鱼全部死亡,B、C、D、E 4 个实验组的吉富罗非 鱼有部分死亡(图 1)。通过鉴定发现,吉富罗非鱼的 死亡都是由于感染无乳链球菌所致,因此,数据可以 用于免疫保护率的计算。最终得出免疫保护率:E 组 (68.93%)>D 组>C 组(58.62%)>B 组(51.42%),E 组免 疫保护率最高。

### 表 3 中草药复合微生态制剂对吉富罗非鱼的 生长及饲料利用的影响

Tab.3 Effects of probiotics combined with Chinese herbal medicine on the growth and feed utilization of Nile tilapia

| 组别<br>Groups | 成活率<br>Survival<br>rate (%) | 增重率<br>Weight gain<br>rate (%) | 饲料系数<br>Feed<br>coefficient |
|--------------|-----------------------------|--------------------------------|-----------------------------|
| A 组 Group A  | 96.25                       | $181.23 \pm 8.86^{a}$          | 1.21±0.04                   |
| B 组 Group B  | 98.50                       | $218.31 \pm 7.53^{b}$          | 1.19±0.09                   |
| C 组 Group C  | 99.25                       | $251.96 \pm 9.80^{bc}$         | 1.17±0.05                   |
| D 组 Group D  | 99.50                       | 264.96±2.61 <sup>bc</sup>      | 1.15±0.03                   |
| E 组 Group E  | 100                         | 296.31±2.68°                   | 1.12±0.02                   |

注:表中的值为平均值±标准差(n=3),同一列中肩注 字母不同表示差异显著(P<0.05)。下同

Note: The values in the table were represented as Mean  $\pm$  SD (n = 3). Significant differences (P < 0.05) were denoted by different letters. The same applied to the follows

| Tal        | Tab.4 Effects of probiotics combined with Chinese herbal medicine on the intestinal flora of Nile tilapia |                                  |                           |                                       |                        |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|---------------------------------------|------------------------|--|--|--|--|--|
| 组别 Groups  | 细菌总数                                                                                                      | 大肠杆菌                             | 芽孢杆菌                      | 乳酸杆菌                                  | 双歧杆菌                   |  |  |  |  |  |
|            | Total number of bacteria (×10°)                                                                           | Colibacillus (×10 <sup>3</sup> ) | Bacıllus ( $\times 10'$ ) | Lactobacıllus ( $\times 10^{\circ}$ ) | Bifidobacterium (×10°) |  |  |  |  |  |
| A组 Group A | 1.48±0.03 <sup>a</sup>                                                                                    | $5.92{\pm}0.06^{a}$              | $1.60{\pm}0.15^{a}$       | $3.33{\pm}0.08^{a}$                   | $2.67{\pm}0.07^{a}$    |  |  |  |  |  |
| B组 Group B | $1.69{\pm}0.05^{b}$                                                                                       | $5.63 {\pm} 0.02^{b}$            | $2.16{\pm}0.08^{b}$       | $3.71 {\pm} 0.06^{b}$                 | $2.82{\pm}0.05^{b}$    |  |  |  |  |  |
| C组 Group C | $1.82{\pm}0.07^{bc}$                                                                                      | 5.41±0.03 <sup>bc</sup>          | $2.84{\pm}0.28^{bc}$      | $3.92{\pm}0.09^{bc}$                  | $2.98 {\pm} 0.03^{bc}$ |  |  |  |  |  |
| D组 Group D | $1.89{\pm}0.04^{\rm bc}$                                                                                  | $5.36 \pm 0.04^{bc}$             | $2.95{\pm}0.15^{bc}$      | $4.03 \pm 0.15^{bc}$                  | $3.03{\pm}0.04^{bc}$   |  |  |  |  |  |
| E组 Group E | $1.98{\pm}0.06^{\circ}$                                                                                   | 5.01±0.03 <sup>c</sup>           | $3.57{\pm}0.04^{c}$       | $4.53 \pm 0.20^{\circ}$               | 3.39±0.03°             |  |  |  |  |  |





无乳链球菌后免疫保护率的影响 Fig.1 Effects of probiotics combined with Chinese herbal

medicine on the immune protective rate of Nile tilapia after infection with *Streptococcus agalactiae* 

3 讨论

### 3.1 中草药复合微生态制剂对吉富罗非鱼生长指标 的影响

于明超等(2010)在饲料中添加中草药和芽孢杆 菌能促进对虾的生长,且二者联合应用的效果好于单 独使用。汤保贵等(2007)发现,微生物和中草药联合 制剂能显著促进罗非鱼幼鱼生长和提高饲料的利用 率。韩亚超等(2014)在饲料中添加中草药复合微生态 制剂后,仔猪的增重率和料肉比等指标均优于抗生素 组和复合益生菌组。本研究结果显示,饲料中添加芽 孢杆菌制剂、中草药芽孢杆菌制剂、复合益生菌制剂 和中草药复合微生态制剂均能够促进吉富罗非鱼的 生长性能,且添加中草药复合微生态制剂组的促生长 效果最好。此结果与汤保贵等(2007)、于明超等(2010) 和韩亚超等(2014)的研究结果相符,也进一步证明中 草药和益生菌联合使用可以产生协同增效作用(丁轲 等,2004)。中草药富含多种营养物质和一些未知的诱 食因子,可以增强养殖动物的食欲,促进机体代谢和 消化酶的分泌,提高营养物质的利用率,从而加速养 殖动物的生长发育、降低饲料系数(宋世民,2013)。另 一方面,益生菌制剂中的芽孢杆菌和乳酸杆菌可以产 生多种消化酶类(肖拉,2012)<sup>1)</sup>,可提高动物消化道内 消化酶的生物活性,促使动物机体可以更好地消化和 吸收胃肠道中的营养物质,提高饲料利用率。此外, 乳酸杆菌还可分解转化饲料中一些机体难以吸收的 有机物质,将一些糖类发酵成乳酸,使动物肠道中的 pH 值降低,进而形成酸性的内部环境,有利于动物 机体对钙、铁等矿物质和维生素的吸收和利用,从而 促进了罗非鱼的生长。

### 3.2 中草药复合微生态制剂对吉富罗非鱼肠道菌群 的影响

正常肠道微生物菌群在机体内构成了一道天然 屏障,对动物的营养、生长、健康、防病、免疫等方 面起着重要作用(郭兴华, 2002)。而芽孢杆菌的生长 繁殖需求大量氧气,能够在水生动物的肠道中形成利 于优势菌(双歧杆菌和乳酸杆菌)繁殖的厌氧环境,从 而有利于厌氧菌(乳酸杆菌、双歧杆菌)的生长繁殖, 并减少好氧致病菌如大肠杆菌的数量。本研究在饲料 中添加 4 种微生态制剂后可以明显提高罗非鱼肠道 乳酸杆菌、双歧杆菌和芽孢杆菌的数量,而大肠杆菌 的数量明显减少,这与其他学者在鲫鱼、草鱼和凡纳 滨对虾上的研究结果相符(尹军霞等, 2007; 沈涛等, 2012; 胡毅等, 2008)。中草药复合微生态制剂对罗非 鱼肠道菌群的改善效果最为明显,这可能与所选择的 中草药为补益类药物,富含双歧生长因子有关;此外, 芽孢杆菌的生长会耗尽罗非鱼肠道中的氧气,有利于 乳酸杆菌和双歧杆菌的生长繁殖,中药发酵过程产生 的一些有机酸也能促进乳酸杆菌生长,抑制病原菌的 生长繁殖。因此, 推测中草药复合微生态制剂产生了 比单一使用中草药或益生菌更好的效果。

1) 肖拉. 枯草芽孢杆菌 JS01 和黄芪多糖对建鲤生长及免疫功能的影响. 四川农业大学硕士研究生学位论文, 2012

### 3.3 中草药复合微生态制剂对吉富罗非鱼抗病力的 影响

肠道细菌可提高宿主免疫机能,能在宿主肠道内 表面形成生物保护膜,抵抗外来病原菌的入侵、定植, 可刺激机体产生"自然抗体"拮抗作用,减少宿主对有 害物质的吸收。此外,乳酸菌的一些代谢产物对抑制 病原菌及腐败菌、提高免疫力等也有重要作用(胡毅 等, 2008)。李桂英等(2011)研究发现, 在饲料中添加 肠道益生菌及其灭活菌体,能提高南美白对虾的免疫 应答水平和抗病力。Salinas 等(2008)在饲料中添加灭 活的德式乳酸杆菌和枯草芽孢杆菌可以显著增加乌 颊鱼体液中自然补体含量,增强非特异性免疫功能, 提高其抗病力。温俊(2008)在基础饲料配方中分别添 加黄霉素和合生素后,罗非鱼机体的吞噬活力和血清 补体活力均显著高于对照组(P<0.05)。本研究结果表 明,在饲料中添加4种益生菌制剂后均可提高吉富罗 非鱼的抗病能力,这与李桂英等(2011)、Salinas 等 (2008)和温俊(2008)的研究结果相符,且中草药复合 微生态制剂组的免疫保护率要好于其他实验组,表明 中草药联合益生菌群发酵后的使用效果对罗非鱼的 免疫保护率更优。本研究首次使用复合益生菌发酵中 草药后在罗非鱼中进行试验应用,该种制剂对罗非鱼 的生长性能、肠道菌群和抗病力方面都有很好的效 果,这为中草药复合微生态制剂在水产养殖领域的应 用提供了一定的理论与实践基础。

### 参考文献

- 丁轲, 倪学勤, 潘康成, 等. 益生菌与协同剂的协同效应研究. 兽药与饲料添加剂, 2004, 9(4): 17–19
- 于明超, 李卓佳, 林黑着, 等. 饲料中添加芽孢杆菌和中草药 制剂对凡纳滨对虾生长及肠道菌群的影响. 热带海洋学 报, 2010, 29(4): 132-137
- 马良骁, 冯宪斌, 韦新兰, 等. 微生态制剂联合中草药制剂在 南美白对虾高位池养殖应用. 海洋与渔业, 2013(9): 98– 100
- 王永芬, 乔宏兴, 席磊, 等. 益生菌-黄芪复合生物制剂的制 备及其对肉仔鸡的影响. 中国农业大学学报, 2011, 16(1): 54-59

- 王振怀,高才全,李春岭,等.微生物和中药制剂在南美白对 虾养殖中的应用试验.河北渔业,2005(2):30
- 文国樑,于明超,李卓佳,等. 饲料中添加芽孢杆菌和中草药 制剂对凡纳滨对虾免疫功能的影响. 上海海洋大学学报, 2009, 18(2): 181-186
- 尹军霞, 陈瑛, 孟丽丽. 益生菌剂对鲫鱼肠道菌群影响的初步研究. 水产科学, 2007, 26(11): 610--613
- 田海军,郑曙明.中草药与鱼体肠道菌群的相互影响.水利 渔业,2005,25(4):94-95
- 田浪,魏文康,魏堂鸿,等.中草药-益生菌复合制剂对断奶 仔猪生产性能的影响.黑龙江畜牧兽医,2015(5):197-199
- 向泉,周兴华.中草药添加剂在水产养殖上的作用.粮食与 饲料工业,2000(3):27-29
- 汤保贵, 孙建华. 微生物和中草药联合制剂对罗非鱼生长和 水质的影响. 水利渔业, 2007, 27(4): 62-63
- 李桂英, 宋晓玲, 孙艳, 等. 几株肠道益生菌对凡纳滨对虾非 特异免疫力和抗病力的影响. 中国水产科学, 2011, 18(6): 1358-1367
- 沈涛,邓斌,陈南南. 饲料中添加复合芽孢杆菌对草鱼消化 道酶活性及肠道菌群的影响. 淡水渔业, 2012, 42(1): 41-46
- 宋世民. 中草药饲料添加剂在水产养殖中的应用. 农村养殖 技术, 2013(6): 37
- 宋增福,吴天星.鱼类肠道正常菌群研究进展.水产科学, 2007,26(8):471-474
- 赵乐乐, 陈鲁勇, 陈颖超, 等. 益生菌和中草药添加剂对北京 油鸡屠体性状和肉品质的影响. 上海交通大学学报(农业 科学版), 2013, 31(2): 40-43
- 胡毅, 谭北平, 麦康森, 等. 饲料中益生菌对凡纳滨对虾生 长、肠道菌群及部分免疫指标的影响. 中国水产科学, 2008, 15(2): 245-251
- 郭兴华. 益生菌基础与应用. 北京: 北京科学技术出版社, 2002, 2–124
- 韩亚超,何永高,张新红,等.中草药复合微生态制剂对断奶 仔猪生长性能指标和血液生化指标的影响.江苏农业科 学,2014,42(8):218-221
- 温俊. 合生素对罗非鱼非特异性免疫力的影响. 饲料研究, 2008(8): 69-70
- Salinas I, Abelli L, Bertoni F. Monospecies and multispecies probiotic formulations produce different systemic and local immunostimulatory effects in the gilthead seabream (*Sparus aurata* L.). Fish Shellfish Immunol, 2008, 25(1–2): 114–123

(编辑 冯小花)

## Effects of a Compound Probiotics Combined with Chinese Herbal Medicine on Growth Performance, Intestinal Flora and Resistance to Diseases of GIFT Strain of Nile Tilapia (*Oreochromis niloticus*)

TANG Jufen<sup>1,2</sup>, HUANG Yu<sup>1,2</sup>, CAI Jia<sup>1,2</sup>, QIU Jinzhu<sup>1,2</sup>, SUN Jianhua<sup>3</sup>, XU Zhongwen<sup>3</sup>, JIAN Jichang<sup>1,2</sup>

(1. Fisheries College, Guangdong Ocean University, Zhanjiang 524088; 2. Guangdong Province Key Laboratory of Pathogen Biology and Epidemiology of Aquatic Economic Animals, Zhanjiang 524088;
 3. Guangdong Lvbaiduo Biotechnology Company, Zhanjiang 524022)

Abstract Here we studied the effects of four kinds of probiotics on the growth performance, intestinal flora, and resistance to diseases of GIFT strain of Nile tilapia (Oreochromis niloticus). Bacillus subtilis, Chinese herbal medicine compound Bacillus subtilis, compound probiotics, and Chinese herbal medicine compound probiotics were added into feed at the concentration of  $2 \times 10^7$  CFU/g to form four treatment groups. The results were shown below: (1) All four probiotics obviously improved the weight gain rate of Nile tilapia ( $P \le 0.05$ ). Probiotics also insignificantly promoted the survival rate and feed efficiency (P>0.05), and Chinese herbal medicine compound probiotics exhibited the best effect. (2) All four types of probiotics caused an increase in the total amounts of bacteria, bifidobacterium, lactobacillus, and bacillus in the guts of Nile tilapia (P < 0.05), whereas the number of *Escherichia coli* was significantly reduced compared to the control group (P < 0.05). These results indicated that all four probiotics in the feed could improve the structure of intestinal flora in Nile tilapia, and among them Chinese herbal medicine compound probiotics was the most effective. (3) After the Streptococcus agalactiae infection administered with artificial intraperitoneal injection, all the Nile tilapia in the control group died, but the infection was only fatal to some individuals in the treatment groups. Further tests confirmed streptococcus infection as the reason of death of Nile tilapia. The immune protection rates of the four probiotics were 51.42% (Group B), 58.62% (Group C), 58.62% (Group D) and 68.93% (Group E), again Chinese herbal medicine compound probiotics (Group E) showed the highest efficiency. In conclusion, adding a proper portion of Chinese herbal medicine compound probiotics into feed could effectively improve the growth index, the structure of intestinal flora, and the disease resistance of Nile tilapia.

**Key words** Chinese Herbal Medicine compound with probiotics; *Oreochromis niloticus*; Growth; Microfora of intestinal; Resistance to diseases

① Corresponding author: JIAN Jichang, E-mail: jianjc@gmail.com

DOI: 10.11758/yykxjz.20150610001

# 引起半滑舌鳎(Cynoglossus semilaevis Günther) 鱼苗大规模死亡的神经坏死病毒病<sup>\*</sup>

粟子丹<sup>1,2,3</sup> 李晋<sup>1,2,3</sup> 史成银<sup>1,2①</sup>

(1. 农业部海洋渔业可持续发展重点实验室 中国水产科学研究院黄海水产研究所 青岛 266071;
2. 青岛海洋科学与技术国家实验室 海洋渔业科学与食物产出过程功能实验室 青岛 266071;
3. 上海海洋大学水产与生命学院 上海 201306)

摘要 2012 和 2013 年,山东某育苗场 15-20 日龄的半滑舌鳎(Cynoglossus semilaevis Günther)鱼 苗出现暴发性大规模死亡,7 d内死亡率高达 90%-100%。本研究调查了疾病的发生情况和临床特 征,采集病鱼样品进行了组织病理学检查,并运用 RT-PCR 方法进行了病原的检测和基因序列分析。 结果发现,半滑舌鳎鱼苗一般在7月和8月发病,发病时养殖水温为22-24℃。病鱼游泳行为异常, 表现为上下翻游、螺旋性游动、全身大幅度波浪状浮动症状,但病鱼体表无出血和溃疡症状。组织 病理检查发现,病鱼脑和视网膜组织出现严重的空泡化及坏死。病鱼样品的 RT-PCR 检测结果全部 呈鱼类神经坏死病毒阳性。对得到的 RT-PCR 产物测序,进行 BLAST 比对,发现该病毒与鱼类神 经坏死病毒的赤点石斑鱼神经坏死病毒(Red-spotted grouper nervous necrosis virus, RGNNV)基因型 的相似性达 98%以上,而与鱼类神经坏死病毒的其他 3 个基因型:黄带拟鲹神经坏死病毒(Striped jack nervous necrosis virus, SJNNV)、红鳍东方鲀神经坏死病毒(Tiger puffer nervous necrosis virus, TPNNV)和 条斑星鲽神经坏死病毒(Barfin flounder nervous necrosis virus, BFNNV)的相似性仅为 71%-78%。由此可 以判定,本研究发现的引起半滑舌鳎鱼苗大规模死亡的神经坏死病毒为 RGNNV 基因型,半滑舌鳎 也是鱼类神经坏死病毒的天然宿主。该发现在半滑舌鳎疾病防治和鱼类神经坏死病毒的流行机制研 究方面都具有重要意义。

关键词 半滑舌鳎;赤点石斑鱼神经坏死病毒;RT-PCR;检测 中图分类号 S941 文献标识码 A 文章编号 2095-9869(2016)04-0110-06

半滑舌鳎(Cynoglossus semilaevis Günther)是我 国北方常见的大型底栖鱼类,主要分布于我国的渤 海、黄海海域,其活动范围小、营养等级低、生长快, 鱼肉营养丰富、口感细腻,具有较高的经济价值,已 成为我国沿海地区海水养殖鱼类的优良品种之一。随 着半滑舌鳎人工繁殖技术取得成功,养殖规模不断扩 大,并逐步开始了集约化养殖(姜言伟等,1993)。但是, 由于养殖密度过大、养殖环境恶化和病原传播等原因, 各种疾病也不断增多。其中,大部分疾病为细菌性疾病, 病毒性疾病报道较少(Tang et al, 2008; 张晓君等, 2009; Zhang et al, 2011; 陈政强等, 2012)。

2012 年和 2013 年,山东某育苗场的半滑舌鳎鱼苗 先后发生大规模死亡,患病半滑舌鳎鱼苗呈现身体畸形 弯曲、狂游或螺旋型游动等临床症状,但体表及内脏无 出血、溃烂等现象,疑为感染了鱼类神经坏死病毒。已 有的研究表明,鱼类神经坏死病毒可以分为 4 种基因 型,即:黄带拟鲹神经坏死病毒(Striped jack nervous necrosis virus, SJNNV)、红鳍东方鲀神经坏死病毒(Tiger

<sup>\*</sup> 国家科技支撑计划课题(2012BAD17B01)资助。粟子丹, E-mail: suzidan08@163.com ① 通讯作者: 史成银, 研究员, E-mail: shicy@ysfri.ac.cn 收稿日期: 2015-06-10, 收修改稿日期: 2015-06-15

puffer nervous necrosis virus, TPNNV)、赤点石斑鱼神经 坏死病毒(Red-spotted grouper nervous necrosis virus, RGNNV)和条斑星鲽神经坏死病毒(Barfin flounder nervous necrosis virus, BFNNV) (Nishizawa *et al*, 1997)。据报道,鱼类神经坏死病毒可以感染 10 目 33 科 50 余种鱼类(Munday *et al*, 2002; Sano *et al*, 2011), 对海水养殖鱼类尤其是鱼类育苗造成了极大的威胁。 然而,未见半滑舌鳎感染鱼类神经坏死病毒的报道。

本研究运用组织病理学和分子生物学方法,对上 述患病鱼苗进行病原分析,首次证实半滑舌鳎是鱼类 神经坏死病毒的天然宿主,该发现在半滑舌鳎疾病防 治和鱼类神经坏死病毒的流行机制研究方面都具有 重要的意义。

### 1 材料与方法

### 1.1 样品采集与处理

2012 年和 2013 年,山东某育苗场培育的半滑舌鳎 鱼苗出现大规模死亡,本研究对发病情况调查,记录病 鱼的临床特征,采集具有典型临床症状的 15-20 日龄半 滑舌鳎鱼苗。一部分鱼苗用 RNAlater (Qiagen,北京) 保存,用于 RNA 提取和病毒检测。一部分鱼苗用 Davidson's AFA 固定液固定,用于组织病理研究。

### 1.2 组织病理切片

对 Davidson's AFA 固定液固定的病鱼,剪取鱼苗 头部组织,进行石蜡组织切片和苏木精-伊红染色,封 片后用光学显微镜(Nikon E800,日本)观察病理变化。

### 1.3 RNA 的提取

取 RNAlater 保存的病鱼头部组织约 30 mg,采用 GB 核酸释放试剂盒(诺晶生物公司,上海),参照说 明书步骤提取组织总 RNA。

### 1.4 RT-PCR 检测

根据 GenBank 中已经公布的鱼类神经坏死病毒的基因序列,选取保守区设计 RT-PCR 引物,F1:CTG GTC GGC TGA TAC TCCT, R1: CAA CGC CAT CTG TGA ACG, 目标扩增片段大小为 399 bp。

以 **1.3** 中提取的组织总 RNA 为模板,采用 TransScript First-Strand cDNA Synthesis SuperMix (TransGen,北京)进行反转录,合成 cDNA 模板。20 μl 反转录体系: 0.1 μg/μl 随机引物 1 μl、反转录酶 1 μl、2 × TS 反转录缓冲液 10 μl、组织总 RNA 3 μl、DEPC 水 5 μl。 反转录程序: 25℃ 10 min, 42℃ 30 min, 85℃ 5 min。 取上述合成的 cDNA 为模板进行 PCR 扩增。25 μl PCR 反应体系: 10 μmol/L F1 和 R1 引物各 0.5 μl、2× GB-Direct PCR Mix 12.5 μl、cDNA 模板 2 μl、DEPC 水 9.5 μl。PCR 反应程序: 94℃ 5 min; 然后 94℃ 30 s; 58℃ 30 s; 72℃ 1 min, 35 个循环; 最后 72℃ 5 min。 取扩增产物进行 1%琼脂糖凝胶电泳,观察结果并拍照。

### 1.5 序列比对与相似性分析

PCR 产物由生工生物工程(上海)有限公司进行 双向测序,拼接后的序列输入计算机,用 BioEdit 软 件和 BLAST 软件进行序列相似性分析。

### 2 结果

#### 2.1 发病情况和临床特征

调查发现,半滑舌鳎鱼苗发病时的养殖水温一般 在 22-24℃,养殖水体盐度为 30,pH 为 7-8。1-12 日龄以及 30 日龄以上的鱼苗发病较轻。13-30 日龄 的鱼苗发病严重,死亡率高达 90%-100%。50 日龄以 上的鱼苗不发病。患病鱼苗呈现上下翻游、螺旋性游 动或全身大幅度波浪状浮动等症状。鱼体无力,随着 水流漂动,部分鱼苗有短暂的狂游现象。患病严重的 鱼苗脊柱出现弯曲畸形,但病鱼体表无出血、溃烂等 现象(图 1)。



图 1 水中患病的半滑舌鳎鱼苗 Fig.1 The diseased fry of half-smooth tongue sole *C. semilaevis* in water

### 2.2 组织病理观察

对采集的患病半滑舌鳎鱼苗进行组织病理学观 察,可以看到典型的病毒性神经坏死病理特征,即病 鱼的脑和视网膜组织大量空泡化。在患病半滑舌鳎鱼 苗的头部组织切片中,最明显的空泡化病变主要出现 在视网膜的视细胞层、双极细胞层以及节细胞层,中 枢神经组织的空泡化病变主要出现在脑灰质部位,并 且在空泡周围有大量的嗜碱性的病毒包涵体(图 2)。

### 2.3 病原的 RT-PCR 扩增结果

采用 RT-PCR 方法对于采集的半滑舌鳎鱼苗进行 鱼类神经坏死病毒的检测。电泳结果显示,采集到的 4 批样品,病毒检测结果均为强阳性(图 3)。

### 2.4 序列比对与相似性分析

对上述 RT-PCR 产物测序并进行 BLAST 比对, 结果显示, 感染半滑舌鳎的神经坏死病毒(CsCN NNV)

与 RGNNV 基因型的代表种——七带石斑鱼神经坏 死病毒(Seven-band grouper nervous necrosis virus) (GenBank检索号: AY324870.1)的序列相似性为98%, 与感染白星笛鲷(*Lutjanus stellatus*)、东大西洋石斑鱼 (*Epinephelus marginatus*)、牙鲆(*Paralichthys olivaceus*) 和布氏鲳鲹(*Trachinotus blochii*)的几种鱼类神经坏死病 毒的序列相似性均在98%以上。另一方面,CsCN NNV 与分别隶属于 SJNNV、TPNNV、BFNNV 基因型的黄 带拟鲹(*Pseudocaranx dentex*)神经坏死病毒、红鳍东方 鲀 (*Takifugu rubripes*) 神经坏死病毒的序列相似性仅在 71%-78%之间(图 4)。测定的半滑舌鳎的神经坏死病毒 基因序列已经提交到 GenBank,检索号 KJ541748.2。



图 2 患病半滑舌鳎的组织病理变化 Fig.2 The histopathological characteristics of diseased half-smooth tongue sole

A. 脑组织空泡化(标尺, 100 μm); B. 视网膜组织空泡化(标尺, 20 μm) A. vacuolation of brain (Scale bar = 100 μm); B. vacuolation of retina (Scale bar = 20 μm)



### 图 3 半滑舌鳎样品的 RT-PCR 检测结果 Fig.3 The RT-PCR results of diseased half-smooth tongue sole

M: DL 500<sup>TM</sup> DNA Marker; 1-4: 病鱼样品; 5: 阴性对照; 6: 阳性对照 M: DL 500<sup>TM</sup> DNA Marker; 1-4: diseased fish; 5: Negative control; 6: Positive control

### 3 讨论

半滑舌鳎为我国新兴的海水养殖鱼类品种,由于 其较高的经济效益,使得半滑舌鳎的养殖规模日益扩 大。育苗场多为工厂化育苗模式,集约化程度高,养 殖密度大,在管理不善、隔离不严时,暴发性流行病 容易发生,造成鱼苗的大规模死亡。通过对发病鱼苗 的临床症状、组织病理观察及病原的 RT-PCR 检测, 可以初步确定该养殖场 2012 年和 2013 年半滑舌鳎鱼 苗的大规模死亡是由鱼类神经坏死病毒的感染引起的。

调查发现,13-30 日龄的患病半滑舌鳎鱼苗死亡 率极高。据报道,13-35 日龄的半滑舌鳎鱼苗正处于 变态期,此阶段鱼苗的中枢神经系统开始迅速发育, 神经细胞大量增加,同时鱼苗的视网膜结构和视觉特 性发生明显改变,以适应底栖生活(Ma *et al*, 2006、 2007; 卢艳艳等,2011)。如果鱼苗此时感染了鱼类神

| CsCN NNV<br>Sevenband grouper NNV<br><i>Epinephelus marginatus</i> NNV<br>Golden pompano NNV<br>White star snapper NNV<br><i>Paralichthys olivaceus</i> NNV<br>Barfin flounder NNV<br>Tiger puffer NNV<br>Striped jack NNV | CTGGTCGGCT<br>                   | GATACTCCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TGTGTCGGCA                                 | ACAACACTGA                                                                                                                                                                                                                      | TGTGGTCAAC                           | GTGTCGGTGC                                                                | TGTGTCGCTG     | 70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------|----------------|--------------------------------------------------------------------|
| CsCN NNV<br>Sevenband grouper NNV<br>Epinephelus marginatus NNV<br>Golden pompano NNV<br>White star snapper NNV<br>Paralichthys olivaceus NNV<br>Barfin flounder NNV<br>Tiger puffer NNV<br>Striped jack NNV               | GAGTGTTCGA                       | CTGAGCGTTC<br>T<br>T<br>T<br>C. T<br><br><br>T<br><br><br>T<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CATCTCTTGA<br>A.<br>C.<br>.TT.G.<br>.G. C. | GACACCTGAA                                                                                                                                                                                                                      | GAGACCACCG<br>T<br>                  | CTCCCATCAT                                                                | GACACAAGGT<br> | 140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140        |
| CsCN NNV<br>Sevenband grouper NNV<br><i>Epinephelus marginatus</i> NNV<br>Golden pompano NNV<br>White star snapper NNV<br><i>Paralichthys olivaceus</i> NNV<br>Barfin flounder NNV<br>Tiger puffer NNV<br>Striped jack NNV | TCCCTGTACA                       | ACGATTCCCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TTC<br>                                    | CACAAATGAC                                                                                                                                                                                                                      | TTCAAGTCCA                           | TCCTCCTAGG                                                                | ATCCACACCA<br> | 203<br>203<br>203<br>203<br>203<br>203<br>203<br>209<br>209        |
| CsCN NNV<br>Sevenband grouper NNV<br><i>Epinephelus marginatus</i> NNV<br>Golden pompano NNV<br>White star snapper NNV<br><i>Paralichthys olivaceus</i> NNV<br>Barfin flounder NNV<br>Tiger puffer NNV<br>Striped jack NNV | CTGGATATTG<br>C<br>C<br><br><br> | CCCCTGATGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AGCAGTCTTC                                 | CAGCTGGACC                                                                                                                                                                                                                      | GTCCGCTGTC                           | CATTGACTAC                                                                | AGCCTTGGAA     | 273<br>273<br>273<br>273<br>273<br>273<br>273<br>273<br>279<br>279 |
| CsCN NNV<br>Sevenband grouper NNV<br><i>Epinephelus marginatus</i> NNV<br>Golden pompano NNV<br>White star snapper NNV<br><i>Paralichthys olivaceus</i> NNV<br>Barfin flounder NNV<br>Tiger puffer NNV<br>Striped jack NNV | CTGGAGATGT                       | TGATCGTGCT            C.            C.            C.            C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C.         C. <td>GTTTATTGGC</td> <td>ACCTCAAGAA</td> <td>GTTTGCTGGA<br/></td> <td>AATGCTGGCA</td> <td>CACCTGCAGG</td> <td>343<br/>343<br/>343<br/>343<br/>343<br/>343<br/>343<br/>343<br/>349<br/>349</td> | GTTTATTGGC                                 | ACCTCAAGAA                                                                                                                                                                                                                      | GTTTGCTGGA<br>                       | AATGCTGGCA                                                                | CACCTGCAGG     | 343<br>343<br>343<br>343<br>343<br>343<br>343<br>343<br>349<br>349 |
| CsCN NNV<br>Sevenband grouper NNV<br><i>Epinephelus marginatus</i> NNV<br>Golden pompano NNV<br>White star snapper NNV<br><i>Paralichthys olivaceus</i> NNV<br>Barfin flounder NNV<br>Tiger puffer NNV<br>Striped jack NNV | CTGGTTTCGC                       | TGGGGCATCT<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GGGACAACTT<br>                             | TAATAAGACG         C.         AGTA         C.         AGTA | TTCACAGATG<br>G<br>C.G.<br>GAC<br>T. | GCGTTG 399<br>399<br>399<br>399<br>399<br>399<br>399<br>399<br>405<br>405 |                |                                                                    |

图 4 CsCN NNV 与 8 株鱼类神经坏死病毒基因序列的比较

Fig.4 Comparison of the amplicon nucleotide sequence among nine strains of nervous necrosis viruses

CsCN NNV:半滑舌鳎神经坏死病毒(KJ541748.2); Sevenband grouper NNV:七带石斑鱼神经坏死病毒(AY324870.1); Epinephelus marginatus NNV:东大西洋石斑鱼神经坏死病毒(KF748942.1); Golden pompano NNV:布氏鲳鲹神经坏死病毒(GQ904199.1); White star snapper NNV:白星笛鲷神经坏死病毒(AY835642.1); Paralichthys olivaceus NNV:牙鲆神经坏死病毒(KF841612.1); Barfin flounder NNV:条斑星鲽神经坏死病毒(EU236147.1); Tiger puffer NNV:红鳍东方鲀神经坏死病毒(EU236149.1); Striped jack NNV:黄带拟鲹神经坏死病毒(AB056572.1)

CsCN NNV: *Cynoglossus semilaevis* NNV (KJ541748.2); Sevenband grouper NNV: AY324870.1; *Epinephelus marginatus* NNV: KF748942.1; Golden pompano NNV: GQ904199.1; White star snapper NNV: AY835642.1; *Paralichthys olivaceus* NNV: KF841612.1; Barfin flounder NNV: EU236147.1; Tiger puffer NNV: EU236149.1; Striped jack NNV: AB056572.1

经坏死病毒,病毒容易随着神经细胞的生长而大量复制,引起鱼苗脑部及视网膜的病变和空泡化,最终造成 鱼苗的大量死亡(Tanaka *et al*, 2004; Manin *et al*, 2011)。

本研究通过 RT-PCR 技术和序列测定,得到了感 染半滑舌鳎的神经坏死病毒 CsCN NNV 的部分基因 序列。序列的比对与分析结果显示,该病毒与分离自 七带石斑鱼、东大西洋石斑鱼等鱼体中的5株鱼类神 经坏死病毒(全部为 RGNNV 基因型)的相似性超过 98%, 而与其他3种基因型的鱼类神经坏死病毒的相 似性仅为 71%-78%,因此,感染半滑舌鳎的神经坏 死病毒 CsCN NNV 应属于 RGNNV 基因型(Nishizawa et al, 1997; Toffolo et al, 2007)。考虑到该育苗场同时 进行多种石斑鱼鱼苗的繁育,且曾发生过病毒性神经 坏死病,推测感染半滑舌鳎鱼苗的神经坏死病毒很可 能来源于同场的其他石斑鱼鱼苗,随着育苗器具及人 员的流动而水平传播。由于半滑舌鳎也是鱼类神经坏 死病毒的敏感宿主,且鱼苗对病毒的抵抗力弱,因而 出现了大规模死亡。这种在同一育苗场中养殖多种鱼 苗,造成鱼类神经坏死病毒交叉感染的现象也发生在 石斑鱼和尖吻鲈(Lates calcarifer)之间(Hick et al, 2011; Manin et al, 2011)。因此, 在育苗过程中必须严 格进行器具消毒,并加强隔离措施,从而阻断鱼类神 经坏死病毒的水平传播途径。

鱼类神经坏死病毒宿主广泛,包括 50 余种海淡 水鱼类(Munday et al, 2002; Sano et al, 2011),但半滑 舌鳎并不在其中。本研究首次证实半滑舌鳎是鱼类神 经坏死病毒的天然敏感宿主,这一发现在半滑舌鳎疾 病防治和鱼类神经坏死病毒的流行机制研究方面都 具有重要的意义。

### 参考文献

- 马爱军, 王新安, 庄志猛, 等. 半滑舌鳎仔、稚鱼视网膜结构 与视觉特性. 动物学报, 2007, 2(53): 354–363
- 卢艳艳,张雅芝,常建波,等.半滑舌鳎的育苗效果及生物学特征的观察.集美大学学报(自然科学版),2011,16(1): 7-13
- 张晓君,秦国民,阎斌伦,等.半滑舌鳎病原鳗利斯顿氏菌表型及分子特征研究.海洋学报,2009,31(5):112-122

- 陈政强,姚志贤,林茂,等.半滑舌鳎皮肤溃疡病病原研究. 水产学报,2012,36(5):764-771
- 姜言伟,万瑞景,陈瑞胜,等. 渤海半滑舌鳎人工育苗工艺技术的研究. 海洋水产研究, 1993(14): 25-33
- Hick P, Schipp G, Bosmans J, et al. Recurrent outbreaks of viral nervous necrosis in intensively cultured barramundi (*Lates* calcarifer) due to horizontal transmission of betanodavirus and recommendations for disease control. Aquaculture, 2011, 319(1–2): 41–52
- Ma AJ, Liu XZ, Xu YJ, et al. Feeding rhythm and growth of the tongue sole, Cynoglossus semilaevis Günther, during its early life stages. Aquac Res, 2006, 37(6): 586–593
- Manin BO, Ransangan J. Experimental evidence of horizontal transmission of Betanodavirus in hatchery-produced Asian seabass, *Lates calcarifer* and brown-marbled grouper, *Epinephelus fuscoguttatus* fingerling. Aquaculture, 2011, 321(1–2): 157–165
- Munday BL, Kwang J, Moody N, Betanodavirus infections of teleost fish: a review. J Fish Dis, 2002, 25: 127–142
- Nishizawa T, Furuhashi M, Nagai T, *et al.* Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. Appl Environ Microbiol, 1997, 63(4): 1633–1636
- Sano M, Nakai T, Fijan N, Viral diseases and agents of warm water fish. In: Fish Diseases and Disorders, Vol. 3: Viral, Bacterial and Fungal Infections, 2nd edition, Woo PTK & Bruno DW, eds. CABI, London, UK, 2011, 166–244
- Tanaka S, Takagi M, Miyazaki T. Histopathological studies on viral nervous necrosis of seven-band grouper, *Epinephelus septemfasciatus* Thunberg, at the grow-out stage. J Fish Dis, 2004, 27(7): 385–399
- Tang XQ, Zhou Li, Zhan WB, et al. Isolation and characterization of pathogenic Listonella anguillarum of diseased half-smooth tongue sole (Cynoglossus semilaevis Günther). J Ocean Uiver China, 2008, 7(3): 343–351
- Toffolo V, Negrisolo E, Maltese C, *et al.* Phylogeny of betanodaviruses and molecular evolution of their RNA polymerase and coat proteins. Mol Phylogenet Evol, 2007, 43(1): 298–308
- Zhang XJ, Qin GM, Bing XW, et al. Phenotypic and molecular characterization of *Photobacterium damselae*, a pathogen of the cultured tongue sole *Cynoglossus semilaevis* in China. New Zeal J Mar Fresh, 2011, 45(1): 1–13

(编辑 冯小花)

## Preliminary Study on Massive Mortality of Hatchery-Reared Half-Smooth Tongue Sole, *Cynoglossus semilaevis*, Associated with Viral Nervous Necrosis

SU Zidan<sup>1,2,3</sup>, LI Jin<sup>1,2,3</sup>, SHI Chengyin<sup>1,2</sup>

(1. Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071; 2. Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071;

3. College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306)

Abstract In the years of 2012 and 2013, there was an outbreak of disease and massive death of half-smooth tongue sole (Cynoglossus semilaevis) 15–20 days post-hatching (dph 15–20) in a hatchery of northern China, and the cumulative mortality reached 90%-100% within one week. The outbreak occurred in July and August when the water temperature was 22-24°C. The symptoms included erratic swimming behaviors such as spiraling movement and fast swimming in circles, without hemorrhaging and ulceration on body surfaces. The histopathological examination revealed typical signs of viral nervous necrosis. The nerve cells of brain and retina underwent severe vacuolation and necrosis. RT-PCR with primers of nervous necrosis virus showed positive results in all samples from moribund half-smooth tongue soles. The RT-PCR products were then sequenced and the sequence alignment was carried out with BLAST. It was found that the sequence similarity was above 98% between the nervous necrosis virus in half-smooth tongue sole (CsCN NNV) and five strains of red-spotted grouper nervous necrosis virus (RGNNV). In contrast, the similarities between CsCN NNV and other three genotype strains of NNV: Striped jack nervous necrosis virus (SJNNV), Barfin flounder nervous necrosis virus (BFNNV), and Tiger puffer nervous necrosis virus (TPNNV), were only 71%-78%. Therefore, we inferred that CsCN NNV was a new strain with RGNNV genotype. It was the first case of naturally occurred RGNNV infection of half-smooth tongue sole. Our findings provided insights into the epidemic mechanism of RGNNV infection as well as the prevention of viral nervous necrosis in half-smooth tongue sole.

**Key words** Half-smooth tongue sole *Cynoglossus semilaevis*; Red-spotted grouper nervous necrosis virus; RT-PCR; Detection

① Corresponding author: SHI Chengyin, E-mail: shicy@ysfri.ac.cn

DOI: 10.11758/yykxjz.20150311001

## 半滑舌鳎(Cynoglossus semilaevis) Nramp 基因 克隆与表达分析及 SNP 筛选<sup>\*</sup>

邢贺飞<sup>1,2,3</sup> 高峰涛<sup>1,2,4</sup> 张永珍<sup>1,2,3</sup> 董忠典<sup>1,2,4</sup> 陈松林<sup>1,2①</sup> (1. 农业部海洋渔业可持续发展重点实验室 中国水产科学研究院黄海水产研究所 青岛 266071; 2. 青岛海洋科学与技术国家实验室 海洋渔业科学与食物产出过程功能实验室 青岛 266071; 3. 上海海洋大学水产与生命学院 上海 201306; 4. 中国海洋大学海洋生命学院 青岛 266003)

摘要 天然抗性相关巨噬细胞蛋白(Natural resistance-associated macrophage protein, Nramp)属于膜整 合转运蛋白,具有抑制胞内寄生菌侵染、调节巨噬细胞的抗菌活性等作用。本研究对半滑舌鳎 (Cynoglossus semilaevis) Nramp 基因进行了克隆和表达分析,并对其与抗鳗弧菌感染相关的单核苷酸多 态性(Single Nucleotide Polymorphism, SNP)位点进行了筛选。该基因 cDNA 序列全长 3717 bp,其中开放 阅读框(Open reading frame, ORF)1677 bp, 所编码蛋白含有 558 个氨基酸, 该蛋白具有 Nramp 家族的典 型特征,包括10个跨膜区(Transmembrane, TM)、1个由20个氨基酸残基组成的胞质内转运蛋白特征结 构域(Consensus Transport Motif, CTM)。半滑舌鳎 Nramp 的 ORF 末端有1个类似于脊椎动物 Nramp2 中 的铁反应控制蛋白结合位点(Iron-responsive regulatory protein-binding site, IRE)。半滑舌鳎 Nramp 与其他 14 个物种的 Nramp 氨基酸序列同源性在 63%-91%之间,系统进化分析表明,半滑舌鳎 Nramp 和所有鱼 类 Nramp 聚集为一簇,与其他物种 Nramp2 的亲缘关系较近。实时荧光定量 PCR 分析显示, Nramp 基 因在半滑舌鳎脾脏和肾脏中的表达量最高,而在肌肉和性腺中的表达量最低;在哈维氏弧菌感染的半滑 舌鳎肾脏、脾脏和肝脏中表达量呈升高趋势,而在鳃中则表现为下调趋势。利用直接测序法检测感染鳗 弧菌后同一家系的233个个体(抗病个体165个,感病个体68个),共检测到15个SNP位点,对其中3个 SNP 位点即 SNP-g.3113(T→C)、SNP-g.3125(A→G)和 SNP-g.3164(A→T)进行测序分型后发现, SNPg.3125(A→G)的等位基因(G)频率和基因型(GG)频率与半滑舌鳎抗鳗弧菌疾病呈极显著相关(P<0.01)。研 究结果表明, Nramp 基因不同基因型对半滑舌鳎的抗病能力有着极其重要的影响, SNP-g.3125(A→G) 可作为潜在的抗性遗传标记位点。本研究将为半滑舌鳎抗性品系培育提供技术支持。

关键词 半滑舌鳎; 天然抗性相关巨噬细胞蛋白(Nramp); 基因克隆; RT-PCR; 单核苷酸多态性(SNP) 中图分类号 S965 文献标识码 A 文章编号 2095-9869(2016)04-0116-12

半滑舌鳎(Cynoglossus semilaevis)隶属于鲽形目 (Pleuronectiformes)、舌鳎科(Cynoglossidae)、舌鳎属 (Cynoglossus),主要分布在我国黄、渤海海域,是暖 温性近海大型底栖鱼类,具有广温、广盐和适应环境 多变的特点,其生长速度快、肉味鲜美、口感爽滑、 出肉率高,深受广大消费者喜爱(邓景耀等,1988)。 近年来,高密度、集约化的养殖模式以及环境污染等 原因,致使半滑舌鳎的腹水、烂鳍、烂尾等细菌性感 染问题日益突出,严重制约了半滑舌鳎工厂化养殖产 业的发展。因此,开展半滑舌鳎抗病相关基因的分析 研究,筛选其抗病相关的分子标记,对于半滑舌鳎抗 性品系培育以及该养殖产业的健康可持续发展具有

<sup>\*</sup> 国家自然科学基金项目(31530078)和"山东省泰山学者攀登计划项目"共同资助。邢贺飞, E-mail: xinghf710@126.com ① 通讯作者: 陈松林,研究员, E-mail: chensl@ysfri.ac.cn 收稿日期: 2015-03-11,收修改稿日期: 2015-04-15

十分重要的意义。

天然抗性相关巨噬细胞蛋白(Nramp)属于膜整合 转运蛋白,具有抑制胞内寄生菌侵染、调节巨噬细胞 的抗菌活性等作用(Blackwell et al, 1995), 在物种间 保持着高度的保守性(Skamene et al, 1991),由于其编 码蛋白具有转运质子和二价阳离子的功能,因此,又 将其称为溶质转运家族 11 成员 1 (Solution carrier family 11 member 1, SLC11A1)(Blackwell et al, 1996). 该家族一般具有 10-12 个典型的跨膜结构,含有 1 个 胞质内转运蛋白特征结构域,以及1-2个糖基化的胞 质外环状结构(Bairoch, 1993)。Nramp 基因最早由 Vidal 等(1993)在近交小鼠的研究中发现,该基因可影 响宿主对杜氏利什曼原虫、分支杆菌、伤寒沙门氏菌 等胞内寄生菌的早期免疫反应。目前,已在人和小鼠 等哺乳动物中发现两种天然抗性相关巨噬细胞蛋白即 Nramp1 和 Nramp2(Vidal et al, 1993; Kishi, 1994; Grunheid et al, 1995; Kishi et al, 1997)。Nramp1 是一 个较为保守的基因,主要在网状内皮细胞器官如吞噬 细胞、脾脏、肝脏、外周血白细胞中特异表达(Cellier et al, 1994; Feng et al, 1996), 而 Nramp2 则在绝大多 数组织和细胞中均表达(Grunheid et al, 1995), 在哺乳 动物体内对铁的吸收转运和重新利用起到决定性的 调控作用(Gunshin et al, 1997; Fleming et al, 1998)。目 前,鱼类中已在虹鳟(Oncorhynchus mykiss)(Dorschner et al, 1999)、鲤鱼(Cyprinus carpio)(Saeij et al, 1999)、 斑点叉尾蛔(Ictalurus punctatus)(Chen et al, 2002)、鲈 鱼(Lateolabrax japonicus)(Burge et al, 2004)、真鲷 (Pagrosomus major)(Chen et al, 2004)、牙鲆(Paralichthys olivaceus)(Chen et al, 2006)、大菱鲆(Scophthalmus maximus)(Chen et al, 2007)、草鱼(Ctenopharyngodon idellus)(范玉顶等, 2011)等物种中进行了 Nramp 基因 克隆,并对该基因的特征序列及病原菌刺激后的组织 和细胞系表达进行了研究,但有关 Nramp 基因多态 性与疾病的关联分析报道较少。本研究对半滑舌鳎 Nramp 基因进行了克隆、序列比对、组织表达分析, 并首次在鱼类中进行 Nramp 基因多态性与抗病分子 标记的筛选,为半滑舌鳎抗性家系的分子标记辅助育 种提供了技术支持。

### 1 材料与方法

### 1.1 材料

健康1龄半滑舌鳎,体重为(145.01±60.02)g,体 长为(27.68±5.53)cm,来自山东省海阳市黄海水产有 限公司,于实验室暂养7d无异常后使用。取半滑舌 鳎的肝、脾、肾、肠、鳃、血、脑、心、皮肤、肌肉、 性腺等组织,迅速放入液氮中,-80℃保存备用。半 滑舌鳎感染鳗弧菌家系(1龄)由本实验室2012年于山 东省昌邑市三新苗种研究所建立。哈维氏弧菌(Vibrio harveyi)菌种由本实验室保存。

### 1.2 基因组 DNA 和总 RNA 提取及 cDNA 合成

采用常规的酚-氯仿法(Sambrook *et al*, 2001)提取 基因组 DNA, 双蒸水溶解后,利用紫外分光光度计 (Biophotometer, Eppendorf)测定 DNA 浓度,并经 1% 琼脂糖凝胶电泳检测其完整性,-20℃保存备用;利 用总 RNA 极速抽提试剂盒(上海飞捷生物有限公司) 提取各样品总 RNA,紫外分光光度计测定 RNA 浓度, 并经 1%琼脂糖凝胶电泳检测其完整性;用 TaKaRa 反转录试剂盒合成 cDNA 链,-20℃保存备用。

### 1.3 引物设计及 PCR 扩增

Tah 1

提取半滑舌鳎脾脏中的总 RNA,并反转录 cDNA (TaKaRa),根据本实验室半滑舌鳎转录组测序得到 *Nram*p转录本信息合成引物 *Nramp*-F/*Nramp*-R(表 1), 以半滑舌鳎脾脏 cDNA 为模板,经 PCR 扩增、克隆, 测序进行序列验证,根据验证无误后的基因片段序列 设计 4 条特异性引物(表 1),分别进行 5' RACE 和 3' RACE 反应,获得的片段经过克隆、测序拼接后,得 到 cDNA 全长[具体方法参见 SMART<sup>™</sup> RACE cDNA Amplification Kit(Clontech)说明书]。

表 1 PCR 扩增所用引物序列 PCR amplification primers used in this study

| 100.1 10    | sit uniphilieution printers used in this study    |
|-------------|---------------------------------------------------|
| 引物名称        |                                                   |
| Primer name | Primer sequence $(5'-3')$                         |
| Nramp-F     | CTGTGCCATAGCCCTCAAC                               |
| Nramp-R     | AGTGCCAAACCAGGTAGCC                               |
| β-actin-F   | GCTGTGCTGTCCCTGTA                                 |
| β-actin-R   | GAGTAGCCACGCTCTGTC                                |
| RT-F        | ATCGCTCTCTTCATCTCATTTCTC                          |
| RT-R        | CACCTCCAGTGTGCCGTTGT                              |
| 3' F        | CTGACTTTCACCAGCCTGACCTCTA                         |
| 3' Fn       | TGCCCTCCTGTCCTTAGCCTATCTG                         |
| 5' F        | CCTGGTCTGGCTTCACAAGGACATAC                        |
| 5' Fn       | CAAAGGTGTCGGTGATGGTGATGAG                         |
| NUP         | AAGCAGTGGTATCAACGCAGAGT                           |
| UPM-L       | CTAATACGACTCACTATAGGGCAAGCA<br>GTGGTATCAACGCAGAGT |
| UPM-S       | CTAATACGACTCACTATAGGGC                            |
| Nramp-GF    | TAACAAACCGCTCACCTTCTG                             |
| Nramp-GR    | CGACTATTCCCACCGCCT                                |
|             |                                                   |

实时荧光定量 PCR: 以β-actin(KF932267)为内参, 用基因特异性引物 RT-F 和 RT-R 检测哈维氏弧菌感染 前后,鱼的不同组织在不同时间的 *Nramp* 表达,实验 样本重复数为 5(具体方法参见 TaKaRa 定量试剂盒)。

### 1.4 目的片段纯化、克隆及测序

克隆 Nramp 基因的 PCR 产物经 1%的琼脂糖凝 胶电泳检测,将目的片段切胶回收[具体方法参照 Gel Extraction Kit(OMEGA)试剂盒说明书]。将回收产物 与 pMD-18T 载体(TaKaRa)按摩尔数 5:1 的比例混 合,加入等体积的 Solution I 于 16℃连接,取连接产 物 10 µl 转化至 TOP10 大肠杆菌(*Escherichia coli*)感 受态细胞,菌液 PCR 鉴定出阳性克隆后,送上海英 潍捷基贸易有限公司测序。

用于筛选 *Nramp* 基因 SNP 的 PCR 产物,取 5 μl 经 1%的琼脂糖凝胶电泳检测,将条带清晰单一的 PCR 产物直接送上海英潍捷基贸易有限公司测序。

### 1.5 序列分析和数据统计

利用 NCBI 网站 BLAST 工具对测序后拼接结果 进行同源性比对;用 Signal P(Nielsen *et al*, 1997)分析 信号肽序列;利用 ScanProsite 在线服务器(http:// prosite.expasy.org/scanprosite)分析蛋白的二级结构; 用 DNASTAR 5.0 软件分析 cDNA 序列和开放阅读 框;用 Clustal W 软件(Kyte *et al*, 1982)进行多重序列 比对;利用 MEGA 4.0(Tamura *et al*, 2007)中的邻位相 联法(Neighbor-Joining, NJ)(Saitou *et al*, 1987)构建系 统进化树;采用 Kyte and Doolittle 算法(Kyte *et al*, 1982),通过 ProtScale 在线工具(http://web.expasy. org/protscale)分析蛋白的亲水性特征;运用 PopGene 32 分析基因型频率、等位基因频率、Hardy-Weinberg 平衡检验等;利用 SPSS 17.0 和 SAS(Version 9.1)软件 对 SNP 位点与性状关联性进行卡方检验。

### 2 结果与分析

### 2.1 半滑舌鳎 Nramp 基因全长 cDNA 的克隆

利用引物 Nramp-F/Nramp-R,以半滑舌鳎脾脏 cDNA 为模板,PCR 扩增得到长度为 1085 bp 的目的 条带,经测序及 BLAST 比对分析,确定该条带为 Nramp 基因片段;根据此片段设计合成 4 条特异性引 物进行 RACE 扩增,分别得到 5' RACE 772 bp 和 3' RACE 2068 bp。用软件 DNASTAR 拼接得到半滑舌 鳎 Nramp 基因全长 cDNA 序列为 3717 bp (GenBank 序列号: KP878556)。半滑舌鳎 Nramp 全长 cDNA 由 1677 bp 的开放阅读框(ORF)、较短的 172 bp 5'末端非翻译区(Untranslated Regions, UTR)和一个相对较长的 1868 bp 的 3' UTR 组成。3'末端含有 1 个典型的加尾信号 AATAAA 和 30 bp 的 Poly(A)尾;此外,在 ORF 末端上发现了 1 个铁反应控制蛋白结合位点(IRE)的特征序列(CNNNNNCAGTG)(Casey *et al*, 1988)(图 1)。

### 2.2 半滑舌鳎 Nramp 蛋白的结构分析

根据得到的半滑舌鳎 Nramp 基因 cDNA 序列推 导其相应的氨基酸序列,结果分析显示,1677 bp 的 ORF 序列编码 1 个含 558 个氨基酸的蛋白, 预测相对 分子量为 61.9 kDa, 等电点为 4.95。利用 ScanProsite 分析该蛋白的二级结构(图 1),发现该蛋白具有 Nramp 家族的典型特征: 10个跨膜区(TM), 1个由 20个氨 基酸残基组成的、高度保守的胞质内转运结构域 (CTM)介于 TM6 和 TM7 之间, 3 个潜在的 N-糖基化 作用位点(N-X-S/T-X), 且均位于 TM5 和 TM6 之间, 两个蛋白激酶 C 磷酸化作用位点(S/T-X-R/K), 分别 位于 TM1 之前的 N 端和 TM10 之后的 C 端; 该蛋白 还含有1个位于TM4和TM5之间的酪氨酸激酶磷酸 化作用位点(R/K-X-X-X-D/E-X-X-Y), 13 个 N-豆蔻 酰化作用位点(G-[EDRKHPYFW]-X-X-[STAGCN]-P) 以及6个酪蛋白激酶Ⅱ磷酸化作用位点(S/T-X-X-D/E) (图 1)。从蛋白的氨基酸组成上看,Leu、Val、Ile、Ala、 Phe、Pro、Met 以及 Trp 等非极性氨基酸占 52.6%, 表 明该蛋白具有较强的疏水性,通过 ProScale 亲水性分 析的结果也进一步验证了这一典型特征(图 2), 鱼类 Nramp 的亲水性分布图与小鼠和人 Nramp2 几乎一致, 半滑舌鳎 Nramp 与牙鲆、大菱鲆、斑点叉尾鮰等鱼类 的 Nramp 在胞质内外环的间隔大小上也高度保守。

### 2.3 Nramp 序列比对和系统进化分析

利用 Clustal W 软件对半滑舌鳎 Nramp 的氨基酸 序列同人、小鼠、牛、绵羊、原鸡及其他鱼类 Nramp 氨基酸序列进行了比对分析(图 3),发现所比对物种 的氨基酸序列在 CTM 和 TM 区均相对保守,尤其是 TM4 区,所有鱼类中 Nramp 完全保守,和其他物种 Nramp 也只有 1 个氨基酸的差异;鱼类的 Nramp 在 TM1、TM2、TM6、TM8 区氨基酸的保守性要显著高 于 TM3、TM5、TM7、TM9、TM10 区。在 CTM 区, 除小鼠、人 1、绵羊和野猪中有 1 个氨基酸残基(A) 的差异外,在其他的鱼类、两栖类和哺乳类 Nramp 中高度保守(图 3)。此外,位于 TM5 和 TM6 之间的 两个 N-糖基化作用位点在所比较的物种间保守性较 高,其中,靠近 TM5 区的 N-糖基化作用位点在所有

l tgttttagagacgactttgaggtaacgtgccgcttgcttagcatcacatttataaagaattcccaactaatggagatttaacctcgaagaatcgctttactctca M K T DE D E 0 Ι E А 106 cgtactgtttacgaaggggggctgacattgatccctttaattcccaggggtcccccagcctgccccaATGAAGACCGAAGACAATGTTGCAGAGAGAGA 14 SPQENGVQTSQYSAIPPVDQEEQFS<u>TYFE</u>DKVPIP 211 CTCTCTCAGGAGAATGGAGTCCAGACGTCACAGTACAGCGCCATCCCTCCGGTGGACCAGGAGAGAGCAGTTCTCCACATACTTTGAGGACAAGGTGCCCATTCC <u>s f r</u> k l 49 E N V Ν 0 L F WAFTGPGFLMSIAYLDPGNIESD 316 TGAGAATGTAAACCAGTTGTTCAGTTTCCGTAAACTCTGGGCCTTCACTGGACCAGGGTTTTTGATGAGCATCGCGTACTTGGACCCAGGAAACATTGAGTCTGA 84 L Q S <mark>G A K A G F</mark> K <u>L L W V L L L A T L L G L L L Q R L A A</u> R L G V TM1  $421\ CCTGCAGTCTGGAGCTAAAGCTGGCTTTAAGCTCCTATGGGTTCCTCTTAGCCACCATCATCGGACTGCTCTTGCAGAGGTTAGCTGCACGCCTCGGGGGCCGT$ 119 T G M H L A E V C N R Q Y P T V P R I I L W L M V E L A I I G S D M Q 526 AACTGGGATGCACCTGGCTGAAGTCTGCAACCGGCAGTATCCTACTGTTCCTCGGATCATCCTTTGGCTGATGGTG<u>GAACTGGCAAT</u>TATTGGCTCAGACATGCA 154 E V I G C A I A L N L L S V G R <u>J P L W G G V L I T J T D T F V F L F</u> TM2 5' RACE primer 4 631 GGAAGTCATTGGCTGTGCCATAGCCCTCAACCTACTCTGTGGGGCAGGATCCCTCTGTGGGGAGGAGTCCTCATCACCGACACCTTTGTCTTCTCTTT 189 L. D. K. Y. G. L. R. K. L. E. A. F. F. G. F. L. J. T. V. M. A. L. S. F. G. Y. E. Y. V. L. V. K. P. D. Q. TM3 736 CCTAGACAAATATGGCCTGAGGAAACTGGAAGCCTTCTTTGGTTTCCTCATTACTGTAATGGCGCTCAGCTTTGGTTATGAGTATGTCCTTGTGAAGCCAGACCA 224 G E L L K G M F V P Y C A G C G P V Q L E Q A <u>V G J V G A V I M P H N</u> TM4 841 GGGGGAGCTGCTGAAGGGGATGTTTGTTCCGTACTGTGCAGGCTGTGGGCCTGTGCAGCTGGAACAGGCGGTGGGAATAGTCGGCGCTGTCATCATGCCCCACAA 259, <u>I, Y, L, H, S, A, L, V</u>, K, S, R, D, I, D, R, K, N, K, <u>K, E, V, K, E, A, N, K, Y</u>, <u>Y, F, I, E, S, T, J, A</u> 294 <u>L F J S E L I N V E V V A V F</u> A Q A F Y <u>N K T N M E</u> V N A E C <u>N A T G</u> TM5 1051 TCTCTTCATCTCATCTCATCAACGTCTTTGTTGTGGGCGGTCTTCGCTCAAGCCTTCTACAATAAGACCAACATGGAAGTGAATGCAGAATGTAATGCAACATGG 329 <u>S P H T D L F P L N N G T L</u> E V D I Y K G <u>G V V L G C F F G P A A L Y</u>. TM6 CTM 1156 AAGTCCTCATACAGATCTCTTCCCTCTGAACAACGGCACACTGGAGGTGGACATCTACAAAGGGGGGCGTGGTCCTGGGCTGTTTCTTTGGCCCGGCAGCTCTTTA 364 <u>L W A L G L L A A G Q & S T M T G T Y S G Q E V M E G F L N</u> L Q W S R 1261 CATCTGGGCCATCGGGATCCTGGCAGGACGAGCACGAGCTCCACCATGACAGGCACCTTACTCTGGCAGGAGGGGTTTCTTGAACCTGCAATGGTCCAG 399 FAR<u>VLLTRSLALTPTLLVALE</u>QDVQHLTGMNDFLN TM7 1366 ATTTGCCCGAGTGCTTCTGACCCGCTCCATCGCCATCACCACCTCTGCTGGTTGCCATTTTCCAGGATGTGCAGCATTTGACTGGCATGAACGACTTCCTGAA 434 <u>V L Q S M Q L P F A L J P I L T F T S L T S J</u> M N D F A N G L F <u>W K I</u> T M 8 1471 TGTGCTTCAGAGTATGCAGCTTCGATTCGGTTTGATTCCAATTCTGGCATGGCTTGACCATGGATTGTCTGGGAAAAT 469 <u>S\_G\_G\_I\_V\_J\_L\_V\_V\_C\_A\_L\_N\_M\_Y\_F\_V\_</u>V\_V\_V\_V\_V\_V\_T\_S\_L\_N\_S\_<u>V\_L\_L\_Y\_V\_F\_V\_A\_L</u> 3' RACE primer TM9 1576 CTCCGGTGGCATCGTCATCCTGGTGGTTTGTGCAATCAACATGTACTTCGTGGTGGTTTATGTGACTT<u>CACTGAACAG</u>CGTGCTGCTCTACGTCTTCGTTGCCCT 504 <u>L S L A Y L C E Y G Y L V W</u>. H C L V A L G V <u>S C L D</u> F <u>S S R</u> I P V S F TM10 539 M R Q P D I Y L L N D M D S E P V V E R 1786 TATGCGACAGCCAGACATTTACCTGTTGAATGACATGGACAGTGAGCCTGTGGGTTGAGAGATAGgaccgacttttgtgagtgaactggaagacgctgacgtgctt 1891 gactaaaatetteacetgeetgtgeeteatettetaaetgeaetegtteagaeetggatataaaeetetteattteageaatgeetettttteaaeatetteag  $2206\ gacatgittittagitciccicaaccicacaccgitaacagcaggataiccaatgigattittgitgcataagctatggcgigittaaagittgiatactigiga$ 2416 aaaaaa agaa ta taga taga gaaaa ta ttaa ti ta ta ti at ca ti afgtag faga ga ti ta ct ca ti ti ta caaaaa a ta ta ta gag ct gag ci ti gg t ci cg a caa 2521 aagtacaaattigcaggaatgitaaaaatcccataggicagicticcatgacgctgcatcaaagttaaagaaatgaattcataaacaacataatgcacttaaggc 2626 cacacatic controping cata a at a gattitta a a a aggic cgtitti at gattering taligigigic at tittatita at gittatita at tagt ag tige cata a category of the second sec 2731 acagiitgacticacatigeitticacetgageaacagaaaciitaageetigigittaigagggaagiigigaatgeatigicigitaaaaateagaaacgig 2836 cigcacagitatacaaaagacaacciacaccaacigcitatigatggatgitatgaagcagggaagatgcicaccigitatagicaggigicigiagicigagic 2941 agacgtgtatcagtgtitgacaatgtcaatgacaaagacttagggacgtttgacagaaaagtaagatttgttittatttctataaaaatatctggattctgagta 3151 the a a catal get gaateling a agaaa a cate ta a a a tell cataga cate at tagg gaa a a ang a cataging index to entre the tag ta a gin get a start of the tagget and the set of the tagget and t 3256 terg ta a catatge a cata cgt erg ca cta catgetg titetg erg tgt ette ett gatt ca a a tg a cetg tg tt a cta catta a a ga a gt a categ tg tg t 3571 atttgcgaaatttgatttttttttaaaggtgctactgaaatgttgtatgatgttgtatttgtatacagtcatgtttcttctgagcagctgttgttg<mark>a</mark>ataaa 图 1 半滑舌鳎 Nramp 全长 cDNA 序列及推测出的氨基酸序列

Fig.1 Full-length cDNA and predicted amino-acid sequence of C. semilaevis' Nramp gene

跨膜区(TM)用下划虚线标出,并编号 TM 1−10;位于 TM6 和 TM7 之间的转运结构域(CTM)用方框和下划虚线标出;加 尾信号(aataaa)用阴影和方框标出;位于 ORF 末端的 IRE 位点用阴影和下划线标出;N-糖基化位点用双虚线标出;酪蛋白 激酶 II 磷酸化位点用方框标出;蛋白激酶 C 磷酸化位点用下划线标出;酪氨酸激酶磷酸化位点用双下划线标出;N-豆蔻 酰化位点用阴影标出

The transmembrane regions (TM) are underlined with broken lines and numbered 1–10. The consensus transport motif (CTM) between TM6 and TM7 is boxed and underlined with broken line. The poly A signal (aataaa) is boxed and shaded. The IRE site located in terminal of ORF is underlined and shaded. The N-glycosylation sites are marked with double broken lines. The casein kinase II phosphorylation sites are boxed. The predicted protein kinase C phosphorylation sites are underlined with single lines.

A tyrosine kinase phosphorylation site is underlined with double lines. The N-myristoylation sites are shown with shade



图 2 几种脊椎动物 Nramp 蛋白的亲水性分布 (Kyte 和 Doolittle 算法)

Fig.2 Hydropathy profile conservation among seleted vertebrates' Nramp proteins (Kyte and Doolittle algorithm)

CsNramp: 半滑舌鳎 Nramp; SmNramp: 大菱鲆 Nramp; PoNramp: 牙鲆 Nramp; IpNramp: 斑点叉尾鮰 Nramp; HsNramp2: 人 Nramp2; MnNramp2: 小鼠 Nramp2; 上面 一行数字代表半滑舌鳎 Nramp 基因的跨膜区; 下面一行数 字代表 6 个物种 Nramp 的氨基酸数目 CsNramp: C. semilaevis Nramp; SmNramp: Scophthalmus maximus Nramp; PoNramp: Paralichthys olivaceus Nramp;

IpNramp: Ictalurus punctatus Nramp; HsNramp2: Homo sapiens Nramp2; MnNramp2: Mus musculus Nramp2.
Numbers above are the TMs of CsNramp. Numbers below are the amino acid numbers of six Nramp proteins

鱼类 Nramp 中高度保守,而接近于 TM6 区的,除虹 鳟 Nramp alpha 外,在所比较的其他物种间均表现为 高度保守。同时本研究还发现,位于 TM5 和 TM6 之 间,所比较物种的 Nramp1 均比 Nramp2 多 1 个氨基 酸残基,这与草鲤鱼和斑点叉尾鲫 Nramp 与其他物 种 Nramp 氨基酸序列比对结果是一致的(Chen *et al*, 2002;范玉顶等, 2011)。

将半滑舌鳎 Nramp 的氨基酸序列与其他物种的 Nramp 氨基酸序列进行了比对分析,并在此基础上构 建了系统进化树(图 4)。系统进化树的分析结果表明, 半滑舌鳎 Nramp 和其他鱼类的 Nramp 聚为一簇, 又 和鸟类与哺乳类 Nramp2 聚在一起形成一个分支, 而 哺乳类 Nramp1 则单独构成另一个分支, 由此可知鱼 类的 Nramp 与哺乳类和鸟类的 Nramp2 更为类似; 与 半滑舌鳎 Nramp 亲缘关系最近的是大菱鲆和牙鲆。

## 2.4 半滑舌鳎 Nramp 基因在正常组织及感染后组织 中的表达分析

对 Nramp 基因在半滑舌鳎的肝脏、脾脏、头肾、肠、鳃、血液、脑、心脏、皮肤、肌肉、性腺等 11 种组织进行实时荧光定量 PCR 表达分析,发现在所

检测的 11 种组织中 Nramp 基因表达量差异明显, 脾 脏和肾脏中的表达量最高, 其次是肝脏、皮肤、血液、 鳃、肠、心脏和脑, 而肌肉和性腺中的表达量最低 (图 5)。利用实时荧光定量 PCR 对哈维氏弧菌感染后 半滑舌鳎不同组织 Nramp 基因表达量进行了分析, 结果显示, 与 PBS 对照组相比, 感染半滑舌鳎的脾 脏、肾脏和肝脏中 Nramp 基因表达量呈升高趋势, 其中, 脾脏和肝脏均在感染哈维氏弧菌后 24 h 表达 量最高(图 6、图 7), 而在肾脏中则是 6 h 达到最大值, 96 h 后表达量基本又回落至对照组的水平(图 8), 在 鳃中则呈先降低后恢复至正常表达水平的趋势(图 9)。

#### 2.5 半滑舌鳎 Nramp 基因抗病分子标记 SNP 筛选

利用直接测序法检测分析,在 1402 bp *Nramp* 序 列中,共检测到 15 个 SNP 位点,对其中位于第 2 内 含子的 3 个 SNP[SNP-g.3113(T→C)、SNP-g.3125(A →G)和 SNP-g.3164(A→T)]位点成功测序分型。对所 分型的 SNP 位点的基因型频率与等位基因频率记录 并进行哈德温伯格平衡检验,统计结果见表 2;用软 件 SPSS 17.0和 SAS(Version 9.1)对其进行性状关联分 析,等位基因频率和基因型频率在抗性组及易感组中 的卡方检验结果见表 3,其中,SNP-g.3125(A→G)的 等位基因频率和基因型频率与半滑舌鳎对于鳗弧菌 的抗性显著相关(*P*<0.01)。

### 3 讨论

本研究克隆得到了半滑舌鳎 Nramp 基因的全长 cDNA。与已报道的脊椎动物 Nramp 氨基酸序列比对 分析结果表明,半滑舌鳎 Nramp 与其他鱼类 Nramp 的同源性在 83%-91%之间,与其他脊椎动物 Nramp2 的同源性(74%-78%)要明显高于与 Nramp1 的同源性 (63%-66%);系统进化分析的结果也进一步表明,鱼 类的 Nramp 与其他脊椎动物 Nramp2 聚在一起,因此, 半滑舌鳎 Nramp 基因与其他脊椎动物的 Nramp2 基因 更为相似,这与在其他鱼类中 Nramp 基因分析得到 的结论是一致的(Chen et al, 2002; Chen et al, 2004、 2006; Dorschner et al, 1999; Saeij et al, 1999)。

半滑舌鳎 Nramp 蛋白含有 10 个 TM、1 个 CTM、 6 个酪蛋白激酶 II 磷酸化位点、13 个 N-豆蔻酰化位 点、两个蛋白激酶 C 磷酸化位点、3 个 N-糖基化位 点、1 个酪氨酸激酶磷酸化位点等,这与人(Kishi, 1994; Kishi et al, 1997)、小鼠(Grunheid et al, 1995; Govoni et al, 1997)、鲤(Saeij et al, 1999)、斑点叉尾鲴(Chen et al, 2002)、虹鳟(Chen et al, 2004)、牙鲆(Chen et al, 2006)、 大菱鲆(Chen et al, 2007)以及草鱼(范玉顶等, 2011)序

|                                    |           |                   |                    |                |                |              |              |                    |                |                |             |              |                   | т           | M1                |                    |                 |                |                |            |                |                |            |                    |                |              |                    |                |              |                  |                    |
|------------------------------------|-----------|-------------------|--------------------|----------------|----------------|--------------|--------------|--------------------|----------------|----------------|-------------|--------------|-------------------|-------------|-------------------|--------------------|-----------------|----------------|----------------|------------|----------------|----------------|------------|--------------------|----------------|--------------|--------------------|----------------|--------------|------------------|--------------------|
| 半滑舌鳎 C.semilaevis<br>大菱鲆 S.maximus | G P (     | 3 F L M           | ∕SI∕<br>           | 4 Y L          | D P C          | 5N I I<br>   | ESD          | LQ S (             | ЗАК<br>        | AGF            | К <u>LI</u> | . <u>wv</u>  | <u>LLL</u>        | <u>AT</u>   | <u>I I G I</u>    | .LL(               | <u>Q R I</u>    | <u>. A A</u>   | RLG            | V V T      | GМН<br>        | LAE            | VCN        | NRQ                | YРТ<br>        | V P F        | RIILV              | LMV            | E L A        |                  | [172]<br>[172]     |
| 牙鲆 P.olivaceus<br>虹鳟 O mykiss      |           |                   |                    |                |                | • •          | • • •        |                    |                | • • •          |             | • • •        | <br>G             |             |                   | • •                | •••             | • •            |                |            | • • •          |                |            |                    |                |              |                    | • • •          | • • •        |                  | [172]<br>[172]     |
| 斑马鱼2 D.rerio 2                     |           |                   |                    |                |                |              |              |                    |                |                |             |              | G                 | i           |                   |                    |                 |                |                |            |                |                |            | Н                  |                |              |                    |                |              |                  | [172]              |
| 阜鲤鱼 C.idella<br>斑点叉尾鮰 I.punctatus  | <br>s     |                   |                    | · · ·          |                | •••          |              | C                  | 1<br>V         | • • •          |             |              | А<br>G            |             | · · · ·           | •••                |                 | •••            | · · ·          |            | · · ·          |                | .к.<br>Н   | н<br>1             | M<br>          |              |                    |                | · · ·        |                  | [172]              |
| 原鸡2 G.gallus 2                     |           |                   |                    |                |                | • •          | • • •        |                    | V              |                | • •         |              |                   |             | V                 |                    |                 | • •            |                |            | . L .          |                | F          | 1                  | . R .          |              |                    | • • • •        |              |                  | [172]              |
| 人2 H.sabiens 2<br>小鼠2 M.musculus 2 |           |                   |                    |                |                |              |              |                    | Ξv             |                |             |              |                   |             | . V               |                    |                 |                |                |            | . L .          |                | F          | 1<br>1             | K              |              | •••••              |                |              |                  | [172]              |
| 非洲爪蟾 X.laevis<br>小鼠1.M.musaulus 1  | • •       |                   |                    | <br>F          | · · ·          | • •          | • • •        | C                  | I<br>V         | • • •          | • • •       | • • •        | G<br>N            |             | VL<br>VI          | . C<br>C           |                 | . V            |                | • • •      | D              | L Q<br>G       | I.F        | AL Y               | К.<br>к        | Α            | W                  | IL.<br>TI      | . I .        | · · · · ·        | [172]              |
| 人1 H.sapiens 1                     |           |                   |                    | . F .          |                |              |              | A                  | v              |                |             |              | w                 |             | V L               | . c                |                 |                |                |            | . KD           | . G .          | F          | ΗLY                | K              |              | ΤV                 | ŤĪ             |              | .v               | [172]              |
| 绵羊1 O.aries 1<br>野猪1 S scrofa 1    | •••       |                   |                    | .F.            |                |              |              | A<br>A             | V<br>V         | •••            |             |              | W                 |             | VL<br>VL          | . C<br>. C         |                 | •••            | · · ·          | · · ·      | . KD           | □.G.<br>□.G.   | F          | HLY<br>HLY         | K              |              | TL                 | . T I<br>. TM  | · · ·        | · V · · ·        | [172]<br>[172]     |
| 出現工程のコー                            | DM        | 2.5.11            | LCC.               |                | 1.511          | 1.01         | ic n         | 1.011              | 100            | T              | M2          | DT           | CNE               | I FI        | DVA               | CL.                | D IZ I          | <b>F</b> 4     | FFC            | ET I       | TM3            |                | ECA        | . E MA             |                | V D I        | OCEI               | LVC            | VEX          | DVCA             | [250]              |
| 半滑古鳎 C.semilaevis<br>大菱鲆 S.maximus | - DM<br>  | ι                 |                    | 9 I А<br>      | L N I          | . L S '      | /GR          | <u>1 P L v</u><br> | . A .          | <u>VLI</u><br> |             |              | <u>F V F</u>      | <u>LF</u> I |                   | - G L I            | к <u>кі</u><br> | . E A          | <u>FFG</u>     | <u>FLI</u> | 1 V M          | . I .          | <u>FG</u>  | <u>( E Y '</u>     | <u>v L</u> v.  | к рі<br>     | JUGEI              | . L K G        | L            | - P Y C A        | [258]              |
| 牙鲆 P.olivaceus                     | • •       |                   |                    |                | <br>Б          | • •          | • • •        |                    |                |                | •••         | <br>r        |                   | • •         |                   | • •                |                 | • •            |                |            | <br>т          | . I .<br>v     |            | •••                | I              | <br>D        | К .                | .т.            |              | <br>ц в          | [258]              |
| 斑马鱼2 D.rerio 2                     |           |                   |                    |                |                |              |              |                    | . A .          |                |             |              |                   |             |                   |                    |                 |                |                |            | . I .          |                |            |                    | . R .          | A            |                    | /.Q.           | L            | R                | [258]              |
| 草鲤鱼 C.idella<br>斑占叉尾鋼 I munetatus  |           |                   | S                  |                | <br>F          | • •          |              |                    | <br>A          |                |             | [<br>/       |                   | • •         |                   | • •                |                 | • •            |                | V          | . I .<br>I     | <br>VТ         | I          | F                  | . R<br>R       | А<br>А       | A                  | /<br>/         | L<br>L       | Ç                | 258]               |
| 原鸡2 G.gallus 2                     |           |                   | s                  |                | Î.,            |              | . K          |                    |                |                |             | <b>.</b>     |                   |             |                   |                    |                 |                |                |            | . I .          | T              |            |                    | .т.            | R            | .KQ                | . R .          | Ĺ.,          | . E . R          | [258]              |
| 人2 H.sapiens 2<br>小鼠2 M musculus 2 | •••       | •••               | S<br>S             | · · ·          | I<br>I         |              | <br>         | · · · ·            | · · ·          | • • •          | /           | А<br>А       | · · ·             |             | · · · ·           | •••                |                 | •••            |                | · · ·      | . I .<br>. I . | T              |            |                    | .Т.<br>IТ.     |              | 5 . SQN<br>5 . SQN | /<br>/.R.      | • • •        | . S. S<br>. S. F | 6 [258]<br>P [258] |
| 非洲爪蟾 X.laevis                      |           |                   | T                  |                | FS.            | 5            | S            |                    |                |                |             | []           | LF.               | • •         |                   |                    |                 |                |                | L          | . I .          | . V T          |            |                    | . V .          |              | . K . V            | /              | F            | · S              | [258]              |
| 小鼠1 M.musculus 1<br>人1 H.sapiens 1 |           |                   | T                  | <br>           | г<br>F         | /            | <b>X</b>     |                    | . D .<br>      |                | 11          |              | .г.<br>.F.        |             | N .               |                    |                 |                |                | L<br>L     | . I .<br>. I . | T              |            |                    | . VA           | п. з<br>R. Е | 5А.<br>Е.А.        | . R .          | L . L        |                  | 258                |
| 绵羊1 O.aries 1<br>野建1 Samuela 1     | • •       |                   | Т<br>т             |                | FS.            | /            | ۱<br>۵       |                    |                | • • •          | · · · V     | /            | . F .<br>F        | · .<br>v    | N.                | • •                |                 | • •            | · · · Δ        | • • •      | .Ι.<br>ΔΙ      | Т<br>ЕТ        | • • •      |                    | . VA           | R.A<br>R.A   | ιΑ.<br>Δ           | . Q .<br>R     | L.L<br>I.I   | S . F            | P [258]            |
| ±] 相1 3.5Cr010 1                   |           |                   |                    |                |                |              | 1.0          | M4                 |                |                |             |              |                   |             |                   | • •                |                 | • •            |                |            |                | TM             | 15         |                    |                | <b>K</b> . 1 | • • • • • •        |                |              |                  | 12501              |
| 半滑舌鳎 C.semilaevis<br>大菱鲆 S maximus | GC        | GPV(              | QLEC<br>           | 2 A <u>V</u>   | GIV            | GAV          | / I.M.       | <u>PHN</u>         | <u>IYL</u>     | HSA            | LVF         | (SRI         | D I D<br>E        | RKI         | NKKE              | EVK.               | E A N           | IK Y           | <u>YFI</u>     | EST        | IAL            | FIS            | F L 1      |                    | <u>FVV.</u>    | AVE          | AQAH               | YNK<br>. A .   | T NM         | EVNA<br>0E       | (344)<br>[344]     |
| 牙鲆 P.olivaceus                     |           |                   | <br>N              |                |                |              |              |                    |                |                |             | !            | Ε                 |             | I                 | )                  |                 | • •            | F              |            | ν              |                |            |                    |                |              | . E                | . D .          | I            | Q.HE             | [344]              |
| 則興 O.mvkiss<br>斑马鱼2 D.rerio 2      |           | A                 | . IV               |                |                |              |              |                    |                |                |             |              | 5<br>N            | . u<br>I. S |                   |                    |                 |                |                | s          |                | ίv.            |            |                    |                |              | . Е<br>. Е         | . E .<br>. G . | 1            | s ç              | [344]              |
| 草鲤鱼 C.idella<br>斑点又尾鲷 I mmetatu    |           | T                 |                    |                | · · ·          | • •          | • • •        |                    |                | • • •          | • • •       |              | <br>              | . A         | R.<br>R           | • •                |                 | • •            | <br>F          | S          | • • •          | . V .          | • • •      |                    | . A .          |              | . E<br>F           | . G .          | • • •        | GC               | ) [344]<br>) [344] |
| 原鸡2 G.gallus 2                     |           | ΤP                |                    |                |                |              |              | 1                  | v              |                |             | (            | ζνn               | . s         | . P R .           | . R                | D               |                | F . A          | c          | т              | . v .          | . 1 .      |                    |                | s            | . E                | . G .          | A            | D.HE             | [344]              |
| 人2 H.sapiens 2<br>小鼠2 M.musculus 2 | 1         | RTP.              | . I .<br>. V .     |                |                |              |              | 1<br>1             | v<br>v         |                |             | (<br>(       | JVN<br>JVN        | I. N        | Q.<br>Q.          | . R<br>. R         |                 |                | F<br>F         | C          |                | . v .<br>. v . | · I ·      |                    |                | S<br>S       | . E                | FG.            | E            | .Q.VE<br>.Q.VE   | E [344]            |
| 非洲爪蟾 X.laevis                      |           | S P               | E.L                |                | 1              | • •          | [            |                    |                | S              | • • •       | !            | ۷V.               | (           | Q.Ĥ.              | . S                |                 | Μ.             | . M .          | S          |                | . V .          | . V .      | L                  | M              |              | . E                |                | Ç            | DAFE             | 344]               |
| 小虱1 M.musculus 1<br>人1 H.sapiens 1 |           | . QF1<br>. HP1    | E.L                |                |                |              | [<br>[       |                    | · · ·          |                |             |              | с <b>у</b> .<br>Е | . AI        | RAL               | DIR                |                 | M .            | гL.<br>FL.     | . A .      |                | 5 V .<br>S V . | .1.        | L                  | M              |              | G                  | . Q .          | C            | AAFN             | 344]               |
| 绵羊1 O.aries 1<br>野球1 S servefa 1   | • •       | QPI               | E.L.<br>F.I.       |                |                | • •          | [<br>[       |                    |                | S              | • • •       | ]            | Eν.<br>Ev         | . SI        | RAL               |                    |                 | M .<br>N       | FL.<br>FI      | . A .      | • • •          | SV.<br>ν       | . F .<br>F | L<br>T             | M<br>M         |              | G                  | . KQ           | Ç            | AAFN             | 1 [344]<br>1 [344] |
| ETHET S.SCIOLUT                    | <br>т.сБ  |                   | Jon                |                |                |              | • • •        |                    |                |                |             |              |                   |             | TM6               |                    |                 |                |                |            |                | <br>(          | стм        |                    |                |              |                    |                |              | TM7              |                    |
| 半滑古鳎 C.semilaevis<br>大菱鲆 S.maximus | Q.        | NA 1 (            | JSP -              | - H I<br>      |                |              | D            |                    | v D I<br>      | <u>тке</u><br> |             |              | . V .             |             | • A L •           |                    | . V .           | <u>, i L</u>   | <u>AA</u> G    | <u> </u>   |                |                |            | <u> </u>           | • E G          | F L P        | . R                | • K F A        | к <u>v</u> г |                  | [430]              |
| 牙鲆 P.olivaceus<br>紅崎 O mukias      | · · ·     | <br>              |                    |                |                | . M          | . <u>. N</u> |                    |                |                | • • •       |              | .ν.               | ••,         |                   | • •                |                 | • •            |                |            |                |                |            |                    |                |              | . R<br>R           |                |              |                  | [430]<br>[430]     |
| 斑马鱼2 D.rerio 2                     | Q.        | . E .             | 1                  |                |                | . A          | . E          | $\overline{}$      |                |                |             |              |                   |             | ••••              |                    | . v .           |                |                |            |                |                |            |                    |                |              | . R                |                |              |                  | [430]              |
| 草鲤鱼 C.idella<br>斑点叉尾鮰 Lnunctatus   | к.<br>sQ. | . Q S<br>. E .    | : : : :<br>: : :   | s<br>s         | <br>N          | . A<br>      | . E<br>. N   | : : ;              |                |                |             |              |                   |             |                   |                    | ίv.             |                |                |            |                |                |            |                    |                |              | . R                |                |              |                  | [430]              |
| 原鸡2 G.gallus 2                     | V .       | ANA               | 5.A                | A              | A              | . SI         | . A          |                    |                |                | . A         |              | . Y .             | • •         |                   |                    | · · ·           | • •            |                |            |                |                |            |                    |                |              | . R                |                | · · ·        |                  | [430]              |
| 人2 H.satiens 2<br>小鼠2 M.musculus 2 | v.        | KNN:              | S<br>S             | A              |                | . SI         | i s          | A                  |                |                |             |              | Y.                |             |                   |                    | ίv:             |                |                |            |                |                |            |                    |                |              | . K                |                | 1            |                  | [430]              |
| 非洲爪蟾 X.laevis<br>小鼠1 M musaulus 1  | F.(       | Q - S (<br>AN S ( | 5.51<br>SLO1       | Р.А<br>NVA     | GV.            | . A<br>RI    | . E          | S.S.               |                |                |             | [<br>1       | <br>т             | • •         |                   | • •                | . V .<br>V      | <br>T          |                | • • •      | • • •          | • • •          | A<br>A     |                    |                | <br>k        | .K                 | Y              |              | F                | [430]<br>[430]     |
| 人1 H.sapiens 1                     | Î.        | ANS               | SLHI               | ΟYΑ            | KI.            | . N          | . A          | . VA               |                | . Q .          | 1           | ί            | . Ľ .             |             |                   |                    |                 | Ĺ.             |                |            |                |                | A          |                    |                | F            | R. R               |                |              |                  | [430]              |
| 绵羊1 O.aries 1<br>野猪1 S.scrofa 1    | I         | ANS:<br>ANS:      | 5 L H I<br>5 L H I | DYA<br>DYA     | ТІ.<br>КІ.     | . RI<br>. R  | . L<br>. L   | . MA<br>. MA       | <br>F          | .Q.            | 1           | [            | . L .<br>. L .    |             | · · · ·           | •••                | . V .<br>. V .  | L.<br>L.       |                | · · ·      | · · ·          | · · ·          | A<br>A     |                    |                | k            | . R<br>. R         |                | <br>. L .    |                  | [430]<br>[430]     |
| *温千組 の                             | LA        | T<br>T D          | `М7<br>Г. I. I. N  |                | FOI            | voi          | т.           | GMNU               |                | NVI            | 0.51        | /01.1        | DEA               | TM8         | רווס              | БТ                 | ст 1            | с т.           | VND            | EAN        | GLE            | WEI            | \$60       | 3 I V .            | TM9            |              |                    |                | vvi          | TSIN             | [516]              |
| 十有百國 C.semildevis<br>大菱鲆 S.maximus |           | . V .             |                    |                | <u></u>        |              |              |                    |                |                |             |              |                   |             |                   |                    |                 |                |                |            | . WV           |                | 5          | SV.                |                | • • • •      |                    |                |              |                  | [516]              |
| 牙鲆 P.olivaceus<br>虹鳟 O mykiss      | • •       | <br>. F .         | •••                | · · ·          | • • •          | •••          | • • •        |                    |                | • • •          | •••         | • • •        |                   | • •         |                   | •••                | • • •           | • •            |                | •••        | V              |                | <br>G.     | <br>V .            |                |              | <br>F              |                | • • •        | . A              | [516]<br>5 [516]   |
| 斑马鱼2 D.rerio 2                     |           | .F.               |                    | V              |                |              |              |                    |                |                |             |              |                   |             |                   |                    |                 | . L            | .н.            |            | V              |                | G          | LL                 | L              |              |                    | I              |              | .D               | [516]              |
| 草鲤鱼 C.idella<br>斑点叉尾鮰 I.punctatus  | · ·       | . L .<br>. F .    |                    | V<br>          |                | Ť            |              |                    |                |                |             |              |                   | ::          | · · · ·           | ::                 |                 | . L<br>Р.      | . S .<br>      |            | A              |                | Ġ.         | . V L<br>. L T     | <br>L          | :::          | L.                 |                |              | . A<br>. A . K   | [516]              |
| 原鸡2 G.eallus 2                     | • •       | <br>T             | F                  | · · ·          | · · ·          | . E          |              |                    |                |                | M . I       |              |                   | • •         | .ν                | • •                | I               | • . V          | <br>c          |            | · · ·          |                | G          | A.                 | L              |              |                    | • • •          | Α            | MA               | [516]              |
| 人2 H.sablens 2<br>小鼠2 M.musculus 2 |           | . I .<br>. I .    | · · ·              | Ξv             |                | . E          |              |                    |                |                | 1           |              |                   |             | · · · · ·         |                    | F               | RPV            | . S .<br>. S E | . s .      | . I G          | . R .          | A          | L                  | V.I            |              | ,<br>              |                |              | QE.C             | 5 [516]<br>5 [516] |
| 非洲爪蟾 X.laevis<br>小鼠1 M musculus 1  | С.<br>С.  | . I .<br>. L .    | . V F<br>. V .     | A<br>V         | . K .<br>. R . | . E<br>LKI   | <br>         | . L .<br>. L .     | . L .<br>. L . | • • •          | l           | L .<br>. L . |                   | . L<br>VL   | . V               | •••                | . MF            | R P L<br>P A V | . C .<br>. OE  | . V .      | . I I<br>. RM  | G<br>S.A       | VAI        | LLL<br>SCIN        | . AL<br>VAL    | IM .         | L .<br>L .         | C              | I<br>S.L     | РМ. С<br>. Р Р   | 0 [516]<br>9 [516] |
| 人1 H.sapiens 1                     | С.        | . L .             | . v .              | v              | . R .          | LRI          | ). S         | . L .              | . L .          |                | I           | .L.          |                   | VL          |                   |                    | . M I           | TL             | . QE           |            | L              | N . V          | VTS        | SSIN               | VL             |              | L .                | · · :          | S . L        | P P              | [516]              |
| 编羊1 O.aries 1<br>野猪1 S.scrofa 1    | С.        | . L .<br>. L      | . V . J<br>4       | L . V<br>V     | . K .<br>. K I | L.I<br>L.I   | ).S          | . L . I<br>S L .   | ΗV.<br>.L.     |                | I           | .L.<br>.L.   | <br>              | V L<br>V L  | · · · ·           |                    | . M I<br>. M I  | AL             | . QE<br>. QE   | s          | V<br>. R V     | 'S<br>'N.V     | ITS        | 5 S I N<br>5 S I N | v v L<br>V . L |              | V.L.               | I<br>L .       | S. I.        | Р<br>Р Р         | 9 [516]<br>9 [516] |
| 半漫壬酮 Comilania                     | sv        | L Y               | V F V              | 411            | TMI            | )<br>. Y I ( | FV           | GYL                | vwh            | CLV            | ALC         | ivs          | CL D              | FS          | SRIF              | vs                 | ENE             | 2 O P          | DIY            | LIN        | DVD            | SEP            | VVF        | R                  |                |              |                    |                |              |                  | [599]              |
| 大菱鲆 S.maximus                      |           |                   | . LAS              | S              | . I .          |              |              | V                  | <u>A.</u> .    | I              |             |              |                   |             | VF                | t                  | K               | R.             | AVL            | IEE        | QSE            | YDS            |            | ·                  |                |              |                    |                |              | -                | [599]              |
| 牙鲆 P.olivaceus<br>虹鳟 O mykiss      | •••       | ••••              | . LAS<br>. LAG     | S<br>G.F       | . V.           | •••          | • • •        |                    | A              | · · · ·        | •••         | 1            | RV.               | · · · v . o | VF<br>CLAS        | 8<br>5 R M         | K<br>L T C      | KR<br>ihn      | ALL            | IEE        | QSE            | YDS<br>.DT     | N          |                    | EEE            | <br>нус      | GVVI               | NSD            | TVR          | s                | [599]<br>[599]     |
| 斑马鱼2 D.rerio 2                     | . T       | vii               | . LA               |                |                | 1            | 5            | I                  | ç              | L              |             |              | A . A             | СĞ          | . SAE             | 3                  | F               | PA             | AAL            | IQE        | QPE            | FDS            |            |                    |                |              |                    |                |              | -                | [599]              |
| 早興鱼 C.idella<br>斑点叉尾鮰 I.munctatus  | .Т<br>s   | I                 |                    | 5.I<br>        | . I .<br>. I . | !            | • · ·        | 1<br>1             | R<br>A.R       | I<br>I         |             | 1<br>        | κ<br>.ν.          | . RO<br>VCO | 51 V Q<br>3 . V F | 2<br>2             | F<br>N          | 1Р.,<br>1Р.,   | AVL<br>TVL     | I D E      | QLE            | FDS            |            |                    |                |              |                    |                |              | 2                | [599]<br>[599]     |
| 原鸡2 G.eallus 2                     | Н.0       | G                 | AGA                | . I .          | . V I          |              | <u>.</u>     | A                  | T.L            | I              |             | A            | A.S               | CG          | THC               | WA.                | .GA             | R.             | ELF            | <br>трс    | NVG            | ADA            | A . N      | /                  |                |              |                    |                |              | -                | [599]              |
| 八2 H.satiens 2<br>小鼠2 M.musculus 2 | н.,       | •••••             | . VA<br>. VA       | . v v<br>. v v | ιv.            |              | <br>         | г<br>F(            | а. Q<br>G. Q   | I<br>I         |             | L.I          | г.,<br>F.,        | CGI         | RSVS              | 51.1               | KVI             | . L I<br>. L S | EDT            | SGG        | NIK            |                |            |                    |                |              |                    |                |              | 2                | [599]              |
| 非洲爪蟾 X.laevis                      | . I<br>НР | P                 | . LAC<br>H         | GV.            | LFF            | . A .        | L.N.<br>GLT  | L<br>A             | L.Т<br>д т     | . CL           | . Н.        | AE           | F.S<br>FT         | RGI<br>H    | RHRC              | ) F . '<br>1 F ! ' | YEN<br>YGI      | PE<br>PN       | . LK           | SEI<br>GGV | CNN            | . A E          | . N -      |                    |                |              |                    |                |              | 2                | [599]<br>[500]     |
| 小郎1 M.musculus 1<br>人1 H.sapiens 1 | HP.       | AYF               | GLA                | r<br>          | AA.            |              | GLS          | Τ                  | T              | . C L          | . н         | AT           | F.A               | н.          | . HHH             | IFL                | YGI             | LE             | EDQ            | K - G      | ETS            | G              |            |                    |                |              |                    |                |              | -                | [599]              |
| 绵羊1 O.aries 1                      | HP.       | AYF:              | sι.                |                | AA .           | (            | iLΤ          | Г<br>т             | T              | I              | TQ.         | ATI          | к.А               | н.          | . HQF             | RFL'               | YGI             | .PG            | EDQ            | EEG        | RTS            | G              |            |                    |                |              |                    |                |              | -                | [599]              |

图 3 半滑舌鳎和其他物种 Nramp 氨基酸序列比对分析

Fig.3 Alignment of Nramp's amino acid sequences between C. semilaevis and other vertebrates

半滑舌鳎 Nramp 的 10 个 TM 区及 CTM 区用下划线标出;保守的 N-糖基化位点以方框标出;

"·"表示与半滑舌鳎氨基酸相同的位点;"-"表示此位点为空格

Putative transmembrane regions are underlined and numbered with TM 1-10. The consensus transport motif (CTM) is underlined. Conserved N-glycosylation sites are marked with boxes. Identical sites are indicated by dots(·), and gaps are shown by dashes(-)



图 4 半滑舌鳎和其他物种 Nramp 氨基酸序列构建的系统发生树(利用 Bootstrap 法进行 1000 次评估) Fig.4 Construction of phylogenetic tree based on Nramp amino acids of *C. semilaevis* and other species (the parameter was evaluated 1000 degree *via* method of Bootstrap)





各组织相对定量表达分析数据取自 5 条健康成鱼,以血液中 *Nramp* 基因表达量为标准, 用单因素方差分析数据,每个柱子上面的不同字母表示显著差异(*P*<0.05) Analysis of the relative tissue expression data are from five fish. All results were normalized by the blood *Nramp* expression levels. Statistical analysis was performed using One-Way ANOVA. Different letters above each bar denote significant differences (*P*<0.05)





liver after injected with V. harveyi

感染组:腹腔注射哈维氏弧菌,剂量为 30 μl/g,滴度为 6.0×10<sup>5</sup> CFU/ml;对照组:腹腔注射等量的 PBS 溶液;在 感染后 0、6、12、24、48、72 和 96 h 共 6 个时间点,随 机选取感染组和对照组各 5 条半滑舌鳎,解剖鱼体获得肝 脏后立即放入液氮中暂存,后转移至-80℃保存,用于总 RNA 的提取;利用单因素方差分析方法数据,\*差异表示 显著 (P<0.05);下同

Injection group: *C. semilaevis* was injected intraperitoneally with *V. harveyi* (30 μl/g) or with equal dose of PBS. Five fish's liver tissues were collected at 0, 6, 12, 24, 48, 72, and 96 h after injection for RNA extraction. Statistical analysis was performed using One-Way ANOVA. \* denotes significant difference (*P*<0.05). The same as below



in spleen after injected with V. harveyi

列特征大致相似。此外,本研究发现,在半滑舌鳎 Nramp 基因 ORF 末端有 1 个 IRE 位点(CNNNNNCAGTG), 而草鱼 Nramp 基因 5' UTR 和 3' UTR 均发现 1 个 IRE 位点(范玉顶等, 2011),以及鲤鱼的 3' UTR 发现 1 个 IRE 位点(Saeij et al, 1999)。已有研究表明, Nramp



基因 5' UTR 和 3' UTR 端 IRE 位点与细胞中铁离子的 代谢紧密相关(Klausner et al, 1993),在哺乳动物 Nramp2 基因的研究中,发现该位点与铁离子的转运 和吸收密切相关(Forbes et al, 2001; Gunshin et al, 1997)。据 Saeij 等(1999)推测,在鲤鱼 Nramp 3' UTR 端发现的 IRE 位点可能通过与铁调控蛋白结合来调 节鲤 Nramp 的 mRNA 水平,当铁调控蛋白和 Nramp 5' UTR 端 IRE 结合时,可以组织 RNA 的翻译,而当与 3' UTR 端的 IRE 位点结合时,则可以保护 RNA 免受 降解。但是,鱼类 Nramp 基因中的 IRE 位点是否与 哺乳类 Nramp2 IRE 位点具有相似的作用,以及 IRE 位于 ORF 与位于 UTR 区域是否具有类似的功能,还 需进一步的研究和探索。

Nramp2 基因在小鼠肝脏、脾脏、肾脏、心脏、 肌肉、小肠等组织中广谱表达(Grunheid et al, 1995),

| 表 2 | 半滑舌鳎 Nramp 基因内含子 2 多态性的统计分析 |  |
|-----|-----------------------------|--|

| Tab.2Statistical analysis of polymorphism of CsNramp intron 2 |             |           |                        |          |                   |                  |                           |                   |  |  |
|---------------------------------------------------------------|-------------|-----------|------------------------|----------|-------------------|------------------|---------------------------|-------------------|--|--|
| 位置<br>Location                                                | 状态          | Geno      | 基因型频率<br>type frequenc | eies     | 等位基<br>Allele fre | 因频率<br>equencies | 哈迪温伯格平衡检验<br>Test for HWE |                   |  |  |
|                                                               | Status      | CC        | TC                     | TT       | С                 | Т                | 卡方检验<br>Chi-square        | 概率<br>Probability |  |  |
| g.3113T→C                                                     | 死亡 Dead     | 0.544(37) | 0.456(31)              | -        | 0.772             | 0.228            | 15 858                    | <0.01**           |  |  |
|                                                               | 存活 Survival | 0.564(93) | 0.430(71)              | 0.006(1) | 0.779             | 0.221            | 15.858                    |                   |  |  |
|                                                               | 巫亡 David    | AG        | GG                     | -        | А                 | G                |                           |                   |  |  |
| g.3125A→G                                                     | ット L Deau   | 0.735(50) | 0.265(18)              | -        | 0.360             | 0.640            | 30.341                    | <0.01**           |  |  |
|                                                               | 存活 Survival | 0.454(75) | 0.546(90)              | -        | 0.227             | 0.773            |                           |                   |  |  |
| g.3164A→T                                                     | 巫亡 Deed     | AT        | AA                     | -        | А                 | Т                |                           |                   |  |  |
|                                                               | ット L Deau   | 0.456(31) | 0.544(37)              | _        | 0.772             | 0.228            | 18.549                    | <0.01**           |  |  |
|                                                               | 存活 Survival | 0.436(72) | 0.564(93)              | _        | 0.782             | 0.218            |                           |                   |  |  |

注:括号内数字为检测个体数;\*表示差异显著(P<0.05);\*\*表示差异极显著(P<0.01);下同

Note: Numbers in brackets are size of the tested population; \* indicates significant difference at P < 0.05; \*\* indicates highly significant difference at P < 0.01; The same as below

|      | Tab.3 Association analysis of single SNP of <i>CsNramp</i> with <i>V. anguillarum</i> |        |                 |               |               |             |  |  |  |  |
|------|---------------------------------------------------------------------------------------|--------|-----------------|---------------|---------------|-------------|--|--|--|--|
| 编号   | 位置                                                                                    | 作用     | 基因型卡方值          | 等位基因卡方值       | 基因型概率值        | 等位基因概率值     |  |  |  |  |
| Code | Location                                                                              | Effect | Chi Sq Genotype | Chi Sq Allele | Prob Genotype | Prob Allele |  |  |  |  |
| 1    | g.3113T→C                                                                             | Intron | 0.514           | 0.025         | 0.772         | 0.874       |  |  |  |  |
| 2    | g.3125A→G                                                                             | Intron | 13.690          | 8.726         | <0.01**       | <0.01**     |  |  |  |  |
| 3    | g.3164A→T                                                                             | Intron | 0.053           | 0.053         | 0.785         | 0.817       |  |  |  |  |

表 3 半滑舌鳎 *Nramp* 基因 SNP 与鳗弧菌的关联分析 Association analysis of single SNP of *Cellramp* with *V anguil* 

注:g.3113T→C 表示基因 3113 位置发生 T 到 C 的突变;g.3125A→G 表示基因 3125 位置发生 A 到 G 的突变;g.3164A →T 表示基因 3164 位置发生 A 到 T 的突变

Note: g.3113T $\rightarrow$ C means T to C mutation in the location 3113 of gene; g.3125A $\rightarrow$ G means A to G mutation in the location 3125 of gene; g.3164A $\rightarrow$ T means A to T mutation in the location 3164 of gene

而 Nramp1 基因的表达则呈组织特异性,如人的 Nramp1 可以在肝脏、肾脏和脾脏中检测到表达 (Cellier et al, 1997),而小鼠的 Nramp1 基因则主要在 脾脏中表达,肝脏中表达量相对较少(Vidal et al, 1993)。本研究发现,半滑舌鳎 Nramp 基因在脾脏、 肾脏和肝脏中表达量最高,其次是皮肤、血液、肠、 鳃、心脏和脑,而在肌肉和性腺中的表达量最低。半 滑舌鳎 Nramp 基因在器官中这种组成型表达方式与 哺乳类 Nramp2 的表达方式较为相似(Grunheid et al, 1995; Forbes et al, 2001)。此外,在大菱鲆、草鱼、鲤、 鲈以及斑点叉尾鲖中也观察到了 Nramp 基因在脾脏 和肾脏中的表达量较高,这种表达量变化说明了脾 脏、肾脏是鱼类主要的免疫器官。

对半滑舌鳎进行哈维氏弧菌感染实验后研究发现,相较于 PBS 对照组,实验组 Nramp 基因表达量在脾脏、肾脏和肝脏中明显上调,随着时间推移又恢

复至正常表达水平。同样的现象在小鼠(Govoni et al, 1997)、猪(Zhang et al, 2000)及真鲷(Chen et al, 2004) 中有过报道,范玉顶等(2011)利用草鱼呼肠孤病毒感 染草鱼肾脏细胞系,结果发现,在感染后 Nramp 基 因表达量明显升高,3h表达量达到最大,24h后回 落至正常表达水平;Chen等(2007)利用鳗弧菌感染大 菱鲆胚胎细胞系后发现,Nramp 基因表达量在感染 6-48h后显著升高,且在12h达到最大表达量。这 些结果表明,Nramp 基因与病原菌感染后机体的防御 反应密切相关,但半滑舌鳎 Nramp 基因与哈维氏弧 菌感染之间的相互作用机理以及 Nramp 基因在鱼体 感染病原菌后在鱼类免疫系统中所扮演的角色还有 待于进一步的研究。

Nramp 基因多态性与疾病相关性的研究已在哺乳动物上开展了一些工作。Liu 等(2004)研究发现,一个微卫星位于人 SLC11A1 基因的 5'端,其多态性与

结核病易感性以及巨噬细胞调控的疾病有关; Sanchez-Robert 等(2005)对犬 Nramp 基因的研究表明, TAG-8-141 单倍型与利什曼原虫的易感性有关; Liu 等(2003) 在鸡的 Nramp1 基因上的研究证明, Nramp1 基因高 度保守区单核苷酸多态性与青年鸡 SE 疫苗接种及病 原感染后的免疫应答相关; Paixiao 等(2006)利用 SSCA法分析瘤牛、荷斯坦牛 Nramp1 基因 3' UTR 区 的遗传变异,发现不同基因型对布鲁氏菌的抗病性和 敏感性差异显著,且不同品种间基因频率差异显著; 赵生国等(2013)研究猪 Nramp1 基因遗传变异与仔猪 腹泻的相关性发现,外显子2的AA基因型个体腹泻 评分值显著高于 TT 基因型个体(P<0.05), 并极显著 高于 AT 基因型个体(P<0.01); 内含子 6 的 CC 基因型 个体腹泻评分值显著高于 CT 基因型个体(P<0.05)。 分子标记辅助选择育种(Marker-assisted selection, MAS)技术可以定向选育抗病新品种,且已在鱼类上 取得了较好的效果(Xu et al, 2008)。本研究在半滑舌 鳎Nramp部分基因组DNA(1042 bp)中筛选到15个SNP 位点,对其中位于第2内含子区的3个 SNP[SNP-g.3113 (T→C)、SNP-g.3125(A→G)和 SNP-g.3164(A→T)]位 点进行基因型分型,并对其 SNP 位点与抗病性的关 联进行了分析。结果发现,在同一家系 233 个个体感 染鳗弧菌后,存活个体 165 个视为抗病个体,死亡个 体 68 个视为易感个体,其中, SNP-g.3125 的 AG 基 因型(0.735)在死亡个体中为优势基因型,而 GG 基因 型(0.546)在存活个体中为优势基因型, GG 基因型个 体抗性评分极显著高于 AG 基因型个体(P<0.01), G 等位基因抗性评分极显著高于 A 等位基因(P<0.01), 可见半滑舌鳎 Nramp 基因中的 SNP-g.3125 的等位基 因(G)和基因型(GG)与半滑舌鳎对于鳗弧菌抗性呈显 著相关性。因此, Nramp 基因该 SNP 位点可作为半 滑舌鳎抗病育种的一个潜在的抗性遗传标记位点,为 半滑舌鳎抗性品系培育的遗传分子标记提供基础研 究资料。

### 参考文献

- 邓景耀, 孟田湘, 任胜民, 等. 渤海鱼类种类组成及数量分布. 海洋水产研究, 1988(9): 10-98
- 范玉顶, 徐进, 罗晓松, 等. 草鱼天然抗性相关巨噬蛋白基因 全长 cDNA 的克隆与表达分析. 中国水产科学, 2011, 18(1): 38-47
- 赵生国,蔡原,滚双宝,等.猪天然抗性相关巨噬细胞蛋白基因(Nramp1)多态性及其与猪仔腹泻相关性分析.农业生物技术学报,2013,21(11):1351-1357

Bairoch A. The PROSITE dictionary of sites and patterns in

proteins, its current status. Nucleic Acids Res, 1993, 21(13): 3097-3103

- Blackwell JM, Barton CH, White JK, *et al.* Genetic regulation of leishmanial and mycobacterial infections: the Lsh/Ity/Bcg gene story continues. Immunol Lett, 1995, 43(1–2): 99–107
- Blackwell JM. Structure and function of the natural resistanceassociated macrophage protein(*Nramp*1), a candidate protein for infectious and autoimmune disease susceptibility. Mol Med Today, 1996, 2(5): 205–211
- Burge EJ, Gauthier DT, Ottinger CA, et al. Mycobacteriuminducible Nramp in striped bass (Morone saxatilis). Infect Immun, 2004, 72(3): 1626–1636
- Casey JL, Hentze MW, Koeller DM, *et al.* Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science, 1988, 240(4854): 924–928
- Cellier M, Govoni G, Vidal S, *et al.* Human natural resistanceassociated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression. J Exp Med, 1994, 180(5): 1741–1752
- Cellier M, Shustik C, Dalton W, et al. Expression of the human Nramp1 gene in professional primary phagocytes: studies in blood cells and in HL-60 promyelocytic leukemia. J Leukocyte Biol, 1997, 61(1): 96–105
- Chen H, Waldbieser GC, Rice CD, et al. Isolation and characterization of channel catfish natural resistance associated macrophage protein gene. Dev Comp Immunol, 2002, 26(6): 517–531
- Chen SL, Xu MY, Ji XS, *et al.* Cloning and characterization of natural resistance associated macrophage protein (*Nramp*) cDNA from red sea bream (*Pagrus major*). Fish Shellfish Immunol, 2004, 17(4): 305–313
- Chen SL, Wang ZJ, Xu MY, et al. Molecular identification and expression analysis of natural resistance associated macrophage protein (*Nramp*) cDNA from Japanese flounder (*Paralichthys olivaceus*). Fish Shellfish Immunol, 2006, 20(3): 365–373
- Chen SL, Zhang YX, Xu JY, et al. Molecular cloning, characterization and expression analysis of natural resistance associated macrophage protein (*Nramp*) cDNA from turbot (*Scophthalmus maximus*). Comp Biochem Phys B, 2007, 147(1): 29–37
- Dorschner MO, Phillips RB. Comparative analysis of two *Nramp* loci from rainbow trout. DNA Cell Biol, 1999, 18(7): 573–583
- Feng J, Li Y, Hashad M, et al. Bovine natural resistance associated macrophage protein 1 (*Nramp*1) gene. Genome Res, 1996, 6(10): 956–964
- Fleming MD, Romano MA, Su MA, *et al. Nramp2* is mutated in the anemic Belgrade (b) rat: evidence of a role for *Nramp2* in endosomal iron transport. Proc Natl Acad Sci USA, 1998, 95(3): 1148–1153
- Forbes JR, Gros P. Divalent-metal transport by NRAMP proteins

at the interface of host-pathogen interactions. Trends Immunol, 2001, 9(8): 397–403

- Govoni G, Gauthier S, Billia F, *et al.* Cell-specific and inducible *Nramp*1 gene expression in mouse macrophages in vitro and in vivo. J Leukoc Biol, 1997, 62(2): 277–286
- Grunheid S, Cellier M, Vidal S, et al. Identification and characterization of a second mouse Nramp gene. Genomics, 1995, 25(2): 514–525
- Gunshin H, Mackenzie B, Berger UV, *et al.* Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 1997, 388(6641): 482–488
- Liu W, Kaiser MG, Lamont SJ. Natural resistance associated macrophage protein 1 gene polymorphisms and response to vaccine against or challenge with *Salmonella enteritidis* in young chicks. Poultry Science, 2003, 82(2): 259–266
- Liu W, Cao WC, Zhang CY, et al. VDR and Nramp1 gene polymorphisms in susceptibility to pulmonary tuberculosis among the Chinese Han population: a case-control study. Int J Tuberc Lung Dis, 2004, 8(4): 428–434
- Nielsen H, Engelbrecht J, Brunak S, *et al.* Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng, 1997, 10(1): 1–6
- Kishi F. Isolation and characterization of human *Nramp* cDNA. Biochem Biophys Res Commun, 1994, 204(3): 1074–1080
- Kishi F, Tabuchi M. Complete nucleotide sequence of human NRAMP2 cDNA. Mol Immunol, 1997, 34(12–13): 839–842
- Klausner RD, Rouault TA, Harford JB. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell, 1993, 72(1): 19–28
- Kyte J, Doolittle RF. A simple method for displaying the hydropathy of a protein. J Mol Biol, 1982, 157: 105–132
- Paixiao TA, Ferreir AC, Borges AM, et al. Frequency of bovine

*Nramp*1(*SLC*11*A*1) alleles in Holstein and Zebu breeds.Vet Immunol Immunopathol, 2006, 109(1/2): 37–42

- Saeij JPJ, Wiegertjes GF, Stet RJM. Identification and characterization of a fish natural resistance-associated macrophage protein (*NRAMP*) cDNA. Immunogenetics, 1999, 50(1): 60–66
- Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4(4): 406–425
- Sanchez-Robert E, Altet L, Sanchez A, et al. Polymorphism of SLC11A1(Nramp1)gene and canine leishmaniasis in a case-control study. J Heredity, 2005, 96(7): 755–758
- Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual, 3rd edition. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, 2001
- Skamene E, Pietrangeli CE. Genetics of the immune response to infectious pathogens. Curr Opin Immunol, 1991, 3(4): 511–517
- Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24(8): 1596–1599
- Vidal SM, Malo D, Vogan K, *et al*. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell, 1993, 73(3): 469–485
- Xu TJ, Chen SL, Ji XS, et al. MHC polymorphism and disease resistance to Vibrio anguillarum in 12 selective Japanese flounder (Paralichthys olivaceus) families. Fish Shellfish Immunol, 2008, 25(3): 213–221
- Zhang G, Wu H, Ross CR, et al. Cloning of porcine NRAMP1 and its induction by lipopolysaccharide, tumor necrosis factor alpha, and interleukin-1b: role of CD14 and mitogenactivated protein kinases. Infect Immunol, 2000, 68(3): 1086–1093

(编辑 冯小花)

## Molecular Cloning, Expression and SNP Screening of Natural Resistance-Associated Macrophage Protein (Nramp) Gene cDNA from Half Smooth Tongue Sole (*Cynoglossus semilaevis*)

XING Hefei<sup>1,2,3</sup>, GAO Fengtao<sup>1,2,4</sup>, ZHANG Yongzhen<sup>1,2,3</sup>, DONG Zhongdian<sup>1,2,4</sup>, CHEN Songlin<sup>1,2®</sup>

(1. Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research

Institute, Chinese Academy of Fishery Sciences, Qingdao 266071; 2. National Laboratory for Ocean Science and Technology,

Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 266071;

3. College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306;

4. College of Marine Life Sciences, Ocean University of China, Qingdao 266003)

Abstract Natural resistance-associated macrophage protein (Nramp) belongs to the integration of membrane transport proteins, which has the capacity of enhancing macrophages that are meant to kill pathogens and innate resistance to intracellular parasites. In present study, cDNA of Nramp gene was amplified from spleen of half smooth tongue sole (Cynoglossus semilaevis) by SMART-RACE. The full-length cDNA of Nramp gene was 3717 bp, including 1677 bp open reading frame (ORF) encoding a protein with 558 amino acid residues, which contained the signature features of the Nramp protein family: 10 transmembrane (TM) domains, a consensus transport motif (CTM) with 20 amino acid residues. Compared with the other fish's Nramp, C. semilaevis Nramp was the presence of one iron-responsive regulatory (IRE) protein-binding site in the terminal of ORF, which was similar to the vertebrate Nramp2. The deduced amino acid sequence of CsNramp exhibited about 63%-91% homology with 14 other vertebrate Nramp sequences. Phylogenetic analysis revealed that the CsNramp was clustered with other fish Nramp and was closer to Nramp2 of other species. RT-PCR results of the CsNramp transcripts in different tissues indicated that the CsNramp transcripts were highly abundant in spleen, kidney and low in muscle and gonad. The C. semilaevis challenged with the Vibrio harveyi could evidently elevate Nramp mRNA levels in spleen, kidney and liver, but the opposite phenomena were observed in the gills. To explore genetic variation and its relevant molecular markers in *CsNramp* gene, this research detected the polymorphisms of Nramp gene in one family of 233 individuals (68 infected individuals and 165 resistant individuals) by direct sequencing. Fifteen SNPs were detected in the partial of Nramp gene and 3 of them were genotyped successfully and SNP-g.3125( $A \rightarrow G$ ) was significantly correlated to the resistance to Vibrio anguillarum. The results indicated that there were important effects on disease resistance of different Nramp genotypes, SNP-g.3125( $A \rightarrow G$ ) can be used as potential genetic resistance marker loci, which can provide basic data for the genetic markers of C. semilaevis resistant breeding.

**Key words** Half smooth tongue sole (*Cynoglossus semilaevis*); *Nramp*; Gene clone; RT-PCR; Single Nucleotide Polymorphism (SNP)

① Corresponding author: CHEN Songlin, E-mail: chensl@ysfri.ac.cn

DOI: 10.11758/yykxjz.20150606001

# 同步检测 7 种鱼类病毒的扩增子拯救多重 PCR (Arm-PCR)方法的建立和应用<sup>\*</sup>

王胜强<sup>1,3</sup> 耿伟光<sup>1</sup> 史成银<sup>1,20</sup> 李 晋<sup>1</sup> 粟子丹<sup>1,3</sup>

(1. 农业部海洋渔业可持续发展重点实验室 中国水产科学研究院黄海水产研究所 青岛 266071;
2. 青岛海洋科学与技术国家实验室 海洋渔业科学与食物产出过程功能实验室 青岛 266071;
3. 上海海洋大学水产与生命学院 上海 201306)

摘要 淋巴囊肿病毒(LCDV)、肿大细胞病毒属虹彩病毒(Mega)、赤点石斑鱼神经坏死病毒(RGNNV)、 传染性造血器官坏死病毒(IHNV)、传染性胰脏坏死病毒(IPNV)、病毒性出血败血症病毒(VHSV)和传染 性鲑鱼贫血症病毒(ISAV)是养殖鱼类主要的病毒性病原,危害巨大。为实现这7种病原的高通量、同步 检测,本研究在分析这7种病毒基因序列的基础上,设计了9组扩增子拯救多重 PCR(Arm-PCR)引物, 并对扩增体系中的 Taq 酶、Mg<sup>2+</sup>、dNTP、Primer Mix 浓度及退火温度等参数进行调整和优化,结合基 因芯片检测技术,建立了同步检测7种鱼类病毒的Arm-PCR方法。优化后的Arm-PCR方法第一步PCR 体系为: Taq 酶(2.5 U/µl) 1.0 µl, 10×PCR Buffer(含 20 mmol/L 的 Mg<sup>2+</sup>) 5 µl, dNTP(各 2.5 mmol/L) 5 µl, 10×Primer Mix(各 2 µmol/L) 9 µl, 模板 1 µl, ddH<sub>2</sub>O 补足至 50 µl, 退火温度为 56℃。研究结果显示, 该 方法可以在1支反应管内对上述7种病毒的9个致病基因同步进行扩增和检测,检测灵敏度分别为10<sup>1</sup> copies/µl (RGNNV、VHSV、ISAV-NS、ISAV-MA)、10<sup>2</sup> copies/µl (LCDV、Mega、IHNV、IPNV)种 10<sup>3</sup> copies/µl (大菱鲆红体病虹彩病毒, TRBIV)。该方法特异性强, 与半滑舌鳎、石斑鱼、大菱鲆和牙鲆基因组 DNA 不产生交叉反应。本研究建立的可同步检测 7 种鱼类病毒的 Arm-PCR 方法具有高通量、高灵敏度、高 准确性的优势,能有效提高工作效率,在鱼类病毒的筛查和流行病学调查领域有广泛的应用前景。 鱼类病毒;多重检测;高通量;多重 PCR 关键词

中图分类号 S943 文献标识码 A 文章编号 2095-9869(2016)04-0128-07

随着社会经济的快速发展,水产养殖业也呈现出 养殖规模和养殖技术的空前提高,尤其在集约化养殖 和工厂化养殖方面发展迅速。但在海水经济鱼类的养 殖过程中,病毒性疾病的暴发往往会给养殖业带来巨 大的危害。淋巴囊肿病毒(Lymphocystis disease virus, LCDV)(徐洪涛等,2000)、肿大细胞病毒属虹彩病毒 (*Megalocytivirus*, Mega)(Chao *et al*,2004)、赤点石斑鱼神 经坏死病毒(Red-spotted grouper nervous necrosis virus, RGNNV)(Lopez-Jimena *et al*,2011; Choi *et al*,2013)、传 染性造血器官坏死病毒(Infectious haematopoietic necrosis virus, IHNV)(Rudakova *et al*,2007)、传染性胰脏坏死 病毒(Infectious pancreatic necrosis virus, IPNV) (Wallace et al, 2008)、病毒性出血败血症病毒(Viral hemorrhagic septicemia virus, VHSV) (Isshiki et al, 2001)和传染性鲑 鱼贫血症病毒(Infectious salmon anaemia virus, ISAV) (Lyngstad et al, 2012; Godoy et al, 2013)是养殖鱼类主 要的病毒性病原,它们均能引起传染性、暴发性疾病,同时伴随着高死亡率,给养殖企业造成严重的经济损 失。大菱鲆红体病虹彩病毒(Turbot reddish body iridovirus, TRBIV)是肿大细胞病毒属虹彩病毒的一个成员,主要 感染我国养殖的大菱鲆(史成银等, 2005)。因此,建 立这些病原的快速、有效、低成本的检测方法,对保

\* 国家科技支撑计划课题(2012BAD17B01)资助。王胜强, E-mail: wsq098886@163.com ① 通讯作者: 史成银, 研究员, E-mail: shicy@ysfri.ac.cn 收稿日期: 2015-06-06, 收修改稿日期: 2015-06-10 障养殖鱼类健康、防治疾病发生具有重要的意义。

多重 PCR(Multiplex PCR)技术是目前应用最为 广泛的检测技术之一,最早由 Chamberlian 等(1988) 提出。由于具有高通量、快速和成本低等优势,该检 测技术很快被广泛应用在病原检测和临床诊断中 (Edwards et al, 1994; Elnifro et al, 2000)。然而, 多重 PCR 技术也存在引物设计困难、反应相互干扰、扩增 效率和准确度差等缺点,其应用范围较为有限。有学 者对其进行改进,发明了"扩增子拯救多重 PCR" (Amplicon rescue multiplex PCR, Arm-PCR)技术(Han et al, 2006),其工作原理是:在多重扩增体系中,设 计靶序列特异性的套式 PCR 引物和通用性的超级引 物,通过富集、加标签、拯救、扩增等步骤,实现对 多种靶序列的同步、高灵敏、高特异性扩增。目前, 该技术在临床病原检测领域已有较多的研究和报道, 但在水生动物病原检测领域并不多见(耿伟光等, 2013).

本研究在分析了水产动物 LCDV、TRBIV、Mega、 RGNNV、IHNV、IPNV、VHSV、ISAV 的非结构蛋 白(Non-structural protein of ISAV, ISAV-NS)、ISAV 的 基质蛋白(Matrix protein of ISAV, ISAV-NA)相关基因 核苷酸序列的基础上,依据 Arm-PCR 的原理设计了 9 套多重 PCR 引物,优化了反应条件,成功建立了可 同步检测上述 7 种病原的 Arm-PCR 方法,结合基因 芯片技术,实现了多种鱼类病毒性病原的高通量检 测,具有较好的应用前景。

### 1 材料与方法

### 1.1 材料

**1.1.1** 实验克隆菌株 含有 LCDV、TRBIV、 Mega、RGNNV、IHNV、IPNV、VHSV、ISAV-NS、 ISAV-MA 等相关致病基因的 T-A 克隆质粒和菌株均 由本实验室构建,用作检测体系构建的阳性模板。各 基因的 GenBank 检索号见表 1。

**1.1.2** 主要试剂、耗材 实验中用到的 *TransStart*<sup>TM</sup> *Top Taq* DNA Polymerase、High Pure dNTPs 购自全式 金生物技术有限公司,海洋动物组织基因组 DNA 提取试剂盒购自天根生化科技有限公司,质粒小量快速 提取试剂盒购自博迈德生物技术有限公司,0.5 ml 50 kDa 超滤离心管购自德国 Millipore 公司。

### 1.2 方法

 1.2.1
 阳性模板的制备
 分别将含有 LCDV、

 TRBIV、Mega、RGNNV、IHNV、IPNV、VHSV、ISAV-NS、

ISAV-MA 等病毒相关致病基因的克隆菌株过夜培养。 对扩大培养的菌液提取质粒,用超微量核酸蛋白测定 仪(NanoDrop2000,美国)测定核酸的浓度和纯度,保 存于-20℃备用。

1.2.2 乾基因的选择与 Arm-PCR 引物的设计 根据 GenBank 中已公布的 LCDV、TRBIV、Mega 和RGNNV 的衣壳蛋白(CP)、IHNV 的核蛋白(N)、IPNV 的 VP5、VHSV 的糖蛋白(G)、ISAV 的非结构蛋白(NS) 和基质蛋白(MA)等基因序列,使用 Primer Premier 5.0 分别设计特异性套式 PCR 引物,用于 Arm-PCR 第一步 PCR 的扩增,其中,内引物的 5' 端各有一段通用接头,正向接头的序列为 5'-CAG GCC ACG TTT TGT CAT GC-3',反向接头序列为 5'-TTC TTT GCG TTA TGT CTC TG-3',各引物序列及扩增片段大小见表 1。 各引物由生工生物工程(上海)有限公司合成。

**1.2.3** Arm-PCR 10 × Primer Mix 的准备 取合成 的各引物,分别稀释至 100 µmol/L; 然后各取等量,加 入新的 EP 管中,调整每条引物的终浓度至 2 µmol/L,分 装、保存于-20℃备用。

**1.2.4** Arm-PCR 反应体系和参数 第一步 PCR 体系: 2.5 U/µl *Taq* DNA 聚合酶 0.6 µl, 10×PCR Buffer (Mg<sup>2+</sup> plus) 5 µl, 2.5 mmol/L dNTPs 5 µl, 2 µmol/L 10×Primer Mix 5 µl, 模板 1 µl, 补充 ddH<sub>2</sub>O 至 50 µl。反应程序: 94℃ 5 min; 94℃ 15 s, 55℃ 15 s, 72℃ 15 s 15 个循环; 94℃ 15 s, 70℃ 15 s, 6 个循环; 72℃ 3 min; 4℃保存。

产物经超滤管(0.5 ml 50 kDa)离心,收集液作为 第二步 PCR 模板。第二步 PCR 体系: 2.5 U/µl *Taq* DNA 聚合酶 0.6 µl, 10×PCR Buffer(Mg<sup>2+</sup> plus) 5 µl, 2.5 mmol/LdNTPs 5 µl, 10 µmol/L 正向通用引物 Fs (5'-CAG GCC ACG TTT TGT CAT GC-3') 1 µl, 40 µmol/L 反向通用 引物 Rs (5'-Cy3-TTC TTT GCG TTA TGT CTC TG-3') 1 µl,模板(上述收集液) 10 µl, ddH<sub>2</sub>O 至 50 µl。反应 程序: 94°C 5 min; 94°C 30 s, 55°C 30 s, 72°C 30 s, 30 个循环; 72°C 3 min; 4°C保存。

1.2.5 Arm-PCR 扩增产物的基因芯片检测 由于 各病毒的扩增产物大小相近,不能使用常用的琼脂糖 凝胶电泳分析扩增结果。故本研究通过已建立的基因 芯片技术对上述扩增产物进行杂交检测(王胜强等, 2015)。主要方法是:取病毒特异性的且与 Arm-PCR 扩增产物互补的 10 条寡核苷酸探针(25-30 mer)点样 在醛基修饰玻片上,其中,针对 Mega 的扩增产物设 计两条探针 Mega-1 和 Mega-2;玻片上另设置表面化 学质控(QC-1)和空白对照质控(QC-4),制作成基因芯

### 表 1 Arm-PCR 引物序列及目标产物长度

Tab.1 Sequences of Arm-PCR primers and products length

| 病毒      | 引物         | 序列                                                 | 大小<br>Size | 检索号         |
|---------|------------|----------------------------------------------------|------------|-------------|
| Virus   | Primers    | Sequences(5'-3')                                   | (bp)       | GenBank No. |
| LCDV    | LCDV-Fo    | GCTGCTTTGCCTTATAATG                                | 281        | EF059991    |
|         | LCDV-Ro    | GGACTTGGAATAGTTAGAGGTT                             |            |             |
|         | LCDV-Fi    | CAGGCCACGTTTTGTCATGCGACTCTACCATCATGCCTTT           | 214        |             |
|         | LCDV-Ri    | TTCTTTGCGTTATGTCTCTGTACATGTTTAGGTGCTGTTTG          |            |             |
| TRBIV   | TRBIV-Fo   | CCACATAACATACTGCCCAAGC                             | 399        | GQ273492    |
|         | TRBIV-Ro   | CATGCGCTGAAATAAAGACCAC                             |            |             |
|         | TRBIV-Fi   | CAGGCCACGTTTTGTCATGCAACTCAGCAATGCCAACG             | 248        |             |
|         | TRBIV-Ri   | TTCTTTGCGTTATGTCTCTGTATCATGCCACTGCACAACT           |            |             |
| RGNNV   | RGNNV-Fo   | CTGGTCGGCTGATACTCCT                                | 399        | AF534998    |
|         | RGNNV-Ro   | CAACGCCATCTGTGAACG                                 |            |             |
|         | RGNNV-Fi   | CAGGCCACGTTTTGTCATGCCAACGATTCCCTTTCCAC             | 191        |             |
|         | RGNNV-Ri   | <b>TTCTTTGCGTTATGTCTCTG</b> ATAAACAGCACGGTCAACAT   |            |             |
| Mega    | Mega-Fo    | GCCGTCAGCAATCTTCAT                                 | 299        | AY590687    |
|         | Mega-Ro    | TCCACCAGATGGGAGTAGA                                |            |             |
|         | Mega-Fi    | CAGGCCACGTTTTGTCATGCATCTTCATGATGTTGTGGTTG          | 303        |             |
|         | Mega-Ri    | <b>TTCTTTGCGTTATGTCTCTG</b> ACATCTGTCGACCCCTACTA   |            |             |
| IHNV    | IHNV-Fo    | GAACGATGACAAGCGCACT                                | 221        | HM099906    |
|         | IHNV-Ro    | AATGACGAACGCGCACA                                  |            |             |
|         | IHNV-Fi    | CAGGCCACGTTTTGTCATGCCGGTACGATAACCCTCCCT            | 170        |             |
|         | IHNV-Ri    | <b>TTCTTTGCGTTATGTCTCTG</b> AATGACGAACGCGCACA      |            |             |
| IPNV    | IPNV-Fo    | CAAACAAAGCAACCGCAAC                                | 352        | AF160258    |
|         | IPNV-Ro    | GTCCCATTCAGGGCATAGAG                               |            |             |
|         | IPNV-Fi    | CAGGCCACGTTTTGTCATGCCGACATAACGGAGAGACACAT          | 200        |             |
|         | IPNV-Ri    | <b>TTCTTTGCGTTATGTCTCTG</b> GAACTCTAGTTCCGTCTGGTTC |            |             |
| VHSV    | VHSV-Fo    | TCATCCATCTCCCGCTATC                                | 425        | AM086383    |
|         | VHSV-Ro    | TCCTTCTAGTGTTTCCGACG                               |            |             |
|         | VHSV-Fi    | CAGGCCACGTTTTGTCATGACAAACGAGGCAAGTAAG              | 202        |             |
|         | VHSV-Ri    | <b>TTCTTTGCGTTATGTCTCTG</b> TATGAAATCAGGGTTGAGAAA  |            |             |
| ISAV-NS | ISAV-NS-Fo | ACGATGACCCTCTACTGTGTG                              | 382        | AF315063    |
|         | ISAV-NS-Ro | TTCTTCTTCCGCTTCCATTC                               |            |             |
|         | ISAV-NS-Fi | CAGGCCACGTTTTGTCATGATGGGCAATGGTGTATGGT             | 217        |             |
|         | ISAV-NS-Ri | TTCTTTGCGTTATGTCTCTGGATGCCGGAAGTCGATGAA            |            |             |
| ISAV-MA | ISAV-MA-Fo | AAGCGGATTGTGTGTAGAGTTC                             | 284        | Y10404      |
|         | ISAV-MA-Ro | GCCTTCAACATCGTCTTCTCC                              |            |             |
|         | ISAV-MA-Fi | CAGGCCACGTTTTGTCATGAGCGACGATGACTCTCTACTG           | 149        |             |
|         | ISAV-MA-Ri | TTCTTTGCGTTATGTCTCTGTTGGCATCCTGACTCTTCCTT          |            |             |

片微阵列(图 1)。将 Cy3 标记的 Arm-PCR 扩增产物与 制作好的基因芯片微阵列在 47℃条件下杂交 1.5 h, 洗涤后在 LuxScan 10K 扫描仪上采集荧光信号、判断 检测结果。

**1.2.6** Arm-PCR 第一步 PCR 参数的优化 对 Arm-PCR 第一步 PCR 中影响扩增结果的 *Taq* 酶浓度、Mg<sup>2+</sup> 浓度、dNTPs 浓度、引物混合物(Primer Mix)浓度和

退火温度 5 个参数进行调整和优化。其中, *Taq* 酶终 浓度为 0.045、0.050 和 0.055 U/µl, Mg<sup>2+</sup>终浓度为 2.0、 2.8 和 3.6 mmol/L, dNTPs 终浓度为 0.15、0.25 和 0.35 mmol/L, 引物终浓度为 0.32、0.36 和 0.40 µmol/L, 退火温度为 54℃、56℃和 58℃。通过多次实验从而 确定最佳参数。

1.2.7 Arm-PCR 检测灵敏度的测定 对预备的质

粒进行拷贝数换算,同时进行 10 倍梯度稀释。依照 1.2.4 和 1.2.5 所述方法,采用 1.2.6 优化得到的参数 进行 Arm-PCR 反应,测定本方法的检测灵敏度。

**1.2.8** 检测特异性的验证 以每种病毒的质粒为 模板,依照 **1.2.4** 和 **1.2.5** 所述方法,采用 **1.2.6** 优化 得到的参数进行 Arm-PCR 反应,测定本研究建立的 7 种病毒 Arm-PCR 检测方法的特异性。

1.2.9 应用 Arm-PCR 方法检测病鱼样品 先后收 集了 19 批病鱼样品,包括半滑舌鳎(Cynoglossus semilaevis)、龙胆石斑鱼(Epinephelus lanceolatus)、棕 点石斑鱼(E. fuscoguttatus)、卵圆鲳鲹(Trachinotus ovatus)、斑石鲷(Oplegnathus punctatus)等,采用本研 究建立的 Arm-PCR 联合基因芯片检测方法进行相应 病毒的检测,同时使用套式 PCR 和套式 RT-PCR 方 法进行检测,作为对比。检测过程简述如下:取患病 样品鱼的鳃、肝、脾、肾、脑和眼等组织,分别依照 海洋动物组织基因组 DNA 提取试剂盒说明书和 TRizol 法提取组织的总 DNA 和总 RNA。依照全式金 的一步法反转录试剂盒说明书将提取的 RNA 反转录 成 cDNA,然后对提取的 DNA 和反转录得到的 cDNA 进行 Arm-PCR 扩增。将扩增产物依照 1.2.5 所述进行 杂交、清洗和扫描,然后对扫描的图片提取信号值分 析并得出检测结果。

### 2 结果

### 2.1 Arm-PCR 第一步 PCR 参数的优化

图 1 为用于检测 Arm-PCR 扩增结果的基因芯片 微阵列示意图, Arm-PCR 扩增产物与基因芯片微阵 列杂交结果见图 2。图 2 中表面化学质控 QC-1 应呈 阳性,空白对照质控 QC-4 应呈阴性。杂交结果显示, 当 *Taq* 酶终浓度为 0.050 U/µl、Mg<sup>2+</sup>终浓度为 2 mmol/L、 dNTPs 终浓度为 0.25 mmol/L、Primer Mix 终浓度为 0.36 µmol/L、退火温度为 56°C时, Arm-PCR 各扩增 产物的量达到峰值。因此,优化后 Arm-PCR 第一步 PCR 体系为: *Taq* 酶(2.5 U/µl) 1.0 µl, 10×PCR Buffer(含 20 mmol/L 的 Mg<sup>2+</sup>) 5 µl, dNTPs(各 2.5 mmol/L) 5 µl, 10×Primer Mix(2 µmol/L) 9 µl,模板 1 µl, ddH<sub>2</sub>O 补至 50 µl,退火温度为 56°C。

### 2.2 Arm-PCR 检测方法的灵敏度

依照 1.2.7 进行各病毒模板的 Arm-PCR 扩增、杂 交、清洗和扫描,结果如图 3 所示。本研究建立的 Arm-PCR 检测方法,对 7 种鱼类病毒 9 个致病基因的 检测灵敏度分别为: 10<sup>1</sup> copies/µl (RGNNV、VHSV、







图 2 Arm-PCR 第一步 PCR 参数的优化 Fig.2 Amplification results under different conditions in the first step of Arm-PCR

A: Taq DNA 聚合酶浓度; B: Mg<sup>2+</sup>浓度; C: dNTP 浓度; D: Primer Mix 浓度; E: 退火温度

A1-A3: *Taq* DNA 聚合酶终浓度分别为 0.045、0.050 和 0.055 U/µl; B1-B3: Mg<sup>2+</sup>终浓度分别为 2.0、2.8 和 3.6 mmol/L; C1-C3: dNTP 的终浓度分别为 0.15、0.25 和 0.35 mmol/L; D1-D3: Primer Mix 终浓度分别为 0.32、0.36 和 0.40 µmol/L;

E1-E3:退火温度分别为 54、56 和 58℃

A: Concentration of *Taq* enzyme; B: Concentration of Mg<sup>2+</sup>;
C: Concentration of dNTP; D: Concentration of Primer Mix;
E: Annealing temperature

A1–A3: The concentrations of *Taq* enzyme were 0.045, 0.050 and 0.055 U/µl respectively. B1–B3: The concentration of  $Mg^{2+}$  was 2.0, 2.8 and 3.6 mmol/L respectively. C1–C3: The concentration of dNTP was 0.15, 0.25 and 0.35 mmol/L respectively. D1–D3: The concentration of Primer Mix was 0.32, 0.36 and 0.40 µmol/L respectively. E1–E3: The annealing temperature was 54, 56 and 58°C respectively

ISAV-NS、ISAV-MA)、 $10^2$  copies/µl (LCDV、Mega、IHNV、IPNV)和  $10^3$  copies/µl (TRBIV)。

### 2.3 Arm-PCR 检测方法的特异性

依照 **1.2.8** 进行相应的 Arm-PCR 扩增、杂交、清洗和扫描(图 4)。结果显示, 7 种病毒 9 个基因的反应



图 3 Arm-PCR 方法对 7 种病毒 9 个基因的 检测灵敏度 Fig.3 The sensitivity test of Arm-PCR for nine genes

of seven viruses of fish



体系中均得到了大量的特异性扩增产物,且杂交信号 清晰可见。因此,本研究建立的 Arm-PCR 检测体系 具有良好的扩增特异性。

### 2.4 对病鱼样品的检测结果

对 19 批病鱼样品的检测结果显示,有一批样品 (牙鲆,2013-11-15-001)检出 LCDV,两批样品(大菱 鲆,2014-03-25-001、2014-12-23-001)检出 TRBIV,两 批样品(半滑舌鳎、龙胆石斑鱼精、卵,2014-04-22-001-009、2014-05-19-001-007)检出 RGNNV,3 份样品(棕 点石斑鱼、卵圆鲳鲹、斑石鲷,2014-05-25-001、2014-05-27-001、2015-05-31-001)检出 Megalocytivirus(图 5)。 该检测结果与套式 PCR 和套式 RT-PCR 检测结果一致(结果未展示)。





### 3 讨论

多重 PCR 技术可以快速、灵敏地同步扩增多个 目标片段,已被越来越多地用于病原检测技术研究领 域(Han et al, 2006; Zou et al, 2007; 曾伟伟等, 2013), 但同时也因其反应体系组成的复杂性而在一定程度 上影响其在检测灵敏度的提升。本研究在基因芯片技 术的基础上,通过建立和优化扩增子拯救多重 PCR (Arm-PCR)的扩增体系,测定反应体系的检测灵敏度 以及验证体系扩增的特异性,最终成功建立了灵敏度 高、特异性好的 Arm-PCR 联合基因芯片检测鱼类病 毒的方法。

在鱼类病毒的检测领域,多重 PCR 和基因芯片 的联合应用目前并未见报道,但在鱼类、贝类的致病 菌检测和分型以及对虾的相关病毒检测当中有相关 的报道。Panicker 等(2004)建立的贝类致病菌多重 PCR 联合基因芯片检测方法在不富集的情况下检测 灵敏度为 10<sup>2</sup>–10<sup>3</sup> CFU/ml, 通过多重 PCR 富集之后 灵敏度可达单个拷贝每克组织匀浆,本研究建立的鱼 类病毒检测方法与 Panicker 等(2004)的灵敏度相当。 在鱼类致病菌检测领域, González 等(2004)针对海水 鱼类 5 种致病菌中的 9 个基因所建立的多重 PCR 联 合基因芯片检测方法,检测灵敏度在 20 fg 纯化基因 组 DNA 以下,而本研究所建立的检测方法的灵敏度 相当于在 10<sup>-3</sup>-10<sup>-1</sup> fg 之间, 较 González 等(2004)的 检测方法高出 1-3 个数量级。Jeeva 等(2014)所建立的 对虾病毒检测方法虽然灵敏度均保持在 10<sup>1</sup> copies/µl 左右,但其检测目标病毒的种类仅有对虾白斑病毒和 肝胰腺细小病毒两种; 刘飞等(2014)构建的对虾病毒 多重检测方法,检测目标病毒的种类可达6种,但该 方法的检测灵敏度在  $10^2$ – $10^5$  copies/µl 之间, 较本研 究建立的检测方法低 1-2 个数量级。此外,本研究建 立的检测方法采用了基于碱基配对原理的 DNA 芯片 技术,与常规的琼脂糖凝胶电泳分析扩增产物相比,

大大提高了检测结果的准确性和可靠性。

本研究建立的 Arm-PCR 联合基因芯片检测 7 种 鱼类病毒的方法,在预先制备好基因芯片的情况下, 经过核酸制备、Arm-PCR 扩增、芯片杂交、扫描观 察等流程,可以在 12 h 内完成 10 个样品 7 种病毒的 高灵敏度、高准确性的同步检测,相对于普通的 70 个套式 PCR 反应结合电泳检测过程,更为高效。

总之,本研究建立的可同步检测7种鱼类病毒的 Arm-PCR 方法具有高通量、高灵敏度、高准确性的 优势,能有效提高工作效率,在鱼类病毒的筛查和流 行病学调查领域有广泛的应用前景。

### 参考文献

- 王胜强, 耿伟光, 李晋, 等. 基因芯片检测鱼类病毒的方法建 立与优化. 中国动物检疫, 2015, 32(7): 77-81, 84
- 史成银, 王印庚, 黄健, 等. 中国大菱鲆虹彩病毒主要衣壳蛋 白基因的 PCR 扩增及序列分析. 中国水产科学, 2005, 12(5): 588-593
- 刘飞, 张宝存, 张晓华, 等. 对虾 6 种病毒多重 PCR 检测方法 的建立. 渔业科学进展, 2014, 35(1): 60-67
- 耿伟光, 史成银, 李晋, 等. 同步检测海水养殖动物 5 种病原 菌的扩增子拯救多重 PCR(Arm-PCR)方法的建立与应用. 农业生物技术学报, 2013, 21(9): 1125–1134
- 徐洪涛, 朴春爱, 姜忠良, 等. 养殖牙鲆淋巴囊肿病病原的研 究. 病毒学报, 2000, 16(3): 223-226
- 曾伟伟, 王庆, 王英英, 等. 草鱼呼肠孤病毒三重 PCR 检测方 法的建立及其应用. 中国水产科学, 2013, 20(2): 419-426
- Chamberlain JS, Gibbs RA, Rainer JE, *et al.* Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res, 1988, 16(23): 11141– 11156
- Chao CB, Chen CY, Lai YY, *et al.* Histological, ultrastructural, and *in situ* hybridization study on enlarged cells in grouper *Epinephelus* hybrids infected by grouper iridovirus in Taiwan (TGIV). Dis Aquat Organ, 2004, 58(2–3): 127–142
- Choi YR, Kim HJ, Lee JY, et al. Chromatographically-purified capsid proteins of red-spotted grouper nervous necrosis virus expressed in Saccharomyces cerevisiae form virus-like particles. Protein Expres Purif, 2013, 89(2): 162–168
- Edwards MC, Gibbs RA. Multiplex PCR: advantages, development, and applications. Genome Res, 1994, 3(4): S65–S75

Elnifro EM, Ashshi AM, Cooper RJ, et al. Multiplex PCR: and

application in diagnostic virology. Clin Microbiol Rev, 2000, 13(4): 559–570

- Godoy MG, Kibenge MJ, Suarez R, *et al.* Infectious salmon anaemia virus (ISAV) in Chilean Atlantic salmon (*Salmo salar*) aquaculture: emergence of low pathogenic ISAV-HPR0 and re-emergence of virulent ISAV-HPR∆: HPR3 and HPR14. Virol J, 2013, 10(1): 1–17
- González SF, Krug MJ, Nielsen ME, *et al.* Simultaneous detection of marine fish pathogens by using multiplex PCR and a DNA microarray. J Clin Microbiol, 2004, 42(4): 1414–1419
- Han J, Swan DC, Smith SJ, et al. Simultaneous amplification and identification of 25 human papillomavirus types with templex technology. J Clin Microbiol, 2006, 44(11): 4157– 4162
- Isshiki T, Nishizawa T, Kobayashi T, et al. An outbreak of VHSV (viral hemorrhagic septicemia virus) infection in farmed Japanese flounder *Paralichthys olivaceus* in Japan. Dis Aquat Organ, 2001, 47(2): 87–99
- Jeeva S, Kim NI, Jang IK, *et al.* Development of a multiplex PCR system for the simultaneous detection of white spot syndrome virus and hepatopancreatic parvovirus infection. Aquac Res, 2014, 45(6): 1073–1083
- Lopez-Jimena B, Alonso MC, Thompson KD, et al. Tissue distribution of Red Spotted Grouper Nervous Necrosis Virus (RGNNV) genome in experimentally infected juvenile European seabass (*Dicentrarchus labrax*). Vet Microbiol, 2011, 154(1–2): 86–95
- Lyngstad TM, Kristoffersen AB, Hjortaas MJ, et al. Low virulent infectious salmon anaemia virus (ISAV-HPR0) is prevalent and geographically structured in Norwegian salmon farming. Dis Aquat Organ, 2012, 101(3): 197–206
- Panicker G, Call DR, Krug MJ, et al. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays. Appl Environ Microbiol, 2004, 70(12): 7436–7444
- Rudakova SL, Kurath G, Bochkova EV. Occurrence and genetic typing of infectious hematopoietic necrosis virus in Kamchatka, Russia. Dis Aquat Organ, 2007, 75(1): 1–11
- Wallace IS, Gregory A, Murray AG, et al. Distribution of infectious pancreatic necrosis virus (IPNV) in wild marine fish from Scottish waters with respect to clinically infected aquaculture sites producing Atlantic salmon, Salmo salar L. J Fish Dis, 2008, 31(3): 177–186
- Zou SM, Han J, Wen LY, *et al.* Human influenza A virus (H5N1) detection by a novel multiplex PCR typing method. J Clin Microbiol, 2007, 45(6): 1889–1892

### Amplicon Rescue Multiplex PCR (Arm-PCR): a Novel Tool for Simultaneous Detection of Seven Types of Fish Viruses

WANG Shengqiang<sup>1,3</sup>, GENG Weiguang<sup>1</sup>, SHI Chengyin<sup>1,2</sup>, LI Jin<sup>1</sup>, SU Zidan<sup>1,3</sup>

(1, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071; 2. Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071; 3. College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306)

Abstract Major fish viruses that are severely harmful in aquaculture industry include Lymphocystis disease virus (LCDV), Megalocytivirus (Mega), red-spotted grouper nervous necrosis virus (RGNNV), infectious haematopoietic necrosis virus (IHNV), infectious pancreatic necrosis virus (IPNV), viral hemorrhagic septicemia virus (VHSV) and infectious salmon anaemia virus (ISAV). Here we developed a specific amplicon rescue multiplex PCR (Arm-PCR) combined with gene microarray technique for the simultaneous detection of the seven types of fish viruses. First we optimized the conditions of Arm-PCR such as the annealing temperature and the concentrations of Tag DNA polymerase,  $Mg^{2+}$ , dNTP and Primer Mix shown as follows. Reaction mixture (50 µl) consisted of 1.0 µl Taq DNA polymerase (2.5 U/µl). 5 μl 10×PCR Buffer (20 mmol/L Mg<sup>2+</sup>), 5 μl dNTP (2.5 mmol/L each), 9 μl 10×Primer Mix (2 μmol/L), and 1 µl template. The annealing temperature was 56°C. This method could simultaneously produce specific amplicons in one tube. The detection sensitivity of the Arm-PCR was  $10^1$  copies/µl for RGNNV, VHSV, non-structural protein of ISAV (ISAV-NS), and matrix protein of ISAV(ISAV-MA), 10<sup>2</sup> copies/µl for LCDV, Mega, IHNV, and IPNV, and 10<sup>3</sup> copies/µl for TRBIV (Turbot reddish body iridovirus). The Arm-PCR did not cause cross reactions with genomic DNA from healthy fish such as half smooth tongue sole, grouper, turbot and flounder.

Fish virus; Multiple detection; High throughput; Multiplex PCR Key words

① Corresponding author: SHI Chengyin, E-mail: shicy@ysfri.ac.cn

DOI: 10.11758/yykxjz.20150522001

# 对虾白斑综合征病毒囊膜蛋白 VP28 和 VP26 的毕赤酵母组成型分泌表达\*

张文兵① 耿小雪 王小霞 周 怡 徐 玮 麦康森

(水产动物营养与饲料农业部重点实验室 海水养殖教育部重点实验室 中国海洋大学水产学院 青岛 266003)

摘要 近年来, 重组 VP28 和 VP26 蛋白作为蛋白亚单位疫苗, 在增强对虾抗白斑综合征病毒 (WSSV)感染的过程中具有重要作用。本研究根据 GenBank 中 WSSV 的基因序列设计引物,以 WSSV 粗提液为模板进行普通 PCR 扩增,得到 VP28 和 VP26 基因,再用引物悬挂法将 EcoR I 和 Xba I 酶切位点分别添加到 VP28 和 VP26 基因的 5'端和 3'端。目的基因经双酶切后插入到表达载体 pGAPZαA,转化 TOP10 大肠杆菌,经博莱霉素(Zeocin)抗性筛选阳性重组酵母表达载体。AvrII 酶 切线性化之后, 电击转化 X-33 毕赤酵母感受态细胞, 经 Zeocin 抗性筛选得到阳性重组酵母。 SDS-PAGE 电泳分析重组酵母表达上清液的目的蛋白,没有检测到 VP28 和 VP26 重组蛋白。随后, 采用蛋白质银染法,结果显示,与空载 pGAPZaA 组相比, VP28 和 VP26 表达上清液组有明显的 条带,证明 VP28 和 VP26 在毕赤酵母中成功表达,蛋白分子量大小约为 32 kDa。 白斑综合征病毒; VP28; VP26; 重组表达; 毕赤酵母 关键词

中图分类号 S945 文献标识码 A 文章编号 2095-9869(2016)04-0135-05

对虾白斑综合征病毒(White spot syndrome virus, WSSV)严重危害着全球对虾养殖业,造成巨大的经济 损失。WSSV 致病宿主范围非常广,致病力也非常强, 对虾感染该病毒后死亡率高达 100%。然而, WSSV 全基因组序列测序的完成, 使研究者对 WSSV 的结 构基因及其表达的蛋白的性质和功能有了全面的认 识(陈文博等, 2009)。运用蛋白质组学的方法,已经 鉴别出 40 多种 WSSV 的结构蛋白, 其中 22 种是囊 膜蛋白, 主要的囊膜蛋白有 VP19、VP28、VP31、 VP36B、VP38A、VP51B 和 VP53A 等, 主要的囊膜 被膜蛋白有 VP26、VP36A、VP39A 和 VP95 等(Tsai et al, 2006; Leu et al, 2009)。通过免疫共沉淀法和酵母双杂 交法研究了 WSSV 结构蛋白之间的互相作用,发现 VP28、VP51A、VP19 和 VP37 这 4 种蛋白位于病毒 颗粒的最外层,预测它们可能在识别宿主细胞表面的 模式、识别受体方面具有重要的作用(Chang et al, 2010)。Yi 等(2004)研究发现, VP28 是 WSSV 侵入对 虾细胞所必需的,而 VP26 负责将 VP28 蛋白与核衣 壳蛋白连接起来(Wan et al, 2008)。

一般认为,对虾缺乏获得性免疫系统,只能依赖 天然性免疫系统来抵抗外源病原体的入侵。然而,现 在越来越多的研究发现, DNA疫苗(Rajeshkumar et al, 2009; Mu et al, 2012)和蛋白质亚单位疫苗(丁晶等, 2013; Satoh et al, 2008)可以激活对虾的免疫系统、增 强对虾抵抗病毒侵染的能力,这些研究颠覆了人们对 对虾免疫认识的传统思维,为寻求防治 WSSV 的有 效途径带来了希望。DNA 疫苗是在分子生物学技术 基础上发展起来的特殊疫苗,它具有免疫效果好、生 产成本低和临床应用方便等优点(杨海等, 2013)。但 DNA 疫苗的本质毕竟是核酸,存在着基因转移到宿 主的可能性,其使用的安全性必须放在最关键的位 置。蛋白质亚单位疫苗的本质是蛋白质, 生物体利用

\* 国家公益性行业(农业)专项经费项目(201103034)资助。耿小雪, E-mail: gengxue2013@163.com ① 通讯作者: 张文兵, 教授, E-mail: wzhang@ouc.edu.cn 收稿日期: 2015-05-22, 收修改稿日期: 2015-05-26

蛋白质并将其用于机体本身的生命活动,不会造成危害,是一种安全的疫苗。

本研究选取 VP28 和 VP26 这两种 WSSV 囊膜蛋 白作为研究对象,利用毕赤酵母表达系统来组成型分 泌表达这两种目的蛋白,以期为规模化制备对虾免疫 增强剂提供基础数据。

### 1 材料与方法

### 1.1 材料

**1.1.1** 质粒与菌种 表达质粒 pGAPZαA 和 X-33 毕赤酵母(Invitrogen)为本实验室-80℃保存。*E.coli* Competent Cells Top10购自北京天根生物科技有限公司。WSSV 粗提液为本实验室-80℃保存。

**1.1.2** 实验试剂 pEASY-T1 simple Cloning Kit 和 T4 DNA Ligase 购于北京全式金生物技术有限公司; Zeocin 购自 Invitrogen 公司;快速琼脂糖凝胶 DNA 回收试剂盒、2 kb/5 kb DNA Marker、高纯度质粒小 提试剂盒、常规 PCR 用 2×Es Taq MasterMix 和蛋白 银染试剂盒购自康为世纪生物公司(CWBIO,北京); 限制性内切酶 EcoR I、Xba I和 AvrII购于 TaKaRa 公司;葡萄糖为 AMRESCO 公司产品;酵母提取物 (Yeast Extract)、胰蛋白胨(Tryptone)和琼脂粉均购于 BBI 公司,其他均为国药分析纯。

1.1.3 引物设计 根据 NCBI 中提交的 WSSV 的 全基因组 cDNA 序列(GenBank: AF332093.3),设计 含 EcoR I 和 Xba I 酶切位点的 VP28 基因引物 xVP28-F、xVP28-R, VP26 基因引物 xVP26-F、 xVP26-R。根据 Invitrogen 公司 pGAPZαA 手册提供 的引物序列 pGAP-F、AOX1-R,委托生工生物工程(上 海)股份有限公司合成, xVP28-F(5'-3'): CCGGAATTC-ATGGATCTTTCTTTCAC, xVP28-R(5'-3'): GCTCTAG-ATTACTCGGTCTCAGTGC o xVP26-F(5'-3'): CCGGA-ATTCATGGAATTTGGCAACC, xVP26-R(5'-3'): GCT-CTAGATTACTTCTTCTTGATTTCG<sub>o</sub> PGAP-F(5'-3'): GTCCCTATTTCAATCAATTGAA, AOX1-R(5'-3'): GCAAATGGC ATTCTGACATCC。引物中加下划线部 分序列分别为 EcoR I、Xba I 酶切识别位点,且在酶切 位点前引入了保护碱基。

### 1.2 方法

**1.2.1** VP28 和 VP26 基因的获得 取-80℃保存的 WSSV 粗提液作为模板,以引物对 xVP28-F/xVP28-R 和 xVP26-F/xVP26-R 分别进行普通 PCR 扩增,反应 体积为 50 μl,反应条件为:94℃预变性 5 min;94℃

变性 30 s, 62℃/58℃退火 30 s(VP28/VP26), 72℃延 伸 1 min, 35 个循环; 72℃延伸 10 min。采用快速琼脂 糖凝胶 DNA 回收试剂盒回收 VP28 和 VP26 目的片段。 **1.2.2** pGAPZaA 目的基因重组表达载体的构建

使用 EcoR I和 Xba I 对空载 pGAPZaA、VP28 和 VP26 基因进行双酶切,切胶回收后 T4 连接酶于 25℃连接 30 min。转化大肠杆菌 Top10 感受态细胞, 在含 25 µg/ml Zeocin LB 平板上进行抗性筛选,挑取阳 性克隆委托生工生物工程(上海)股份有限公司测序, 将测序正确的重组表达质粒分别命名为 pGAPZaA、 pGAPZaA-VP28 和 pGAPZaA-VP26。

1.2.3 重组表达质粒电转化毕赤酵母 使用 Avr II 酶切线性化重组质粒 pGAPZaA、pGAPZaA-VP28 和 pGAPZaA-VP26。参照 Invitrogen 公司毕赤酵母操作 手册制备 X-33 酵母感受态细胞。将线性化质粒电击转 化 X-33 酵母,然后涂布于含 100 µg/ml Zeocin YPDS 平板上,30℃培养 3 d 左右,筛选阳性克隆。提取阳性酵 母基因组 DNA 作为模板,以 pGAP-F 和 AOX1-R 作为上下游引物进行普通 PCR 扩增,阳性重组酵母分别为 X-33/pGAPZaA-VP28 和 X-33/pGAPZaA-VP26, X-33/pGAPZaA 作为空白对照。

**1.2.4** 重组酵母的表达与检测 挑取阳性重组酵母分别接种至 5 ml Zeocin 抗性的 YPD 液体培养基中,在 30℃、250 r/min 的条件下过夜培养。取 200 µl 上述活 化菌液接种至装有 50 ml 新鲜 YPD 培养基的 250 ml 三 角摇瓶中, 30℃、250 r/min 振荡培养 72 h。4℃、12000×g 离心 3 min,上清液经液氮速冻后,保存于-80℃冰箱。

分别取 40 µl X-33/pGAPZaA-VP28、X-33/pGAP ZaA-VP26和X-33/pGAPZaA蛋白发酵上清液,加入10 µl 5×蛋白质上样缓冲液,混匀后,99℃金属浴 10 min, 然后 12000×g 离心 2 min,取离心后的上清液上样, 取 5 µl 蛋白质分子量标准作为分子量参照,进行 SDS-PAGE 蛋白质电泳。电泳结束后,分别采用 R-250 考 马斯亮蓝染色和蛋白质银染来检测目的蛋白。

### 2 结果

### 2.1 VP28 和 VP26 基因的扩增

VP28 和 VP26 的基因是以 WSSV 的 DNA 粗提液为 模板,进行普通 PCR 扩增得到的,琼脂糖凝胶电泳结果 如图 1 所示,在 500–750 bp 之间有明显的条带,这与预 测的 VP28 和 VP26 基因的片段大小均为 632 bp 相符。

### 2.2 pGAPZaA-VP28 和 pGAPZaA-VP26 重组质粒 的鉴定

用T4 DNA Ligase 将酶切后的片段与具有相同黏





图 1 VP28 和 VP26 PCR 抄 增结来 Fig.1 PCR amplification of VP28 and VP26 gene

1-2: VP28; 3-4: VP26

性末端的 pGAPZaA 表达载体连接,从而构建好重组 表达载体,将得到的连接产物转化大肠杆菌 Top10, 经 Zeocin 抗性筛选后,挑取抗性单克隆进行菌落 PCR 鉴定,PCR 产物电泳结果见图 2,与目的条带应为 1172 bp 的理论值相符。取阳性克隆测序,测序结果 经 MEGA 5.05 软件分析,可证明重组表达载体序列 完全正确,无移码错配。





1-4: pGAPZaA-VP28; 5-8: pGAPZaA-VP26

### 2.3 重组酵母发酵上清液 SDS-PAGE 电泳考染结果

挑取阳性酵母转化子进行发酵,发酵上清液用于 蛋白质凝胶电泳,电泳结束后采用考马斯亮蓝 R-250 染色,染色结果见图 3,结果显示,与空载 pGAPZaA 相比,含有 VP28 和 VP26 目的基因的酵母上清液的 电泳没有特异的条带。因此,需要采用更灵敏的检测 方法来确定目的蛋白是否成功表达。

### 2.4 重组酵母发酵上清液 SDS-PAGE 电泳银染结果

利用蛋白质银染法来进一步检测酵母发酵上清液

中的目的蛋白,银染结果见图 4,与空载 pGAPZaA 酵母表达上清液组相比,pGAPZaA-VP28 和 pGAPZaA-VP26 酵母表达上清液组在箭头所指的平行位置有明显的特异性条带。根据蛋白分子量标准预测 VP28 和 VP26 的蛋白分子量在 32 kDa 左右。







1–3: X-33/pGAPZaA-VP28; 4–6:X-33/pGAPZaA-VP26; 7–9: X-33/pGAPZaA







### 3 讨论

随着基因工程和生物技术的发展,在体外表达功 能蛋白已经成为一种高效可行的获取蛋白疫苗的方 法。在对虾白斑综合征防治的研究中,WSSV 重组蛋 白可以诱发虾体产生抗 WSSV 侵染反应的结果已被 许多研究者所证明,而这些 WSSV 重组蛋白被称为 蛋白质亚单位疫苗,其中研究最多的是 VP28 病毒囊 膜蛋白。魏克强等(2005)利用杆状病毒感染家蚕蛹来 成功表达 VP28 蛋白,Fu 等(2008)构建了 pBS-H1-VP28 枯草芽孢杆菌表达载体,并在枯草芽孢杆菌成功表达 VP28 蛋白,Satoh 等(2008)利用大肠杆菌成功表达了 VP28 和 VP26 蛋白,养殖实验均证明 WSSV 重组蛋 白具有增强虾体抗 WSSV 感染的能力。

本研究使用毕赤酵母表达系统分泌性表达 VP28 和 VP26 目的蛋白,选用的表达载体是 pGAPZaA, 它属于组成型的表达载体,因为该表达载体的启动子 是 pGAP(三磷酸甘油醛脱氢酶启动子),使用该启动 子表达目的蛋白时不需要使用甲醇诱导。毕赤酵母表 达系统属于真核表达系统,对翻译后的蛋白质可以进 行一定的加工,有利于真核生物蛋白的表达和活性的 保持,优于原核表达系统。此外,表达产物可以分泌 到细胞外,便于目的蛋白的纯化与分离,适合规模化 生产。目前,利用该表达系统已经成功表达很多功能 蛋白,如 β-半乳糖苷酶、β-葡萄糖醛酸酶、羧肽酶 B 和羧酸酯酶等(Waterham et al, 1997; Sears et al, 1998; 张平涛, 2008<sup>1)</sup>; Delroisse et al, 2005)。使用组成型表 达系统不需要更换碳源,发酵周期短,且可以采用连 续发酵的方式进行大规模发酵,这些都给酵母发酵产 业带来了新的视角和机遇。但是,使用毕赤酵母组成 型表达系统外源蛋白时,有一个最主要的限制,就是 本系统不能用于表达对酵母细胞有害的蛋白质。此 外,毕赤酵母组成型表达系统能否高效分泌性表达外 源蛋白,还与目的基因插入酵母基因组的位置与拷贝 数、选用何种信号肽序列以及酵母培养条件(如温度、 pH值、溶氧和营养物等)等有密切关系。

本研究首次尝试在毕赤酵母中组成型分泌表达 VP28 和 VP26 目的蛋白,经检测成功表达,但目的 蛋白的表达量较低,推测有以下原因:(1)发酵条件不 合适:实验采用摇瓶小量发酵,无法控制发酵液的 pH值、溶氧量以及营养物质的供给;(2)没有筛选到 高效表达的菌株:目的基因不同拷贝数的插入,甚至 不同的阳性菌株,目的蛋白的表达量都有可能不同, 实验缺乏有效的检测高效表达菌株的方法;(3)信号肽 选用不合适:本研究采用的是酵母本身的信号肽序列 — α-交换因子,该信号肽可能不适合引导 VP28 和 VP26 分泌表达;(4)VP28 和 VP26 蛋白本身可能不适 合在毕赤酵母中组成型分泌表达。因此,还需要大量 相关的研究来解释这一现象的真实原因。尽管如此, 本研究还是能为研究 WSSV 蛋白亚单位疫苗的研究 提供实践经验和基础数据,为 WSSV 蛋白亚单位疫 苗的规模化使用的前景奠定一些基础。

### 参考文献

- 丁晶, 彦波, 傅玲琳. 以枯草芽孢杆菌递呈 VP28 对南美白对 虾免疫相关基因表达和细胞特异性吞噬的影响. 水生生 物学报, 2013, 37(4): 705-711
- 陈文博, 侯林, 刘庆慧. 对虾白斑综合征病毒亚单位疫苗研 究进展. 动物医学进展, 2009, 29(12): 73–76
- 杨海, 王芳宇. DNA 疫苗的研究进展. 中国畜牧兽医, 2013, 40(1): 72-76
- 魏克强, 许梓荣. 家蚕蛹表达的重组 VP28 疫苗对克氏原螯虾 的抗病毒保护效应. 实验生物学报, 2005, 38(3): 190–198
- Chang YS, Liu WJ, Lee CC, *et al*. A 3D model of the membrane protein complex formed by the white spot syndrome virus structural proteins. PLoS One, 2010, 5(5): e10718
- Delroisse JM, Dannau M, Gilsoul JJ, et al. Expression of a synthetic gene encoding a Tribolium castaneum carboxylesterase in *Pichia pastoris*. Protein Expres Purif, 2005, 42(2): 286–294
- Fu LL, Li WF, Du HH, et al. Oral vaccination with envelope protein VP28 against white spot syndrome virus in Procambarus clarkii using Bacillus subtilis as delivery vehicles. Lett Appl Microbiol, 2008, 46(5): 581–586
- Leu JH, Yang F, Zhang X, et al. Whispovirus//Lesser Known Large dsDNA Viruses. Springer Berlin Heidelberg, 2009: 197–227
- Mu Y, Lan JF, Zhang XW, *et al.* A vector that expresses VP28 of WSSV can protect red swamp crayfish from white spot disease. Dev Comp Immunol, 2012, 36(2): 442–449
- Rajeshkumar S, Venkatesan C, Sarathi M, *et al.* Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish Shellfish Immunol, 2009, 26(3): 429–437
- Satoh J, Nishizawa T, Yoshimizu M. Protection against white spot syndrome virus (WSSV) infection in kuruma shrimp orally vaccinated with WSSV rVP26 and rVP28. Dis Aquat Organ, 2008, 82(2): 89–96
- Sears IB, O'Connor J, Rossanese OW, *et al.* A versatile set of vectors for constitutive and regulated gene expression in *Pichia pastoris*. Yeast, 1998, 14(8): 783–790
- Tsai JM, Wang HC, Leu JH, *et al.* Identification of the nucleocapsid, tegument, and envelope proteins of the shrimp white spot syndrome virus virion. J Virol, 2006, 80(6): 3021–3029
- Wan Q, Xu L, Yang F. VP26 of white spot syndrome virus

<sup>1)</sup> 张平涛. 鼠羧肽酶原 B 和蛇毒金属蛋白酶 Alfimeprase 两种蛋白在毕赤酵母中表达研究. 厦门大学硕士研究生学论 文, 2008

functions as a linker protein between the envelope and nucleocapsid of virions by binding with VP51. J Virol, 2008, 82(24): 12598–12601

Waterham HR, Digan ME, Koutz PJ, et al. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene, 1997, 186: 37–44

(编辑 冯小花)

### Secretive Expression of White Spot Syndrome Virus Envelope Proteins VP28 and VP26 in *Pichia pastoris* Induced by Constitutive Promoter

GENG Xiaoxue, WANG Xiaoxia, ZHOU Yi, XU Wei, ZHANG Wenbing<sup>10</sup>, MAI Kangsen

(Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture; Key Laboratory of Mariculture, Ministry of Education; Fisheries College, Ocean University of China, Qingdao 266003)

Abstract WSSV has been a globally recognized highly harmful pathogen in shrimp farming industry that causes tremendous economic loss. The envelope proteins of WSSV, VP28 and VP26, play important roles in interacting with host cells, initiating virus infection and mediating virus intrusion. In this study, we used pGAPZ $\alpha$ A as the expression vector and X-33 *Pichia pastoris* as the host cell to express VP28 and VP26 in a secretive manner. The coding sequences of VP28 and VP26 (GenBank: AF332093.3) were amplified from WSSV using PCR, and the sequences of EcoR I (GAATTC) and Xba I (TCTAGA) were added to the 5' and 3' ends of the target genes. The purified PCR products were then cloned into the EcoR I/Xba I sites of the pGAPZaA vector. Sequencing analysis verified whether the target genes were correctly inserted into the reading frame. The construct was linearized by Bln I (Avr II) and then was integrated into P. pastoris X-33 through electroporation while being screened by Zeocin. The expressed proteins were identified with SDS-PAGE. The VP28 and VP26 recombinant proteins could not be detected by coomassie brilliant blue R250 staining, however, the bands of the fusion proteins appeared after silver staining. The sizes of VP28 and VP26 fusion proteins were about 32 kDa. These results suggest that the P. *pastoris* system was effective in expressing WSSV envelope proteins VP28 and VP26, although the expression level was not sufficient. Nonetheless, our study still established a novel tool for the study of subunit vaccine, and provided basic information for the large scale vaccine production.

Key words White spot syndrome virus; VP28; VP26; Recombinant expression; *Pichia pastoris* 

① Corresponding author: ZHANG Wenbing, E-mail: wzhang@ouc.edu.cn

DOI: 10.11758/yykxjz.20150527001

http://www.yykxjz.cn/

# 2014 年中国不同地区对虾白斑综合征病毒 ORF14/15 和 ORF23/24 缺失区序列比较<sup>\*</sup>

孙新颖<sup>1,3</sup> 刘庆慧<sup>1,20</sup> 万晓媛<sup>1,2</sup> 黄 徒<sup>1,2</sup>

(1. 农业部海洋渔业可持续发展重点实验室 中国水产科学研究院黄海水产研究所 青岛 266071;
2. 青岛海洋科学与技术国家实验室 海洋渔业科学与食物产出过程功能实验室 青岛 266071;
3. 上海海洋大学 上海 201306)

**摘要** 对虾养殖面临诸多病害威胁,对虾白斑综合征病毒(White spot syndrome virus, WSSV)是养 殖对虾主要病原之一,WSSV不同地理株的变异可能导致WSSV毒力的变化。为了解2014年中国 大部分地区WSSV ORF14/15 和 ORF23/24 的变异情况,本研究选择2014年1月-8月期间采集的 48份WSSV 阳性样本,用特异引物扩增ORF14/15 和 ORF23/24 片段,连接于T载体,转化至Top10 中,筛选阳性克隆,测序分析不同样本之间的缺失差异。结果显示,能够扩增ORF14/15 和 ORF23/24 样品的比例分别为43.75%和33.33%。在ORF14/15 扩增中,分别扩增出1260 bp、1270 bp、1892 bp 和2662 bp 片段,与TH-96-II 比对共有4种缺失情况,即缺失6540 bp、6530 bp、5908 bp 和5138 bp。 而在ORF23/24 扩增中,分别扩增出1140 bp 和1146 bp 片段,与中国台湾株(TW)比对有两种缺失 情况,即缺失12070 bp 和12064 bp。研究结果表明,WSSV在中国大部分地区存在一定程度的变 异,而不同毒株之间在ORF14/15 可变区差异比较明显,在ORF23/24 可变区差异不大,但均具有 大片段缺失。

关键词 WSSV; ORF14/15; ORF23/24; 序列分析 中图分类号 S945 文献标识码 A 文章编号 2095-9869(2016)04-0140-07

对虾白斑综合征病毒(White Spot Syndrome Virus, WSSV)作为线头病毒科(Nimaviridae)、白斑病毒属 (Whispovirus)的唯一成员(Vlak et al, 2005),由其引起 的白斑病已经成为对虾养殖中面临的最主要病害。在 1991–1992 年间,WSSV 首次被报道发现于中国台湾, 之后迅速影响至东南亚其他地区(Flegel, 1997),而在 1994 年,在印度等南亚地区病害也呈暴发趋势 (Anonymous, 1995; Pradeep et al, 2008)。WSSV 自此 开始在全球对虾养殖业中迅速传播,在过去的几十年中,对很多国家的对虾养殖产生很大的影响(Inouye et al, 1994; Chou et al, 1995; Cai et al, 1995; Wongteerasupaya et al, 1995; Kasornchandra et al, 1998; Mohan et al, 1998;

Nadala *et al*, 1998; Park *et al*, 1998; Magbanua *et al*, 2000), 3-10 d 内可达 100%的致死率, 造成巨大的经 济损失(Lightner, 1996)。

目前,GenBank 上公布有 4 种不同 WSSV 病毒株的基因组全序列,分别是中国台湾株(TW,AF440570) (307287 bp)、泰国株(TH,AF369029) (292967 bp)、中国株(CN,AF332093) (305107 bp)和韩国株(KR,JX515788)。据报道,假定的祖先株约 312 kb,最大基因组的 WSSV-TH-96-II (AY753327)则起源于泰国株(Pradeep *et al*, 2008)。各种基因组序列之间具有高度的相似度,而其差异主要体现在五个方面:大序列缺失;易于发生基因重组的可变区;同源重复区内重复

<sup>\*</sup>国家重点基础研究发展计划(2012CB114401)、山东省"泰山学者"建设工程专项经费和农业部科研杰出人才和创新团队专项经费共同资助。孙新颖, E-mail: sxy16@163.com

① 通讯作者:刘庆慧,研究员, E-mail: liuqh@ysfri.ac.cn 收稿日期: 2015-05-27,收修改稿日期: 2015-06-29

序列的变化;转座酶基因序列只存在于中国台湾株; 单核苷酸突变(童桂香等,2014; Marks *et al*, 2004)。

由于 WSSV 地理范围、宿主类别和致病力的差异, 导致不同的毒株之间具有差异。通过对 WSSV 基因组 两多态性位点分析,ORF14/15 和 ORF23/24 更易于发 生缺失和重组。据此,本研究针对中国明对虾养殖不同 地区自 2014 年 1 月-8 月间采集的 48 份 WSSV 阳性样 本,通过特定引物扩增目的片段,测序分析比较不同地 区各分离株 ORF14/15 和 ORF23/24 序列缺失情况,探 究中国不同地区 WSSV 分离株 ORF14/15 和 ORF23/24 的变异,为 WSSV 分子流行病研究提供依据。

### 1 材料与方法

### 1.1 样本来源

在 2014 年 1 月-8 月 WSSV 病害暴发期间,赴河 北、浙江、山东、江苏、辽宁、福建和广东等地采集 对虾样品,然后置于-20℃的冰箱冷冻保存,其来源 信息见表 1。

### 1.2 WSSV 核酸提取

将保存的样本取出,取约 30 mg 鳃组织,按照海 洋动物组织基因组 DNA 提取试剂盒(离心柱型)的说 明进行 DNA 提取,最后加 30 µl 65℃预热的无菌水 溶解,将提取的 DNA 样本置于-20℃冷冻保存待用。

### 1.3 PCR 检测

对 WSSV DNA 样本的检测采用套式 PCR 方法,标准按照 GB/T 28630.2-2012 白斑综合征(WSD)诊断规程第 2 部分套式 PCR 检测法。PCR 产物通过用 1×TAE 电泳缓冲液配制的 1%的琼脂糖凝胶进行电泳分析。

### 1.4 WSSV 缺失区 ORF14/15 和 ORF23/24 扩增

将得到的 WSSV 核酸通过特定的引物进行 ORF14/15和ORF23/24目的片段的扩增。实验中25μl 的体系包括: 17.3μl 双蒸水, 2μl 脱氧核酸混合物, 2.5μl 10×PCR 反应缓冲液(含 Mg<sup>2+</sup>),正向和反向引 物各 1μl, 0.2μl Ex *Taq* DNA 聚合酶, 1μl 待测核酸。 目的片段扩增中的 PCR 条件以及引物序列见表 2 (Marks *et al*, 2005; Dieu *et al*, 2010; Tang *et al*, 2013)。

### 1.5 目的片段克隆及序列比对分析

扩增后的 PCR 产物经 1×TBE 电泳缓冲液配制的 1%琼脂糖凝胶电泳,将目的条带切下,用胶回收试 剂盒获得目的 DNA,经 NanoDrop 2000 测定浓度后,

通过 pMD<sup>®</sup>18-T Vector 进行连接转化,将显示阳性、 条带单一的菌液进行测序。测得的序列与 NCBI 数据 库进行比对,其中,将 ORF14/15 与 TH-96-II 株比对, ORF23/24 与中国台湾株(TW)比对。

### 2 结果与分析

### 2.1 PCR 检测结果

对于提取的 WSSV 核酸,通过在套式 PCR 中的 检测,6 份核酸样品在第一轮中呈阳性,42 份核酸样 品在第二轮中呈阳性。

### 2.2 ORF14/15 扩增结果

通过对 WSSV 样本的扩增,共有 21 份(2#、3#、 4#、5#、6#、7#、13#、23#、24#、27#、30#、31#、 32#、33#、37#、40#、42#、44#、45#、46#和 47#) 样本出现了 ORF14/15 的检测条带,其能够成功扩增 样品的比例为 43.75%。其中,13#、23#和 24#条带明 显比较大,并且在 3#、44#和 47#一个泳道内均出现 了两条大小不一的条带,这可能是由样品中 DNA 的 断裂或片段不完整造成。来源于浙江宁波和湖州、山 东即墨、日照和青岛、江苏如东、福建漳浦和广东湛 江地区的样品未检出条带(图 1)。

### 2.3 ORF23/24 扩增结果

在 ORF23/24 扩增中,有 16 份(2#、3#、5#、6#、 7#、23#、24#、27#、38#、39#、40#、41#、42#、44# 和 48#)样本可以扩增出条带,能够成功扩增样品的比 例为 33.33%,所有样本扩增中的条带大小基本没有 差异。浙江湖州和宁波、山东日照、即墨和青岛、江 苏如东和赣榆、福建漳浦未有 ORF23/24 扩出(图 2)。

### 2.4 序列比对

在所有样本的 ORF14/15 扩增中,共有 4 种大小 不一的片段扩增出来,即 1260 bp (河北曹妃甸)、1270 bp (浙江温州、广州江门、河北黄骅)、1892 bp (河北 曹妃甸、江苏南京)和 2662 bp (江苏赣榆、辽宁、福 建厦门),同推测有最长序列的 TH-96-II 比对,分别 缺失 6540 bp、6530 bp、5908 bp 和 5138 bp (图 4)。 而在 ORF23/24 扩增中,片段大小只有微小差异,分 别为 1140 bp (河北曹妃甸、黄骅)和 1146 bp (辽宁、 福建厦门、江苏南京、广州湛江和江门、浙江温州) 不等,两种序列中间对应位置相差 6 个碱基,即 GATATC (图 3)。同中国台湾株进行对比,缺失的片 段大小分别为 12070 bp 和 12064 bp (图 5)。
第 37 卷

#### 表 1 样本采集信息 Tab.1 Information of sampling

| 序号 Number | 样品编号 Sample Number | 产地 Site                  | 品种 Species                                           |
|-----------|--------------------|--------------------------|------------------------------------------------------|
| 1         | JC140104001        | 河北曹妃甸 Caofeidian Hebei   | 凡纳滨对虾 <i>Litopenaeus vannamei</i>                    |
| 2         | JC140104002        | 河北曹妃甸 Caofeidian Hebei   | 凡纳滨对虾 L. vannamei                                    |
| 3         | JC140104003        | 河北曹妃甸 Caofeidian Hebei   | 凡纳滨对虾 L. vannamei                                    |
| 4         | JC140104004        | 河北曹妃甸 Caofeidian Hebei   | 日本囊对虾 Penaeus japonicus                              |
| 5         | JC140104005        | 河北曹妃甸 Caofeidian Hebei   | 日本囊对虾 P. japonicus                                   |
| 6         | JC140104006        | 河北曹妃甸 Caofeidian Hebei   | 日本囊对虾 P. japonicus                                   |
| 7         | JC140104007        | 河北曹妃甸 Caofeidian Hebei   | 日本囊对虾 P. japonicus                                   |
| 8         | JC140409002        | 浙江宁波 Ningbo Zheijang     | 凡纳滨对虾 L. vannamei                                    |
| 9         | JC140416001        | 山东即墨 Jimo Shandong       | 凡纳淀对虾 L. vannamei                                    |
| 10        | JC140418001        | 山东日照 Rizhao Shandong     | 日本囊对虾 P. japonicus                                   |
| 11        | JC140418010        | 江苏如东 Rudong Jiangsu      | 凡纳淀对虾 L. vannamei                                    |
| 12        | JC140418013        | 江苏赣榆 Ganyu Jiangsu       | 中国明对虾 Fenneronengeus chinensis                       |
| 13        | JC140418014        | 江苏赣榆 Ganyu Jiangsu       | 脊尾白虾 Palaemon carinicauda                            |
| 14        | JC140418015        | 江苏顿福 Garlyu Jiangsu      | 裕子解 Portunidae                                       |
| 15        | JC140419001        | 近沉油州 Huzbou Zheijang     | 双丁蛋Tortumuae                                         |
| 15        | JC140419001        | 浙江初州 Huzhou Zhejiang     | 罗氏语斯 Macrobrachium rosenbergii<br>四氏辺断 M rosenbergii |
| 10        | JC140419002        | 浙江湖州 Huzhou Zhejiang     | 多氏伯斯 M. rosenbergii<br>翌氏辺斯 M. rosenbergii           |
| 17        | JC140419003        | 例任例州 Huzhou Zhejiang     | 夕氏伯斯 M. rosenbergu<br>即氏辺町 M. rosenbergu             |
| 18        | JC140419004        | 初社确州 Huzhou Zhejiang     | 多民宿野 M. rosenbergu                                   |
| 19        | JC140419005        | 初任确理 Huzhou Zhejiang     | 多氏沿野 M. rosenbergu                                   |
| 20        | JC140419009        | 初仁的州 Huzhou Zhejiang     | 多氏指野 M. rosenbergu                                   |
| 21        | JC140419010        | 浙江湖州 Huzhou Zhejiang     | 岁氏招野 M. rosenbergu                                   |
| 22        | JC140422002        | 过了 Liaoning              | 凡羽浜刈野 L. vannamei                                    |
| 23        | JC140422003        | U丁 Liaoning              | 中国明灯 L. vannamei                                     |
| 24        | JC140428002        | 福建厦门 Xiamen Fujian       | 凡纳浜对虾 L. vannamei                                    |
| 25        | JC140428003        | 福建漳浦 Zhangpu Fujian      | 凡纳浜对虾 L. vannamei                                    |
| 26        | JC140508001        | 山东青岛 Qingdao Shandong    | 凡纳滨对虾 L. vannamei                                    |
| 27        | JC140522002        | 江苏南京 Nanjing Jiangsu     | 克氏原螯虾 Procambarus clarkii                            |
| 28        | JC140522003        | 江苏南京 Nanjing Jiangsu     | 克氏原螯虾 P. clarkii                                     |
| 29        | JC140522004        | 浙江温州 Wenzhou Zhejiang    | 凡纳滨对虾 L. vannamei                                    |
| 30        | JC140522005        | 浙江温州 Wenzhou Zhejiang    | 凡纳滨对虾 L. vannamei                                    |
| 31        | JC140522006        | 浙江温州 Wenzhou Zhejiang    | 凡纳滨对虾 L. vannamei                                    |
| 32        | JC140522007        | 浙江温州 Wenzhou Zhejiang    | 凡纳滨对虾 L. vannamei                                    |
| 33        | JC140522008        | 浙江温州 Wenzhou Zhejiang    | 凡纳滨对虾 L. vannamei                                    |
| 34        | JC140522009        | 浙江温州 Wenzhou Zhejiang    | 凡纳滨对虾 L. vannamei                                    |
| 35        | JC140522010        | 浙江温州 Wenzhou Zhejiang    | 凡纳滨对虾 L. vannamei                                    |
| 36        | JC140522011        | 浙江温州 Wenzhou Zhejiang    | 凡纳滨对虾 L. vannamei                                    |
| 37        | JC140522012        | 浙江温州 Wenzhou Zhejiang    | 凡纳滨对虾 L. vannamei                                    |
| 38        | JC140522014        | 浙江温州 Wenzhou Zhejiang    | 凡纳滨对虾 L. vannamei                                    |
| 39        | JC140522015        | 浙江温州 Wenzhou Zhejiang    | 凡纳滨对虾 L. vannamei                                    |
| 40        | JC140522016        | 浙江温州 Wenzhou Zhejiang    | 凡纳滨对虾 L. vannamei                                    |
| 41        | JC140625002        | 广东湛江 Zhanjiang Guangdong | 凡纳滨对虾 L. vannamei                                    |
| 42        | JC140625008        | 广东江门 Jiangmen Guangdong  | 凡纳滨对虾 L. vannamei                                    |
| 43        | JC140716007        | 山东青岛 Shandong Qingdao    | 凡纳滨对虾 L. vannamei                                    |
| 44        | JC140801003        | 河北黄骅 Huanghua Hebei      | 凡纳滨对虾 L. vannamei                                    |
| 45        | JC140801004        | 河北黄骅 Huanghua Hebei      | 凡纳滨对虾 L. vannamei                                    |
| 46        | JC140801005        | 河北黄骅 Huanghua Hebei      | 凡纳滨对虾 L. vannamei                                    |
| 47        | JC140801006        | 河北黄骅 Huanghua Hebei      | 凡纳滨对虾 L. vannamei                                    |
| 48        | JC140801007        | 河北黄骅 Huanghua Hebei      | 中国明对虾 F chinensis                                    |

表 2 PCR 引物与反应条件

|                          | Tab.2                                        | PCR primers and cycling con | ditions                                 |              |
|--------------------------|----------------------------------------------|-----------------------------|-----------------------------------------|--------------|
| 引物 Primer                | 序列 Sequence                                  | 预变性 Initial denaturation    | 变性 Denaturation                         | 延伸 Extension |
| ORF-14/15F<br>ORF-14/15R | AATATGGAACGACGGGTG<br>GACCAGCGCCTCTTCAG      | 94℃ 5min                    | 35个循环: 94℃ 30s,<br>55℃ 30s, 72℃ 2 min   | 72°C 7 min   |
| ORF-23/24F<br>ORF-23/24R | GTAGTGCATGTTTCTCTAAC<br>GTAAGTTTATTGCTGAGAAG | 94°C 5min                   | 35个循环: 94℃ 30s,<br>51℃ 30s, 72℃ 1.5 min | 72°C 7 min   |



图 1 ORF14/15 扩增 Fig.1 ORF14/15 amplification

#### 3 讨论

比较 ORF14/15 和 ORF23/24 扩增结果,可以看 出,在河北曹妃甸和黄骅、浙江温州、江苏南京、辽 宁的部分样本和广东江门、福建厦门地区样本中, ORF14/15 和 ORF23/24 片段均有扩增,江苏赣榆地区 样本中只有 ORF14/15 的扩增片段。除此之外的浙江 宁波和湖州、山东即墨、日照和青岛、江苏如东和福 建漳浦地区的所有样本两次扩增均未有相应条带出 现,其一致性较高。

已报道亚洲4种毒株,即中国台湾株、中国珠、

泰国株、韩国株的 ORF14/15 片段分别缺失 5138 bp、5132 bp、5316 bp 和 5721 bp。由于 TH-96-II 株 (AY753327) ORF14/15 片段最为完整,所以通常将 ORF14/15 与 TH-96-II 株进行比对。在 ORF14/15 扩 增中,可扩增出的片段序列均含有前 732 个碱基,说 明这一段 732 bp 的序列有较高的保守性,出现缺失 差异的位置主要位于全长片段后段部分。河北黄骅、曹妃甸、浙江温州和广东江门地区的毒株出现较大片 段的缺失,最大缺失 6540 bp。在江苏赣榆、辽宁和 福建厦门地区出现的部分缺失为 5138 bp 的毒株与中 国台湾株缺失情况一致。在 Tang 等(2013)针对马达加

M: DNA Marker DL2000; +: 阳性对照; -: 阴性对照; 1-48: 样本编号 M: DNA Marker DL2000; +: positive control; -: negative control; 1-48: number of samples



图 2 ORF23/24 扩增 Fig.2 ORF23/24 amplification







斯加岛、莫桑比亚和沙特阿拉伯地区毒株的实验中发现,序列缺失有5950 bp,同样的缺失情况也出现在Hoa等(2012)对印度和越南南部地区毒株的调查中。稍微小一点的5892 bp缺失情况发现存在于印度(IN-07,EF468499)和墨西哥(HQ257380,HQ257383,HQ257381)的分离株(Tang et al, 2013),这与本研究中涉及到江苏南京和河北曹妃甸地区的样本缺失情况相近。在薛晖等(2011)对2008–2010年兴化等6个地区样本的调查中,报道有4种缺失,即4751 bp、5138bp、5139 bp和5140 bp,后3种相较于中国台湾株仅有1个或两个碱基的差异,但后续的影响可能不仅如此。

在 ORF23/24 中, 共得到两种 PCR 扩增产物, 大

小分别为 1140 bp 和 1146 bp。已报道中国台湾株(TW) (AF440570)ORF23/24 片段最为完整,因此,通常将 ORF23/24 与中国台湾株(TW)进行比对。中国台湾株 的 14322 到 14330 位置的碱基为 GATGAAATC, 在辽 宁、福建厦门、江苏南京、广东湛江和江门、浙江温 州地区样本扩增出的 1146 bp 的序列相较于中国台湾 株缺失了 GAA 3 个碱基, 而河北曹妃甸和黄骅地区 扩增出的 1140 bp 序列则缺失了 GATGAAATC 9 个碱 基。二者与中国台湾株相比,分别缺失了 12064 bp 和 12070 bp。目前,已知的泰国株最大的缺失序列为 13120 bp, 韩国株具有中等程度的缺失, 为 5654 bp, 而中国株缺失最小,仅1169 bp,本研究中的两种情 况属于较大程度的片段缺失。童桂香等(2014)中的广 西分离株、Tang 等(2013)中的分离株和两株印度株 (EU327499, EU327500)缺失均为 10971 bp, 在 Pradeep 等(2008)所采集的有关印度地区分离株有 8539 bp 的 片段缺失。总的来说, ORF23/24 这段的缺失长度变 异较多,在1-13 kb之间不等。

目前为止, Marks 等(2005)以两株最大(约 312 kb)





图 5 WSSV 不同毒株 ORF23/24 区域的序列比对

Fig.5 Comparison of missing regions of ORF23/24 of different WSSV strains

右边粗实线表示引物扩增之外的序列,左右两边的矩形表示用引物扩增出的序列,中间的细虚线表示与中国台湾株(TW, AF440570)相比缺失的部分,矩形两边的数字表示与TW 对应的碱基位置

The right bold lines denoted the region outside the amplified fragments. The right and left rectangles denoted amplified sequences. Dash lines denoted missing sequences compared to the TW strain (AF440570). Numbers on top of the blocks showed the starting and ending positions corresponding to the TW strain (AF440570)

和最小(约 293 kb)的分离株为实验样本,用 RFLP 方法 呈现出二者之间的差异,同时两分离株之间的毒性差 异也已被观测到,即较小的分离株具有更强的毒性, Zwart 等(2010)也证明如此情况。本研究发现,WSSV 毒株在可变区 ORF14/15 和 ORF23/24 的进化表现出更 大程度的缺失,ORF14/15 和 ORF23/24 的缺失没有必 然联系,推测两区域的缺失进化是为使病毒基因组更 加稳定,从而更好地适应外部环境。有关 ORF14/15 和 ORF23/24 变异与缺失的研究,对追溯 WSSV 毒株 世系和发展起到一定帮助,同时为确定"基因组缺失导 致更高毒性"是否正确提供了一定的材料依据。

#### 参考文献

童桂香,黎小正,韦信贤,等.白斑综合征病毒广西株缺失区 基因的比较分析.上海海洋大学学报,2004,23(1):8-13 薛晖,王晓丰,丁正峰,等.白斑综合征病毒江苏分离株变异 区和缺失区基因的序列比较.中国水产科学, 2011, 18(5): 1196-1201

- Anonymous. SEMBV-an emerging viral threat to cultured shrimp in Asia. CP Shrimp New 3, 1995, 2-3
- Cai SL, Huang J, Wang CM, *et al.* Epidemiological studies on the explosive epidemic disease of prawn in 1993–1994. J China Fish, 1995, 19(2): 112–117
- Chou HY, Huang CY, Wang CH, *et al.* Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. Dis Aquat Org, 1995, 23(3): 165–173
- Dieu BTM, Marks H, Zwart MP, *et al.* Evaluation of white spot syndrome virus variable DNA loci as molecular markers of virus spread at intermediate spatiotemporal scales. J Gen Virol, 2010, 91(5): 1164–1172
- Flegel TW. Major viral diseases of the black tiger prawn (*Penaeus monodon*) in Thailand. World J Microbiol Biotechnol, 1997, 13(4): 433–442
- Hoa TTT, Zwart MP, Phuong NT, *et al.* Indel-II region deletion sizes in the white spot syndrome virus genome correlate with shrimp disease outbreaks in southern Vietnam. Dis Aquat Org, 2012, 99(2): 153–162
- Inouye K, Miwa S, Oseko N, et al. Mass mortalities of cultured Kuruma shrimp, Penaeus japonicus in Japan in 1993,

electron-microscope evidence of the causative virus. Fish Pathol, 1994, 29(2): 149–158

- Kasornchandra J, Boonyaratpalin S, Itami T. Detection of white spot syndrome in cultured penaeid shrimp in Asia, microscopic observation and polymerase chain reaction. Aquaculture, 1998, 164(1–4): 243–251
- Lightner DV. A handbook of pathology and diagnostic procedures for diseases of penaeid shrimp. Special publication of the World Aquaculture Society, LA, Baton Rouge, 1996
- Magbanua FO, Natividad KT, Migo VP, *et al.* White spot syndrome virus (WSSV) in cultured *Penaeus monodon* in the Philippines. Dis Aquat Org, 2000, 42(1): 77–82
- Marks H, Goldbach RW, Vlak JM, *et al.* Genetic variation among isolates of white spot syndrome virus. Arch Virol, 2004, 149(4): 674–697
- Marks H, van Duijse JJA, Zuidema D, *et al.* Fitness and virulence of an ancestral white spot syndrome virus isolate from shrimp. Virus Res, 2005, 110(1): 9–20
- Mohan CV, Shankar KM, Kulkarni S, *et al.* Histopathology of cultured shrimp showing gross signs of yellow head syndrome and white spot syndrome during 1994 Indian epizootics. Dis Aquat Org, 1998, 34(1): 9–12
- Nadal ECB, Loh PC. A comparative study of three different isolates of white spot virus. Dis Aquat Org, 1998, 33(3):

231-234

- Park JH, Lee YS, Lee S, *et al.* An infectious viral disease of penaeid shrimp newly found in Korea. Dis Aquat Org, 1998, 34(1): 71–75
- Pradeep B, Shekar M Karunasagar I, et al. Characterization of variable genomic regions of Indian white spot syndrome virus. Virology, 2008, 376(1): 24–30
- Tang KFJ, Marc LG, Lightner DV. Novel, closely related, white spot syndrome virus (WSSV) genotypes from Madagascar, Mozambique and the Kingdom of Saudi Arabia. Dis Aquat Org, 2013, 106(1): 1–6
- Vlak JM, Bonami JR, Flegel TW, et al. Nimaviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (Eds.), Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses. Elsevier, Amsterdam, 2005, 187– 192
- Wongteerasupaya C, Vickers JE, Sriurairalana S, *et al.* A nonoccluded, systemic baculovirus that occurs in cells of ectodermal and mesodermal origin and causes high mortality in the black tiger prawn, *Penaess monodon*. Dis Aquat Org, 1995, 21(2): 69–77
- Zwart MP, Dieu BTM, Hemerik L, *et al.* Evolutionary trajectory of white spot syndrome virus (WSSV) genome shrinkage during spread in Asia. PLoS One, 2010, 5(10): e13400

(编辑 冯小花)

### Comparison of the Missing Sequences of ORF14/15 and ORF23/24 of WSSV from Different Regions of China in 2014

SUN Xinying<sup>1,3</sup>, LIU Qinghui<sup>1,20</sup>, WAN Xiaoyuan<sup>1,2</sup>, HUANG Jie<sup>1,2</sup>

 Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071; 2. Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071; 3. Shanghai Ocean University, Shanghai 201306)

White spot syndrome virus (WSSV) is one of the major pathogens that severely harm Abstract shrimp aquaculture. Different strains of WSSV display various virulence. In order to understand the geographic variation in fragments ORF14/15 and ORF23/24 of WSSV in China, we collected 48 samples of WSSV-infected shrimp from disease outbreak areas in 7 provinces of China between January and August in 2014. We identified the genotypes of WSSV-positive samples using PCR with ORF14/15 and ORF23/24 specific primers, and the amplified fragments were conjugated into T-vectors and transformed into the Top10 cells. We selected the positive clones and obtained their sequences. Then we compared the missing fragments of ORF14/15 and ORF23/24 from different samples with the sequences of TH-96-II and China Taiwan strain (TW, AF440570) respectively. There were 21 samples with the products of ORF14/15 amplification, and 16 samples with the products of ORF23/24 amplification. The amplification ratios of ORF14/15 and ORF23/24 were 43.75% and 33.33% respectively. There were only 4 types of ORF14/15 compared to TH-96-II. The lengths of the amplified fragments were 1260 bp, 1270 bp, 1892 bp and 2662 bp, corresponding to the missing 6540 bp, 6530 bp, 5908 bp and 5138 bp respectively compared to TH-96- II. There were two types of ORF23/24 compared to the TW strain. The lengths of the amplified fragments were 1140 bp and 1146 bp, corresponding to the missing 12070 bp and 12064 bp respectively compared to the TW strain. These results suggested a certain degree of prevalence and variation of WSSV in China. There was an obvious difference in ORF14/15 between different strains, but only a minimal difference in ORF23/24. It is most likely that the variation in the missing fragments correlates with divergent WSSV virulence in different regions, and this notion needs to be further tested. Key words WSSV; ORF14/15; ORF23/24; Sequence analysis

① Corresponding author: LIU Qinghui, E-mail: liuqh@ysfri.ac.cn

DOI: 10.11758/yykxjz.20150617002

# 中国明对虾(*Fenneropenaeus chinensis*) coat-ε 基因全长 cDNA 克隆及组织分布<sup>\*</sup>

王修芳<sup>1,2</sup> 刘庆慧<sup>2,30</sup> 吴 垠<sup>10</sup> 黄 健<sup>2,3</sup>

 (1. 大连海洋大学 大连 116023; 2. 农业部海洋渔业可持续发展重点实验室 中国水产科学研究院黄海水产研究所 青岛 266071; 3. 青岛海洋科学与技术国家实验室 海洋渔业科学与食物产出过程功能实验室 青岛 266071)

**摘要** coat-ε 基因表达的蛋白是组成 COP I 的 coatomer 复合体的一个亚基,为获得中国明对虾 (*Fenneropenaeus chinensis*) coat-ε 基因全长序列,采用 cDNA 末端快速扩增(Rapid amplification of cDNA end, RACE)技术,扩增出 coat-ε 基因全长序列,采用 cDNA 末端快速扩增(Rapid amplification of cDNA end, RACE)技术,扩增出 coat-ε 基因的 3'端和 5'端,测序结果经 DNAMAN 比对拼接得出 coat-ε 基因全长,基因全长 1402 bp, 5'非编码区(UTR) 84 bp, 3'非编码区(UTR) 310 bp,开放阅读框 1008 bp,预测 编码 335 个氨基酸,其中,第 230–300 的氨基酸属于 TPR 超家族, SignalP 3.0 Server 预测氨基酸序列没 有信号肽,TMHMM Server v. 2.0 分析此氨基酸不存在跨膜结构, PSORT II Prediction 预测该蛋白位于 线粒体、细胞质、内质网中,属胞内蛋白。系统进化树显示,中国明对虾的 coat-ε 基因与节肢动物门的 动物亲缘关系相近。采用实时荧光定量方法分析该基因在鳃、上皮、胃、肌肉、肝胰腺等不同组织中的 相对表达,结果显示, coat-ε 在肌肉中的相对转录表达量最高,在鳃和附肢的表达次之。本研究获得的 中国明对虾 coat-ε 全长序列,可为该基因功能研究提供基础。

关键词 中国明对虾; coat-ɛ; 基因克隆; 组织分布

中图分类号 S945 文献标识码 A 文章编号 2095-9869(2016)04-0147-06

在细胞的胞吞和胞吐过程中,会在膜上形成不同 的包被小泡,由不同的蛋白所包被,从而特异性地完 成大分子及颗粒物质的运输,目前在细胞中发现3种 不同类型的有被小泡:网格蛋白有被小泡,COPII被 膜小泡,COPI被膜小泡。它们具有不同的物质运输 作用,其中,COPI被膜小泡主要负责将蛋白质由高 尔基体运回到内质网中,包括将外侧和内侧高尔基体 中的蛋白质运回到内质网,COPI被膜小泡在高尔基 体表面的形成主要是胞浆中两大部分的聚集,分别是 ARF家族G蛋白和大小在550 kDa 左右的 coatomer 复合体,其中, coatomer 复合体由 $\alpha$ 、 $\beta$ 、 $\beta'$ 、 $\gamma$ 、 $\delta$ 、  $\epsilon$ 、 $\zeta$ 7个亚基共同组成(Waters *et al*, 1991; Serafini *et al*, 1991)。coatomer 复合体通过 ARF-GTP 附着于膜的表 面,然后组装形成笼型有被小泡(Bremser *et al*, 1999; Nickel *et al*, 1998)。目前, COP I 笼型结构的电子显 微镜重建以及 coatomer 复合体的晶体结构已经被报 道, coatomer 复合体的 7 个亚基分别组合为两部分 ( $\beta\delta/\gamma\zeta$ -COP 和  $\alpha\beta'\epsilon$ -COP), 而 coat- $\epsilon$  是其中比较小的 亚基, coat- $\epsilon$  蛋白是酵母生长所必需的, 它的缺失会 造成 coat- $\alpha$  的不稳定(Duden *et al*, 1998)。

研究发现, COP I 不仅在高尔基体的物质运输中 发挥作用, 而且在细胞的内吞作用或内吞小泡的维持 方面发挥作用(Styers *et al*, 2008; Gabriely *et al*, 2007)。COP I 在细胞表面受体的表达及细胞膜脂质 成分的调节起到了重要作用(Misselwitz *et al*, 2011)。 Coatomer 复合体功能的多样性为病毒利用这一复杂 蛋白提供了机会。本研究通过 cDNA 末端快速扩增 (Rapid amplification of cDNA end, RACE)法扩增出中

<sup>\*</sup>国家重点基础研究发展计划(2012CB114401)、泰山学者"建设工程专项经费"和农业部科研杰出人才和创新团队专项 经费共同资助。王修芳, E-mail: wang xiufang@yeah.net

① 通讯作者:刘庆慧,研究员, E-mail: liuqh@ysfri.ac.cn; 吴 垠,教授, E-mail: wuyin@dlou.edu.cn 收稿日期: 2015-06-17, 收修改稿日期: 2015-07-29

国明对虾(*Fenneropenaeus chinensis*) coat-ε 基因全序 列,为进一步研究 coat-ε 基因表达蛋白甚至 COP I 被 膜小泡在各种病毒侵染过程中的作用打下基础。

#### 1 材料与方法

#### 1.1 材料

实验用中国明对虾购自山东昌邑水产养殖公司, 体长 6 cm, 经 PCR 检测不携带 WSSV,在(22±1)℃ 室温下的海水箱中暂养 3 d。TRIzol 试剂、pMD18-T 载体、PrimeScript RT Reagent Kit with gDNA Eraser 试 剂盒购自 TaKaRa,大肠埃希菌 Top10 感受态细胞购自 TIANGEN 公司,引物及测序均在上海生工生物技术 有限公司完成,荧光定量 PCR 试剂盒购自 Roche 公 司。

#### 1.2 cDNA 合成

利用 RNAiso Plus(TaKaRa)提取中国明对虾总 RNA,经 1%琼脂糖凝胶电泳查看 RNA 的提取效果, 根据 3'端 RACE 和 5'端 RACE 的不同,3'端加入 3'-CDS 合成 3' RACE cDNA 模板;5'端加入 5'-Adapter,5'-CDS 合成 5'RACE cDNA 模板。设计 3'-和 5'-RACE 特异性引物(表 1),3'端第一次扩增以混合的 UPM 和 Gsp1 为引物,反应条件:94℃,5 min;94℃ 30 s,72℃ 2 min,5 个循环;94℃ 30 s,70℃(68℃) 30 s,72℃ 2 min,5 个循环;94℃ 30 s,65℃ 30 s,72℃ 2 min, 25 个循环;72℃ 5 min,4℃。以第一次 PCR 产物为 模板,以 NUP 和 Gsp2 为引物,进行巢式 PCR,反 应条件与第一步相同。5'端扩增在第一次扩增过程中 以 UPM 和 Gsp3 为引物,巢式 PCR 扩增过程中以 UPM 和 Gsp4 为引物,反应条件与 3'端相同。

#### 1.3 coat-ε 基因 cDNA 的克隆

3'-和 5'-RACE 扩增产物经 1%琼脂糖凝胶电泳 后,条带按照 DNA 回收试剂盒(TIANGEN)说明书切 胶回收,将目的片段 1 μl 与 pPMD18-T(TaKaRa)载体 16℃连接 30 min,取 5 μl 连接产物加入 Top10 感受 态细胞中,置于冰上 30 min,42℃热激 60 s,将连接 产物转化入感受态细胞中,加入 750 μl LB 液体培养 基,37℃摇菌 1 h,取 100 μl 菌液涂布在 LB(Amp+, 50 μg/ml)平板上,37℃培养 14 h,挑取单菌落,接种 于 LB(Amp+, 50 μg/ml)液体培养基,在摇床上培养4 h 后,进行菌落 PCR。经琼脂糖凝胶后,电泳条带正确 的菌液送测序。

#### 1.4 生物信息学分析

经测序获得的结果通过 DNAMAN 进行比对、拼接。完成拼接的序列通过在线 ORG Finder 找出开放 阅读框,运用 Translate Tool 将开放阅读框的核苷酸 序列翻译为氨基酸序列,应用 SignalP 3.0 Server 预测 氨基酸序列有无信号肽,用 TMHMM Server v. 2.0 软 件预测氨基酸序列有无跨膜结构,用在线软件 ProtParam tool 分析氨基酸序列组成以及等电点和分 子量,用 PSORT II Prediction 预测蛋白的亚细胞定 位,利用在线软件 NPS Network Protein Sequence Analysis 分析蛋白的二级结构,用三级结构预测软件 SWISS-MODEL 预测该蛋白的空间结构,应用 BLAST 比对同源氨基酸序列,并用 MEGA 5.05 构建系统发 育树。

#### 1.5 coat-ε 基因的各组织表达

分别取 3 只中国明对虾的附肢、肝胰腺、上皮、心 脏、胃、肠、眼柄、肌肉、鳃、类淋巴、血淋巴组织, 加入 RNAiso,依照 RNAiso 试剂盒说明书提取 RNA, 采用 1.0%琼脂糖凝胶电泳与紫外分光光度计分析提 取 RNA 质量和完整性。使用 PrimeScript RT Reagent Kit with gDNA Eraser 试剂盒(TakaRa)将提取的 RNA 反转录为 cDNA, -20℃保存备用。以得到的 cDNA 稀释 10 倍为模板,分别用 β-actin(内参)、coat 引物进 行荧光定量 PCR(表 1)。qPCR 反应体系包括 SYBR Premix Ex *Taq*<sup>TM</sup>(2×) 12.5 µl, cDNA 模板 1 µl, 上下 游引物各 0.5 µl (10 µmol/L), DEPC 处理水 10.5 µl。 PCR 反应条件: 94℃, 5 min; 94℃ 30 s, 58℃ 30 s, 72℃ 30 s, 40 个循环; 65℃ 5 s, 95℃ 50 s。

利用 Bio-Rad CFX Connect 自带软件,采用  $2^{-\Delta\Delta Ct}$  法计算 coat-ε 基因的相对表达量,以肝胰腺 coat-ε 转 录表达作为标准 1。

表 1 引物序列 Fab 1 Sequences of the prime

|          | Tab.1 Sequences of the primers |  |
|----------|--------------------------------|--|
| 名称 Name  | 序列 Sequence(5'-3')             |  |
| Gsp1     | AGTCAGATGCCCTTGAGTGCCG         |  |
| Gsp2     | GCAACACTCACACAGATGGCTC         |  |
| Gsp3     | CTCCTTACGGGCAGCATCAAGACGC      |  |
| Gsp4     | ACGAAGTGCTCCCTCATAGTTATCC      |  |
| β-actinF | CATCAAGGAGAAACTGTGCT           |  |
| β-actinR | GATGGAGTTGTAGGTGGTCT           |  |
| CoatF    | TCCTTCTATATCGGGAATTACC         |  |
| CoatR    | CACAATGGTTACCCTGTTACTG         |  |

#### 2 结果

#### 2.1 coat-ε 基因全序列分析

根据3'端和5'端RACE得到的目的片段测序结果 拼接,得出 coat-ε 基因序列全长为 1402 bp,其中,5' 非编码区(UTR) 84 bp, 3'非编码区(UTR) 310 bp,通 过在线 ORF Finder 找出开放阅读框(ORF) 1008 bp,编 码 335 个氨基酸。在 3'非编码区内有加尾信号 (AAATAA),且 3'末端具有 polyA 尾巴。经过 DNAMAN将 coat-ε 基因序列开放阅读框预测编码氨 基酸序列(图 1)。全长序列提交 GenBank 数据库(No: KT253584)。

#### 2.2 生物信息学分析

将中国明对虾 coat-ε 基因编码的氨基酸序列使 用 BLAST 进行同源性分析,发现其与欧洲熊蜂的同 源性最高(图 2)。中国明对虾 coat-ε 基因编码的氨基 酸在 230-300 之间属于 TPR 超家族(图 3),该蛋白质 的等电点为 5.95,分子量为 38143.25 Da,此氨基酸序 列没有信号肽和跨膜结构,带负电荷的氨基酸(Asp+ Glu)43 个,占总蛋白的 12.8%,带正电荷氨基酸(Arg + Lys)有 38 个,占总蛋白的 11.3%,蛋白序列中有 7 个 半胱氨酸,不稳定指数为 40.51,是一种不稳定蛋白, 脂溶性为 87.4,总平均亲水性为-0.468。预测蛋白质 亚细胞定位于线粒体的可能性为 78.3%,细胞质的可 能性为 17.4%,内质网的可能性为 4.3%,内质网上的 保留信号为:在C末端有 KKXX-类似的序列,而在该 序列中 C 末端为 KQYA。二级结构分析显示, coat-εα 螺旋占比例很高,为 55.52%,β-转角占 7.46%,延伸 链占 10.75% (图 4)。预测的中国明对虾 coat-ε 蛋白的 空间结构模型见图 5。

#### 2.3 系统进化树的构建

通过 coat-ε 全基因的开放阅读框翻译,得出预测

| 1                                                                                           | ANGCAG                                                                                                  | TCCTA                                                                                                                                                                      | TCAA                                                                                                             | ငင္မေ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | YCCO                                                                                                                                                 | CCT                                                                                                                                                                                    | SICC                                                                                              | ICCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GICI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SC10                                                                                                                                                                                                                                                | CCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TAA                                                                                                                                                                                            | ccx(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CT(       |                                                                                             | схc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TC                                                                                             | (CC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ANCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25                                                                                          | 170011                                                                                                  | C1070                                                                                                                                                                      | 2020                                                                                                             | 1011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iccon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | caco                                                                                                                                                 | 077                                                                                                                                                                                    |                                                                                                   | cc1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0000                                                                                                                                                                                                                                                | cac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ici î                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                                                             | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1                                                                                           | XO                                                                                                      | HS                                                                                                                                                                         | H                                                                                                                | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | W I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R                                                                                                                                                    | L                                                                                                                                                                                      | G                                                                                                 | RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G                                                                                                                                                                                                                                                   | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R                                                                                                                                                                                              | N (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 2                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P                                                                                              | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -                                                                                           |                                                                                                         |                                                                                                                                                                            |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      | -                                                                                                                                                                                      | -                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                             |                                                                                                         | 178                                                                                                                                                                        |                                                                                                                  | - 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                      | 198                                                                                                                                                                                    |                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 218                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                              | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                                                                                             | 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 169                                                                                         | ANGAGI                                                                                                  | ICIIC                                                                                                                                                                      | erër                                                                                                             | YCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CETC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATCI                                                                                                                                                 | CIC                                                                                                                                                                                    | AACA                                                                                              | recco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | xecc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YCCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 610                                                                                                                                                                                                                                                 | cro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nec                                                                                                                                                                                            | ICT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (CC)      | NCC                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                             | QT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (CCT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 29                                                                                          | X S                                                                                                     | C W                                                                                                                                                                        | T                                                                                                                | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                    | v                                                                                                                                                                                      | N                                                                                                 | м ж                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | v                                                                                                                                                                                                                                                   | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E                                                                                                                                                                                              | LI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2         | E                                                                                           | V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                              | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                             |                                                                                                         | 262                                                                                                                                                                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                        |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 202                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 253                                                                                         | ATCOCC                                                                                                  | 1171                                                                                                                                                                       | cc20                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Case                                                                                                                                                 | cic(                                                                                                                                                                                   | cocc                                                                                              | 10110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CT1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ъссті                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 202                                                                                                                                                                                                                                                 | TCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -020                                                                                                                                                                                           | ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 240                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                             | (Ch)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 57                                                                                          | IG                                                                                                      | N Y                                                                                                                                                                        | 0                                                                                                                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N                                                                                                                                                    | E                                                                                                                                                                                      | λ                                                                                                 | 0 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P                                                                                                                                                                                              | E 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | R                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Σ                                                                                              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                             |                                                                                                         |                                                                                                                                                                            | -                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      | _                                                                                                                                                                                      |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                             |                                                                                                         | 346                                                                                                                                                                        |                                                                                                                  | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                      | 366                                                                                                                                                                                    |                                                                                                   | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 386                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                              | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                                                                                             | 406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 337                                                                                         | CICIAC                                                                                                  | cecee                                                                                                                                                                      | ICIC                                                                                                             | CINC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C1C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cccc                                                                                                                                                 | 336                                                                                                                                                                                    | TATC                                                                                              | CACIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CIIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ACAC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ιcω                                                                                                                                                                                                                                                 | ATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ucc                                                                                                                                                                                            | CAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cco       | cre                                                                                         | <u>c</u> ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CT(                                                                                            | CA(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 85                                                                                          | LY                                                                                                      | RA                                                                                                                                                                         | L                                                                                                                | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R                                                                                                                                                    | х                                                                                                                                                                                      | Y                                                                                                 | G V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ξ                                                                                                                                                                                                                                                   | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x .                                                                                                                                                                                            | A :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | Α.                                                                                          | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                             |                                                                                                         | 430                                                                                                                                                                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      | 450                                                                                                                                                                                    |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 421                                                                                         | TTARAG                                                                                                  | TTECT                                                                                                                                                                      | coor                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ACTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ceae                                                                                                                                                 | 7776                                                                                                                                                                                   | ccca                                                                                              | CT33C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | таас(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 277                                                                                                                                                                                                                                                 | ста                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | acc                                                                                                                                                                                            | 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66        | ют                                                                                          | CTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 220                                                                                            | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 113                                                                                         | LX                                                                                                      | LL                                                                                                                                                                         | 1                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ŶF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                    | F                                                                                                                                                                                      | P                                                                                                 | S N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ī                                                                                                                                                                                                                                                   | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N                                                                                                                                                                                              | נם                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | E                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                              | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                             |                                                                                                         |                                                                                                                                                                            |                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                    | -                                                                                                                                                                                      | -                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                             |                                                                                                         | 514                                                                                                                                                                        |                                                                                                                  | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      | 534                                                                                                                                                                                    |                                                                                                   | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 554                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                              | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                                                                                             | 574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 505                                                                                         | CIICAI                                                                                                  | CICIC                                                                                                                                                                      | cuic                                                                                                             | ACAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CCC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CCTC                                                                                                                                                 | ATT                                                                                                                                                                                    | CICC                                                                                              | CICCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ACCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TCTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CICC                                                                                                                                                                                                                                                | CAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | acc                                                                                                                                                                                            | ATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (CT)      | ATC                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cu                                                                                             | CA(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 141                                                                                         | V D                                                                                                     | LS                                                                                                                                                                         | N                                                                                                                | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ľ                                                                                                                                                    | I                                                                                                                                                                                      | v.                                                                                                | A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | С                                                                                                                                                                                                                                                   | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ε                                                                                                                                                                                              | נם                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | r                                                                                           | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G                                                                                              | λ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                             |                                                                                                         |                                                                                                                                                                            |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                      | <b>610</b>                                                                                                                                                                             |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 589                                                                                         | стехот                                                                                                  | CAGTC                                                                                                                                                                      | LCLT                                                                                                             | cccc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | стес                                                                                                                                                 | 010                                                                                                                                                                                    | SCCT                                                                                              | TCATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 030<br>TT2C                                                                                                                                                                                                                                         | ста                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1201                                                                                                                                                                                           | TCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | этс                                                                                         | 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.77                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ccci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TANC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 169                                                                                         | LS                                                                                                      | 0 5                                                                                                                                                                        | D                                                                                                                | λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | С                                                                                                                                                    | R                                                                                                                                                                                      | λ                                                                                                 | LX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŷ                                                                                                                                                                                                                                                   | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x                                                                                                                                                                                              | X I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | R                                                                                           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | λ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                             |                                                                                                         | -                                                                                                                                                                          | _                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                             |                                                                                                         |                                                                                                                                                                            |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                        |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                             |                                                                                                         | 682                                                                                                                                                                        |                                                                                                                  | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      | 702                                                                                                                                                                                    |                                                                                                   | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 722                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 7                                                                                                                                                                                            | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                                                                                             | 742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 673                                                                                         | GAGCTO                                                                                                  | 682<br>MGNC                                                                                                                                                                | TCTC                                                                                                             | <u>دين</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | can                                                                                                                                                  | 702<br>GAT                                                                                                                                                                             | CATC                                                                                              | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>СТСА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CYCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 722<br>5376                                                                                                                                                                                                                                         | CCT (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,00                                                                                                                                                                                           | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cce       | GT                                                                                          | 742<br>GTX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 770                                                                                            | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CCCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 673<br>197                                                                                  | CAGCTG<br>E L                                                                                           | ANGIC<br>X T                                                                                                                                                               | ICIC<br>L                                                                                                        | C110<br>Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CCAT<br>D                                                                                                                                            | 702<br>GATO<br>D                                                                                                                                                                       | D                                                                                                 | 71<br>CAACI<br>A T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Z<br>CTCA<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CACA<br>T Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 722<br>5376<br>X                                                                                                                                                                                                                                    | ACTO<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2266                                                                                                                                                                                           | 32<br>CTT(<br>A 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6C0       | CCT<br>P                                                                                    | 742<br>GT3<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TTO                                                                                            | icu<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CCCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 673<br>197                                                                                  | CASCIG<br>E L                                                                                           | ANGAC<br>X T                                                                                                                                                               | L                                                                                                                | CARC<br>Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CGAT<br>D                                                                                                                                            | 702<br>GATO<br>D                                                                                                                                                                       | D                                                                                                 | 71<br>CAACJ<br>A T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CACA<br>T Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 722<br>SATO<br>M                                                                                                                                                                                                                                    | A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2200                                                                                                                                                                                           | 32<br>CTT(<br>2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56C(<br>1 | ect<br>P                                                                                    | 742<br>GTX<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I                                                                                              | жы<br>Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CCCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 673<br>197<br>757                                                                           | CACCTC<br>E L                                                                                           | 682<br>AAGAC<br>X T<br>766<br>CTGCA                                                                                                                                        | L                                                                                                                | 0<br>0<br>77<br>6007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92<br>11G11<br>E X<br>76<br>12C72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CAT2                                                                                                                                                 | 702<br>GAT<br>D<br>786                                                                                                                                                                 | D                                                                                                 | 71<br>CAACJ<br>A T<br>75<br>ACTTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L<br>L<br>L<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CACA<br>T Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 722<br>CATC<br>X<br>806<br>CAAC                                                                                                                                                                                                                     | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                | 32<br>CTT(<br>A 5<br>16<br>CAC(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | P                                                                                           | 742<br>GTX<br>C<br>826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I                                                                                              | A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 757<br>T (<br>83(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 673<br>197<br>757<br>225                                                                    | CACCIG<br>E L<br>CACAAA<br>E K                                                                          | 682<br>AAGAC<br>X T<br>766<br>CTGCA<br>L Q                                                                                                                                 | ICIC<br>L<br>COLT                                                                                                | 0<br>0<br>77<br>00<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 92<br>E X<br>76<br>1ACTA<br>Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CAT2                                                                                                                                                 | 702<br>GAT<br>D<br>786<br>TAC<br>Y                                                                                                                                                     | CARG                                                                                              | 71<br>CAACJ<br>A T<br>75<br>ACTTO<br>E L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E<br>L<br>L<br>L<br>L<br>L<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CACAO<br>T Q<br>ACAAO<br>D K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 722<br>SATG<br>X<br>806<br>SAAC                                                                                                                                                                                                                     | A<br>A<br>CTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                | 32<br>CTTC<br>A 1<br>16<br>CACC<br>T 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | CGT<br>P<br>ITC                                                                             | 742<br>GTX<br>C<br>826<br>TCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I                                                                                              | A<br>A<br>MATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 757<br>T (<br>83)<br>SCC2<br>G (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 673<br>197<br>757<br>225                                                                    | GAGCIG<br>E L<br>CAGAAA<br>E K                                                                          | 682<br>AAGAC<br>X T<br>766<br>CTGCA<br>L Q                                                                                                                                 | ICIC<br>L<br>CGAT<br>D                                                                                           | 0<br>0<br>77<br>6001<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2<br>E X<br>6<br>ACTA<br>Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CAT2                                                                                                                                                 | 702<br>GAT<br>D<br>786<br>TAC<br>Y                                                                                                                                                     | CARG<br>Q                                                                                         | ACTION<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L<br>L<br>L<br>L<br>L<br>L<br>L<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CACAO<br>T Q<br>ACAAO<br>D K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 722<br>2ATG<br>X<br>806<br>2AAC                                                                                                                                                                                                                     | A<br>A<br>CTC:<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                | 32<br>CTT(<br>A 5<br>16<br>CAC(<br>T 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | CGT<br>P<br>ITC                                                                             | 742<br>GTX<br>C<br>826<br>TCC<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I<br>I<br>I<br>I<br>L                                                                          | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 757<br>T (<br>83)<br>SCC2<br>G (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 673<br>197<br>757<br>225                                                                    | CACCTO<br>E L<br>CACAAA<br>E K                                                                          | 682<br>AAGAC<br>K T<br>766<br>CTCCA<br>L Q<br>850                                                                                                                          | ICIC<br>L<br>CGAT<br>D                                                                                           | 2<br>2<br>3<br>3<br>3<br>8<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>E X<br>6<br>1ACTA<br>Y Y<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CATI                                                                                                                                                 | 702<br>GAT<br>D<br>786<br>TAC<br>Y<br>870                                                                                                                                              | CAAG<br>Q                                                                                         | A<br>T<br>A<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CAACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>A<br>CACI<br>CACI<br>A<br>CACI<br>A<br>CACI<br>CACI<br>A<br>CACI<br>A<br>CACI<br>CACI<br>CACI<br>A<br>CACI<br>A<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>A<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>A<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACI<br>CACA | E<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CACAO<br>T Q<br>ACAAO<br>D K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 722<br>2ATG<br>M<br>806<br>2AAC<br>N<br>890                                                                                                                                                                                                         | A<br>A<br>CTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                | 32<br>CTTC<br>A 1<br>16<br>CACC<br>T 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | EGT<br>P<br>ITC                                                                             | 742<br>GTX<br>C<br>826<br>TCC<br>L<br>910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                                                              | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 752<br>10000<br>T<br>830<br>5000<br>G<br>(<br>920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ISSCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 673<br>197<br>757<br>225<br>841                                                             | CACCTC<br>E L<br>CACAAA<br>E K<br>GICTCT                                                                | 682<br>X T<br>766<br>CTGCA<br>L Q<br>850<br>TICCT                                                                                                                          | ICIC<br>L<br>COLT<br>D                                                                                           | 277<br>277<br>277<br>277<br>277<br>277<br>277<br>277<br>277<br>277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92<br>E X<br>76<br>1ACTA<br>Y Y<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CATA<br>CATA                                                                                                                                         | 702<br>GAT<br>D<br>786<br>TAC<br>Y<br>870                                                                                                                                              | CAAG<br>Q<br>GAGG                                                                                 | 71<br>CAACU<br>A T<br>ACTTO<br>E L<br>88<br>CTGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CACAO<br>T Q<br>ACAAO<br>D K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 722<br>2ATG<br>X<br>806<br>2AAC<br>N<br>890                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                | 32<br>CTT(<br>16<br>CAC(<br>T )<br>00<br>TTC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | ITC<br>L                                                                                    | 742<br>GTA<br>C<br>826<br>TCC<br>L<br>910<br>ACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 757<br>T (<br>83)<br>C (<br>92)<br>4,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 673<br>197<br>757<br>225<br>841<br>253                                                      | CACCAGA<br>E L<br>CACAAA<br>E X<br>GICIGI<br>V C                                                        | 682<br>NAGAC<br>K T<br>766<br>CTCCA<br>L Q<br>850<br>TTCCT<br>F L                                                                                                          | ICIC<br>L<br>CCAT<br>D<br>ICCC                                                                                   | 2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2<br>11<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CATA<br>I<br>ATAT                                                                                                                                    | 702<br>CATO<br>D<br>786<br>TACO<br>Y<br>870<br>CAAO<br>E                                                                                                                               | CAAG<br>Q<br>CAAG<br>Q<br>CAAGG                                                                   | A T<br>A T<br>ACTTO<br>E L<br>88<br>CTGAO<br>A E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CACAN<br>TQ<br>ACAAN<br>D K<br>CCCTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 722<br>2ATG<br>X<br>806<br>2AAC<br>N<br>890<br>ICAA<br>Q                                                                                                                                                                                            | CTC:<br>X<br>CTC:<br>V<br>CAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                | 32<br>CTT(<br>A 1<br>16<br>CAC(<br>T 1<br>00<br>TTG)<br>L 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | ITC<br>L                                                                                    | 742<br>GTA<br>C<br>826<br>TCC<br>L<br>910<br>ACC<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I<br>I<br>I<br>I<br>I<br>I<br>I<br>I                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 753<br>10050<br>T (<br>83)<br>55000<br>G (<br>92)<br>10000<br>N 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 673<br>197<br>757<br>225<br>841<br>253                                                      | CACAAA<br>E L<br>CACAAA<br>E K<br>GICIGI<br>V C                                                         | 682<br>AAGAC<br>X T<br>766<br>CTCCA<br>L Q<br>850<br>TTCCT<br>F L                                                                                                          | ICIC<br>L<br>COLT<br>D<br>ICCC                                                                                   | 2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92<br>E X<br>76<br>1ACTA<br>Y Y<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CAT3                                                                                                                                                 | 702<br>CATO<br>D<br>786<br>TACO<br>Y<br>870<br>CAAO<br>E                                                                                                                               | CAAG<br>Q<br>CAAG<br>Q<br>CAGG                                                                    | A T<br>A T<br>ACTTO<br>E L<br>CTGAG<br>A E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>CICICA<br>CICICA<br>CICICA<br>CICICA<br>L               | CACAN<br>T Q<br>ACAAN<br>D K<br>CCCTT<br>A L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 722<br>SATG<br>M<br>806<br>SAAC<br>N<br>890<br>ICAA<br>Q                                                                                                                                                                                            | CTC<br>A<br>CTC<br>V<br>CAAO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                | 32<br>CTT(<br>16<br>CAC(<br>T )<br>00<br>TTC)<br>L 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | ITC<br>L                                                                                    | 742<br>GTA<br>C<br>826<br>TCC<br>L<br>910<br>ACC<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I<br>I<br>I<br>I<br>I<br>I<br>I<br>I                                                           | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 757<br>10000<br>T (<br>830<br>5000<br>G (<br>920<br>N 1<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 673<br>197<br>757<br>225<br>841<br>253                                                      | CACCADA<br>E L<br>CACADA<br>E K<br>GICIGI<br>V C                                                        | 682<br>AAGAC<br>X T<br>766<br>CTCCA<br>L Q<br>850<br>TTCCT<br>F L<br>934<br>ATCAA                                                                                          | ICIC<br>CCAT<br>IGGC                                                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92<br>11GAA<br>E X<br>76<br>12CTA<br>Y Y<br>50<br>12CAAA<br>A X<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CATA<br>CATA<br>ATAT<br>Y                                                                                                                            | 702<br>GAT<br>D<br>786<br>TAC<br>Y<br>870<br>GAA<br>E<br>954                                                                                                                           | CAAG<br>CAAG<br>CAAG<br>E                                                                         | A T<br>A T<br>ACTTO<br>E L<br>CTGAO<br>A E<br>Secood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CICA<br>L<br>CICA<br>L<br>CICA<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CICA<br>L<br>CI  | CACAN<br>T Q<br>ACAAN<br>D K<br>CCCTT<br>A L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 722<br>CATG<br>M<br>806<br>CAAC<br>N<br>890<br>ICAA<br>Q<br>974<br>SCAC                                                                                                                                                                             | A<br>CTC:<br>V<br>CALCARA<br>E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                | 32<br>CTT<br>A 1<br>CACC<br>T 1<br>00<br>TTC<br>L 1<br>84<br>ACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | CGT<br>P<br>ITC<br>L<br>AGG<br>K                                                            | 742<br>GTX<br>C<br>826<br>TCC<br>L<br>910<br>ACC<br>D<br>994<br>TAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ITTO<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 757<br>2666<br>7 (<br>830<br>6 (<br>920<br>800<br>80<br>920<br>800<br>80<br>920<br>800<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 673<br>197<br>225<br>841<br>253<br>925<br>281                                               | CACCTC<br>E L<br>CACAAA<br>E K<br>GICIGI<br>V C<br>ACCCTC<br>T L                                        | 682<br>NAGAC<br>K T<br>766<br>CTCCA<br>L Q<br>850<br>TTCCT<br>F L<br>934<br>NTCAA<br>I N                                                                                   | ICIC<br>CCAT<br>ICCC<br>ICCC<br>CTIC                                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92<br>13GAA<br>E X<br>76<br>12CTA<br>Y Y<br>50<br>12CAAA<br>A X<br>14<br>14<br>17CCT<br>V L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CATH<br>CATH<br>ATAT<br>Y<br>TTCH                                                                                                                    | 702<br>GAT<br>D<br>786<br>TAC<br>Y<br>870<br>GAA<br>E<br>954<br>CAC<br>H                                                                                                               | CAAG<br>Q<br>CAAG<br>E<br>CACA<br>H                                                               | 71<br>CAACH<br>A T<br>75<br>AGTTO<br>E L<br>88<br>CTGAO<br>A E<br>96<br>CAGGO<br>T G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>C<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>CTCA<br>L<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | CACAO<br>T Q<br>ACAAO<br>D K<br>CCCTT<br>A L<br>CACAO<br>P Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 722<br>CATG<br>X<br>806<br>CAAC<br>N<br>890<br>ICAA<br>Q<br>974<br>SGAG<br>E                                                                                                                                                                        | CTC:<br>V<br>CTC:<br>V<br>CTC:<br>V<br>CTC:<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                               | 32<br>CTTC<br>A 1<br>CACC<br>T 3<br>00<br>TTC<br>L 1<br>84<br>ACCC<br>N 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | ITC<br>L<br>AGG                                                                             | 742<br>GTX<br>C<br>826<br>TCC<br>L<br>910<br>ACC<br>D<br>594<br>TXC<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ITTO<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 757<br>1004<br>1004<br>1004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 673<br>197<br>225<br>841<br>253<br>925<br>281                                               | CACCAGA<br>E L<br>CACAAA<br>E K<br>GICIGI<br>V C<br>ACCCIC<br>T L                                       | 682<br>NAGAC<br>K T<br>766<br>CTCCA<br>L Q<br>850<br>TTCCT<br>F L<br>934<br>NTCAA<br>I N                                                                                   | ICIC<br>CONT<br>IGGC<br>CIIG                                                                                     | 2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>4<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92<br>E X<br>76<br>Y Y<br>50<br>CAAR<br>A X<br>4<br>V L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CATH<br>CATH<br>ATAT<br>Y<br>TTCH                                                                                                                    | 702<br>GAT<br>D<br>786<br>TAC<br>Y<br>870<br>GAA<br>E<br>954<br>CAC<br>H                                                                                                               | CAAG<br>Q<br>GAGG<br>E<br>CACA<br>H                                                               | 71<br>CAACIA<br>A T<br>AGTIG<br>E L<br>CIGAG<br>A E<br>CIGAG<br>A E<br>CAGGG<br>T G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ACTCA<br>L<br>6<br>TTCC<br>L<br>0<br>UAGTC<br>S<br>4<br>UAAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CACAO<br>TQ<br>ACAAO<br>D K<br>CCCTTA<br>A L<br>CACAO<br>PQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 722<br>CATC<br>X<br>806<br>CAAC<br>N<br>890<br>ICAA<br>Q<br>974<br>SCAC<br>E                                                                                                                                                                        | SCTC<br>X<br>STC<br>V<br>SAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                               | 32<br>CTTC<br>A 1<br>CACC<br>T 1<br>00<br>TTC<br>L 1<br>84<br>ACCC<br>N 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | L<br>AGG<br>ATT                                                                             | 742<br>GTX<br>C<br>826<br>TCC<br>L<br>910<br>ACC<br>D<br>994<br>TAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ITTO<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | AATO<br>N<br>S<br>S<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75<br>1004<br>1004<br>1004<br>1004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 673<br>197<br>757<br>225<br>841<br>253<br>925<br>281                                        | CACADA<br>E L<br>CACADA<br>E R<br>CICITOT<br>V C<br>ACCCITO<br>T L                                      | 682<br>NAGAC<br>X T<br>766<br>CTCCA<br>L Q<br>850<br>TTCCT<br>F L<br>934<br>ATCAA<br>I N<br>1018                                                                           | ICIC<br>CONT<br>D<br>IGGC<br>CITC<br>L                                                                           | 2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92<br>13GAA<br>E X<br>76<br>13CTA<br>Y Y<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CATA<br>I<br>ATAT<br>TTCS<br>S                                                                                                                       | 702<br>GAT<br>D<br>786<br>TAC<br>Y<br>870<br>GAA<br>E<br>954<br>CAC<br>H                                                                                                               | CAAG<br>Q<br>GAGG<br>E<br>CACA<br>H                                                               | A T<br>A T<br>ACTTO<br>E L<br>CTGAC<br>A E<br>CACCO<br>T C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CICA<br>L<br>6<br>TICC<br>L<br>0<br>NAGIG<br>S<br>4<br>NAAC<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CACAO<br>T Q<br>ACAAO<br>D K<br>CCCTTA<br>A L<br>CACAO<br>P Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 722<br>2ATG<br>M<br>806<br>2AAC<br>N<br>890<br>ICAA<br>0<br>974<br>2GAG<br>E<br>058                                                                                                                                                                 | CTC:<br>V<br>CALCAR<br>CALC<br>CALCAR<br>CALCAR<br>CALCAR<br>CALCAR<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br>0<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                               | 32<br>CTTC<br>A 1<br>CACC<br>T 1<br>00<br>TTGJ<br>L 1<br>84<br>ACCC<br>N 1<br>68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L | 742<br>GTX<br>C<br>826<br>TCC<br>D<br>910<br>D<br>954<br>TAC<br>L<br>078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ITT<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I  | AATO<br>N<br>AGCI<br>S<br>DAGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1004<br>1088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 673<br>197<br>757<br>225<br>841<br>253<br>925<br>281<br>1009                                | CACCACA<br>E L<br>CACADA<br>E K<br>CICITOT<br>V C<br>ACCORTO<br>T L<br>CAACAC                           | 682<br>NAGAC<br>X T<br>766<br>CTOCAA<br>L Q<br>850<br>TTCCT<br>F L<br>934<br>ATCAA<br>I N<br>1018<br>AAGGG                                                                 | ICIC<br>COAT<br>CITC<br>COAC                                                                                     | 65<br>CAAC<br>Q<br>77<br>SCC7<br>A<br>86<br>CACC<br>Q<br>94<br>ATCC<br>M<br>107<br>AACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E X<br>E X<br>ACTA<br>Y Y<br>SO<br>CAAA<br>X X<br>SO<br>CAAA<br>X X<br>SO<br>CAAA<br>X X<br>SO<br>CAAA<br>X X<br>SO<br>CAAA<br>X X<br>SO<br>CAAA<br>X X<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CATA<br>CATA<br>I<br>ATAT<br>TTCI<br>S                                                                                                               | 702<br>GAT<br>D<br>786<br>TAC<br>Y<br>870<br>GAL<br>S<br>554<br>CAC<br>H<br>038<br>GAC                                                                                                 | CAAG<br>Q<br>CAAG<br>E<br>CACA<br>H<br>ATCG                                                       | A T<br>ACTTO<br>E L<br>CTGAG<br>A E<br>CTGAG<br>A E<br>CASCO<br>T G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CTCA<br>L<br>6<br>TTCC<br>L<br>0<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>NGTG<br>S<br>1<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CACAN<br>T Q<br>ACAAN<br>D K<br>CCCTT<br>A L<br>CACAN<br>P Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 722<br>SATG<br>M<br>806<br>SAAC<br>N<br>890<br>ICAA<br>0<br>974<br>SCAC<br>E<br>058<br>IGAT                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7<br>20<br>0<br>8<br>8<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                               | 32<br>CTTC<br>A 1<br>CACC<br>T 3<br>CACC<br>T 3<br>CACC<br>TTG<br>I<br>L 1<br>B4<br>ACCC<br>N 1<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>C<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | AGG<br>ATT<br>1110<br>AGG                                                                   | 742<br>GTA<br>C<br>826<br>TCC<br>L<br>910<br>ACC<br>D<br>954<br>TAC<br>L<br>078<br>ACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ITTO<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 752<br>26660<br>7 (<br>2600)<br>6 (<br>920)<br>200<br>1004<br>1004<br>1004<br>1005<br>26660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>ISSCA<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 673<br>197<br>757<br>225<br>841<br>253<br>925<br>281<br>1009<br>309                         | GACCTO<br>E L<br>CACAAA<br>E X<br>GICIGI<br>V C<br>ACCCIO<br>T L<br>GAACAC<br>E H                       | 682<br>X T<br>766<br>CTCCA<br>L Q<br>850<br>TTCCT<br>F L<br>934<br>XTCAA<br>I N<br>1018<br>AAGGG<br>K G                                                                    | ICIC<br>L<br>COLT<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | 65<br>CAAC<br>Q<br>777<br>SCCT<br>A<br>86<br>CASC<br>Q<br>94<br>ATCC<br>M<br>1027<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACAAA<br>E X<br>ACTA<br>Y Y<br>SO<br>CAAA<br>X X<br>SO<br>CAAA<br>X X<br>SO<br>CAAA<br>X X<br>SO<br>CAAA<br>X X<br>SO<br>CAAA<br>X X<br>SO<br>CAAA<br>X X<br>SO<br>SO<br>SO<br>X<br>Y Y<br>SO<br>SO<br>X<br>SO<br>X<br>SO<br>X<br>SO<br>X<br>Y<br>Y<br>Y<br>SO<br>SO<br>X<br>SO<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CATH<br>D<br>CATH<br>I<br>I<br>ATAT<br>Y<br>TTC:<br>S<br>I<br>XCAN                                                                                   | 702<br>D<br>786<br>TAC<br>Y<br>870<br>CAA<br>E<br>954<br>CAC<br>H<br>038<br>CAC<br>D                                                                                                   | CANG<br>Q<br>CANG<br>E<br>CACA<br>H<br>ATCG<br>I                                                  | 71<br>CAACI<br>A T<br>ACTTO<br>E L<br>CTGAC<br>A E<br>CACCA<br>I G<br>104<br>CAACCA<br>A T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A<br>CTCA<br>L<br>CTCCA<br>CTCCA<br>CTCCA<br>CTCCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CTTCCA<br>CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CACAN<br>T Q<br>ACAAO<br>D K<br>CCCTT<br>A L<br>CACAO<br>P Q<br>ACCAO<br>P Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 722<br>3170<br>306<br>3110<br>890<br>74<br>974<br>974<br>532<br>2058<br>1337<br>D                                                                                                                                                                   | CTC<br>V<br>CAAA<br>E<br>CTTC<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77<br>21.555<br>0<br>8<br>8.4552<br>3<br>9<br>9<br>55555<br>2<br>10<br>10<br>10<br>10<br>10<br>10                                                                                              | 32<br>CTTC<br>A 1<br>CACC<br>CACC<br>T 3<br>CACC<br>TTG<br>I<br>CACC<br>I<br>TTG<br>I<br>L 1<br>S4<br>ACCC<br>N 1<br>S4<br>ACCC<br>R 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | LGT<br>P<br>ITC<br>L<br>AGG<br>K<br>ATT<br>ITA                                              | 742<br>GTX<br>C<br>826<br>TCC<br>L<br>910<br>ACC<br>D<br>954<br>TAC<br>L<br>078<br>ACC<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ITTO<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | A ATO<br>N A ATO<br>N A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 753<br>CGGC<br>T<br>G<br>SCCJ<br>G<br>(<br>920<br>ACCC<br>N<br>1004<br>TGCC<br>L<br>1004<br>TGCC<br>L<br>1005<br>CGCC<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCA<br>CCCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CC |
| 673<br>197<br>757<br>225<br>841<br>253<br>925<br>281<br>1009<br>309                         | CACCTO<br>E L<br>CACADA<br>E K<br>GICIGI<br>V C<br>ACCCIC<br>T L<br>CAACAC<br>E H                       | 682<br>AAGAC<br>K T<br>766<br>CTOCA<br>L Q<br>850<br>TTCCT<br>F L<br>934<br>ATCAA<br>I N<br>1018<br>AAGGG<br>K G                                                           | ICIC<br>L<br>COLT<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | 65<br>CLARC<br>Q<br>777<br>SCCC1<br>A<br>86<br>CLACC<br>Q<br>94<br>ATCC<br>M<br>102<br>XACT<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E X<br>E X<br>A<br>CACTA<br>Y Y<br>SO<br>CAAA<br>A X<br>CAAA<br>A X<br>CAAAA<br>A X<br>CAAAA<br>A X<br>CAAAA<br>A X<br>CAAA<br>A X<br>CAAA<br>A X<br>CAAAA<br>A X<br>CAAA<br>A X<br>CAAAA<br>A X<br>CAAAA<br>A X<br>CAAAA<br>A X<br>CAAAA<br>X<br>CAAAAA<br>X<br>CAAAA<br>X<br>CAAAAA<br>X<br>CAAAAA<br>X<br>CAAAAA<br>X<br>CAAAAA<br>X<br>CAAAAAAA<br>X<br>CAAAAAAA<br>X<br>CAAAAAA<br>X<br>CAAAAAAAA | CATA<br>D<br>CATA<br>I<br>I<br>ATAT<br>Y<br>TTCL<br>S<br>V<br>I<br>I<br>ACAA<br>Y<br>E                                                               | 702<br>CATC<br>D<br>786<br>TACC<br>Y<br>870<br>CAAC<br>E<br>954<br>CACC<br>H<br>038<br>CACC<br>D<br>1222                                                                               | CAAC<br>Q<br>CAACA<br>E<br>CACA<br>H<br>ATCC<br>I                                                 | 71<br>CAACI<br>A T<br>75<br>ACTTO<br>E L<br>88<br>CTGAC<br>A E<br>96<br>CAACC<br>A T<br>104<br>CAACC<br>A T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2<br>CTCA<br>L<br>6<br>TTCC<br>L<br>0<br>NAGTO<br>S<br>4<br>NAGTO<br>K<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CACAN<br>T Q<br>ACAAN<br>D K<br>CCCTT<br>A L<br>CACAN<br>P Q<br>AGGAT<br>E D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 722<br>SATG<br>M<br>806<br>SAAC<br>N<br>890<br>1CAA<br>Q<br>974<br>SGAG<br>E<br>058<br>IGAT<br>D                                                                                                                                                    | CTC:<br>V<br>CAAA<br>E<br>CTTC:<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7<br>2<br>2<br>8<br>8<br>4<br>5<br>3<br>9<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                 | 32<br>CTTC<br>A 1<br>CACC<br>T 3<br>CACC<br>T 3<br>CACC<br>TTC<br>T<br>CACC<br>TTC<br>T<br>CACC<br>TTC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>CACC<br>T<br>C<br>CACC<br>T<br>C<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | L<br>AGG<br>K<br>ATT<br>Y<br>ITTA                                                           | 742<br>GTA<br>C<br>826<br>TCC<br>D<br>910<br>ACC<br>D<br>954<br>TAC<br>L<br>078<br>ACC<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ITTO<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75:<br>ACGGC<br>T (<br>834)<br>SGCC;<br>G (<br>920<br>AACCC<br>N 1<br>1004<br>TGCC<br>L 1<br>1084<br>SCCC;<br>A 2<br>1084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCC |
| 673<br>197<br>757<br>225<br>841<br>253<br>925<br>281<br>1009<br>309                         | CACCTO<br>E L<br>CACAAAA<br>E K<br>GICIGI<br>V C<br>ACCCIO<br>T L<br>CAACAC<br>E B                      | 682<br>AAGAC<br>K T<br>766<br>CTOCA<br>L Q<br>850<br>TTOCT<br>F L<br>934<br>ATOAA<br>I N<br>1018<br>AAGGG<br>K G<br>1102                                                   | ICIC<br>L<br>COLT<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | 65<br>CLANC<br>Q<br>777<br>60007<br>A<br>86<br>CLASC<br>Q<br>94<br>ATOC<br>M<br>1022<br>ALTOC<br>ALTOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22<br>RAGNA<br>E X<br>76<br>RACTA<br>Y Y<br>SO<br>COAR<br>A X<br>SO<br>COAR<br>A X<br>SO<br>COAR<br>A X<br>E<br>SO<br>COAR<br>F V<br>L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CATA<br>D<br>CATA<br>I<br>I<br>ATAT<br>S<br>V<br>TTCL<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | 702<br>CATC<br>D<br>786<br>TACC<br>Y<br>870<br>CAAC<br>E<br>954<br>CACC<br>H<br>038<br>CACC<br>D<br>1222<br>CATC                                                                       | CARCA<br>D<br>CAACA<br>CAACA<br>E<br>CAACA<br>I                                                   | A T<br>A T<br>A T<br>ACTTO<br>E L<br>CTGAC<br>A E<br>CASCO<br>T C<br>104<br>CAACO<br>A T<br>113<br>CTTCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>CTCA<br>L<br>66<br>TTTCC<br>L<br>00<br>AGTIC<br>S<br>C<br>AGTIC<br>K<br>8<br>BAAGC<br>K<br>2<br>TTTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CACAAO<br>T Q<br>ACAAO<br>D K<br>CCCTT<br>A L<br>CACAAO<br>P Q<br>ACCAAO<br>P Q<br>10<br>ACCAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 722<br>SATG<br>M<br>806<br>SAAC<br>N<br>890<br>1CAA<br>974<br>574<br>5646<br>E<br>058<br>1647<br>D<br>142<br>ATAT                                                                                                                                   | CTCC<br>V<br>CGAA<br>E<br>CTTCC<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                               | 32<br>CTTC<br>A 1<br>16<br>CACC<br>T 3<br>00<br>TTC3<br>L 1<br>84<br>ACCC<br>N 1<br>68<br>GTT<br>T<br>R 1<br>52<br>CAC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L | 742<br>GTA<br>C<br>826<br>TCC<br>L<br>910<br>ACC<br>D<br>954<br>L<br>078<br>ACC<br>L<br>078<br>ACC<br>L<br>162<br>ATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I    | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75:<br>T (<br>83:<br>55002:<br>G (<br>92:<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>10- | COCCA<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 673<br>197<br>225<br>841<br>253<br>925<br>281<br>1009<br>309                                | CACCTO<br>E L<br>CACAAA<br>E K<br>GICIGI<br>V C<br>ACCCTO<br>T L<br>GAACAC<br>E H<br>ACAGIG             | 682<br>AAGAC<br>K T<br>766<br>CTGCA<br>L Q<br>850<br>TTCCT<br>F L<br>934<br>ATCAA<br>I N<br>1018<br>AAGGG<br>K G<br>1102<br>67TCT<br>1186                                  | ICIC<br>L<br>COLT<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | 65<br>CLARC<br>Q<br>777<br>SCCC7<br>A<br>86<br>CLASC<br>Q<br>94<br>ATCC<br>M<br>102<br>XAX7<br>X<br>111<br>XTA7<br>X113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22<br>23<br>23<br>24<br>25<br>24<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CATH<br>D<br>CATH<br>I<br>I<br>ATAT<br>Y<br>TTCS<br>S<br>V<br>E<br>I<br>AATO<br>I<br>I<br>AATO                                                       | 702<br>CATC<br>D<br>786<br>TACC<br>Y<br>870<br>CAAC<br>E<br>954<br>CACC<br>B<br>038<br>CACC<br>D<br>032<br>CATC<br>205                                                                 | CACC                                                                                              | 71<br>CAACA<br>A T<br>75<br>ACTIC<br>E L<br>88<br>CIGAG<br>A E<br>96<br>CIGAG<br>CACCO<br>T G<br>104<br>CAACCO<br>A T<br>1111<br>CITICC<br>121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2<br>CTCA<br>L<br>6<br>TTCC<br>L<br>0<br>0<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CACAAO<br>T Q<br>ACAAO<br>D K<br>CCCCTT<br>A L<br>CACAAO<br>P Q<br>IC<br>ACCAT<br>E D<br>IC<br>ACCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 722<br>SATG<br>M<br>806<br>SCAAC<br>N<br>890<br>102AA<br>0<br>574<br>CGAG<br>E<br>058<br>162AT<br>D<br>142<br>ATATAT<br>226                                                                                                                         | SCITC<br>V<br>SCITC<br>V<br>TITC<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                          | 32<br>CTTC<br>A 1<br>16<br>CACC<br>T 3<br>00<br>TTG<br>1<br>CACC<br>N 1<br>68<br>68<br>CTTC<br>R 1<br>52<br>CACC<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L | 742<br>GTA<br>826<br>TCC<br>910<br>ACC<br>D<br>910<br>ACC<br>D<br>9544<br>L<br>078<br>ACC<br>L<br>162<br>ACC<br>L<br>162<br>ACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ITTO<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75:<br>T (<br>83:<br>55002:<br>G (<br>92:<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>100-<br>10- | COCCA<br>A<br>TGAC<br>D<br>A<br>A<br>A<br>A<br>A<br>A<br>TGAC<br>D<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 673<br>197<br>757<br>225<br>841<br>253<br>925<br>281<br>1009<br>309<br>1093<br>1177         | CACCTO<br>E L<br>CACADA<br>E K<br>GICIGI<br>V C<br>ACCCTO<br>T L<br>CAACAC<br>E H<br>ACAGIG             | 682<br>AAGAC<br>K T<br>766<br>CTGCA<br>L Q<br>850<br>TTCCT<br>F L<br>934<br>ATCAA<br>I N<br>1018<br>AAGGG<br>K G<br>1102<br>GTTCT<br>1186<br>AGCAT                         | ICIC<br>L<br>CONT<br>C<br>CONC<br>C<br>CONC<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C     | 65<br>CNAM<br>Q<br>77<br>SCCTT A<br>86<br>CLASS<br>Q<br>95<br>A<br>NTOS<br>M<br>102<br>NAST<br>K<br>111<br>ATAT<br>115<br>ANAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22<br>23,23,3,3<br>2 X<br>25<br>24,25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CATH<br>D<br>CATH<br>I<br>I<br>ATAT<br>Y<br>TTCS<br>S<br>CATA<br>Y<br>I<br>I<br>ACAD                                                                 | 702<br>CATC<br>D<br>786<br>TACC<br>Y<br>870<br>CAAC<br>E<br>954<br>CAC<br>H<br>038<br>SAC<br>D<br>1222<br>LATTC<br>206<br>TAC                                                          | CARCA<br>Q<br>CAACG<br>CACCA<br>H<br>ATCCG<br>L<br>CACTA                                          | 71<br>CAACH<br>A T<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>88<br>86<br>CTGAO<br>A E<br>96<br>CCACO<br>A E<br>96<br>CCACO<br>A E<br>96<br>CCACO<br>A T<br>104<br>CCACA<br>A T<br>104<br>CCACA<br>CCACA<br>A T<br>104<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACA<br>CCACACA<br>CCACACA<br>CCACA<br>CCACACA<br>CCACACA<br>CCACACA<br>CCACACA<br>CCACACA<br>CCACACA<br>CCACACA<br>CCACACA<br>CCACACA<br>CCACACA<br>CCACACACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2<br>CTCN<br>L<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CACAA<br>T Q<br>ACAAA<br>D K<br>CCCTTTAA L<br>CACAAA<br>CACAAA<br>P Q<br>1<br>CACAAA<br>CACAAA<br>CACAAA<br>CACAAA<br>CACAAA<br>CACAAAA<br>CACAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 722<br>SATG<br>M<br>806<br>SCAAC<br>N<br>890<br>102AA<br>0<br>974<br>CCAAC<br>E<br>058<br>102AT<br>D<br>142<br>ATATAT<br>226<br>1111                                                                                                                | COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLORIVIO<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>COLOR<br>V<br>CO | 7<br>2025<br>8<br>8<br>4552<br>3<br>9<br>9<br>9<br>5<br>5<br>5<br>2<br>2<br>2<br>10<br>10<br>10<br>10<br>10<br>10<br>11<br>11<br>10<br>12<br>11<br>7<br>17<br>7                                | 32<br>CTTC<br>A 1<br>16<br>CACC<br>T 3<br>00<br>TTC3<br>CACC<br>CACC<br>S2<br>CACC<br>S2<br>CACC<br>36<br>CTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | AGG<br>AGG<br>ATT<br>AGG<br>ATT<br>AGG<br>ATT<br>ITT<br>ITT<br>ITT                          | 742<br>GTA<br>C<br>826<br>TCC<br>910<br>D<br>910<br>D<br>9594<br>L<br>078<br>ACC<br>D<br>9594<br>L<br>078<br>ACC<br>D<br>910<br>D<br>910<br>D<br>910<br>D<br>910<br>D<br>910<br>D<br>914<br>2<br>6<br>TA<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>910<br>A<br>C<br>7<br>8<br>7<br>7<br>7<br>8<br>7<br>7<br>7<br>7<br>7<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | ITTO<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | A SCI<br>S<br>A SCI<br>SCI<br>S<br>A SCI<br>S<br>A SCI<br>S<br>SCI<br>S<br>A SCI<br>S<br>A SCI<br>S<br>SCI<br>S<br>S<br>A SCI<br>S<br>SCI<br>S<br>S<br>SCI<br>S<br>S<br>SCI<br>S<br>S<br>SCI | 75:<br>76:<br>83:<br>92:<br>92:<br>92:<br>92:<br>92:<br>92:<br>92:<br>92:<br>92:<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>CCCA<br>C |
| 673<br>197<br>757<br>225<br>841<br>253<br>925<br>281<br>1009<br>309<br>1093<br>1177         | CACCTO<br>E L<br>CACAAA<br>E X<br>GICIGI<br>V C<br>ACCCTO<br>I L<br>CAACAC<br>E H<br>ACAGIG<br>ATATAG   | 6822<br>AAGAX T<br>766<br>CTGCAA<br>L Q<br>850<br>TTCCT<br>F L<br>934<br>ATCAA<br>I N<br>1018<br>AAGGG<br>K G<br>1102<br>GTTCT<br>1186<br>K G                              | ICIC<br>L<br>COLT<br>COLC<br>COLC<br>COLC<br>COLC<br>COLC<br>COLC<br>C                                           | 65<br>CAAM<br>Q<br>777<br>60007<br>A<br>866<br>CAAM<br>Q<br>946<br>M<br>102<br>MAAM<br>X<br>1111<br>XAAM<br>1128<br>XAAM<br>128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22<br>23,23,23,2<br>25,27,27,27,27,27,27,27,27,27,27,27,27,27,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CATAI<br>D<br>CATAI<br>I<br>I<br>ATAI<br>S<br>I<br>I<br>AATAI<br>I<br>I<br>AATAI<br>I<br>I<br>AATAI<br>I<br>I<br>AATAI                               | 702<br>CATC<br>D<br>786<br>TACC<br>Y<br>870<br>CAAC<br>E<br>954<br>STAC<br>206<br>TACC<br>206<br>TACC<br>2250                                                                          | CACC<br>D<br>CAACS<br>CACCA<br>H<br>CACCT<br>ITCT                                                 | 71<br>CAACH<br>A T<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L<br>CTCA<br>L<br>CTCA<br>L<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CACAA<br>T Q<br>ACAAA<br>D K<br>CCCTTTA L<br>CACAAA<br>P Q<br>1<br>CACAAA<br>E D<br>1<br>1<br>TGATTA<br>1<br>1<br>ATTGC<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 722<br>SATG<br>M<br>806<br>SAAC<br>N<br>890<br>1CAA<br>Q<br>974<br>SGAC<br>E<br>058<br>IGAT<br>D<br>142<br>MIATAT<br>226<br>ITTT<br>310                                                                                                             | CTCC<br>V<br>CAAA<br>E<br>CTTCC<br>F<br>TTTC<br>TTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7<br>2125<br>0<br>8<br>8<br>4552<br>3<br>9<br>9<br>9<br>5<br>5<br>5<br>2<br>2<br>2<br>10<br>10<br>10<br>10<br>10<br>12<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 | 32<br>CTTC<br>A 1<br>16<br>CACC<br>T 1<br>00<br>TTCJ<br>CACC<br>N 1<br>68<br>68<br>CTTT<br>52<br>CACC<br>36<br>CTTT<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | AGG<br>K<br>ITC<br>AGG<br>K<br>ITT<br>ITT<br>ITT<br>I                                       | 742<br>GTA<br>826<br>TCC<br>910<br>ACC<br>910<br>ACC<br>910<br>ACC<br>078<br>ACC<br>162<br>ATA<br>246<br>TAT<br>330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ITTO<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75:<br>76:<br>83:<br>92:<br>92:<br>92:<br>92:<br>92:<br>92:<br>92:<br>92:<br>92:<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CCCA<br>A<br>TGAC<br>D<br>A<br>A<br>A<br>TGAC<br>C<br>D<br>A<br>TGAC<br>C<br>D<br>A<br>A<br>A<br>T<br>C<br>A<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 673<br>197<br>225<br>841<br>253<br>925<br>281<br>1009<br>309<br>1093<br>1177<br>1261        | CACCADA<br>E L<br>CACADAA<br>E K<br>C<br>CACCATO<br>T L<br>CAACACO<br>E H<br>ACAGTG<br>ACAGTG<br>AGATAT | 682<br>Alacke<br>K T<br>766<br>CTGCAL<br>CTGCAL<br>850<br>TICCT<br>F L<br>934<br>AICCAL<br>934<br>AICCAL<br>850<br>1018<br>ALACCE<br>K G<br>1102<br>GTICT<br>1270<br>TICAT | ICIC<br>L<br>COLT<br>C<br>CL<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C     | 65<br>CAAM<br>Q<br>777<br>60001<br>A<br>866<br>CAAM<br>Q<br>944<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>MICO<br>M | 22<br>23,23,23,2<br>24,27,24,27,27,27,27,27,27,27,27,27,27,27,27,27,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CATAI<br>D<br>CATAI<br>I<br>I<br>ATAI<br>S<br>I<br>I<br>AAATOI<br>I<br>AAATOI<br>I<br>AAATOI                                                         | 702<br>CAT<br>D<br>786<br>TAC<br>V<br>870<br>CAA<br>E<br>954<br>CAC<br>H<br>038<br>CAC<br>D<br>1222<br>CAT<br>CAC<br>CAC<br>CAC<br>CAC<br>CAC<br>CAC<br>CAC                            | CARCA<br>Q<br>CAACS<br>E<br>CACCA<br>H<br>CACCT<br>ITGT<br>CACA                                   | 7377<br>7377<br>7377<br>7377<br>73777<br>73777<br>73777<br>73777<br>737777<br>737777<br>737777<br>737777<br>737777<br>737777<br>737777<br>737777<br>737777<br>737777<br>737777<br>737777<br>737777<br>737777<br>737777<br>737777<br>737777<br>737777<br>737777<br>737777<br>737777<br>737777<br>7377777<br>7377777<br>7377777<br>7377777<br>7377777<br>7377777<br>7377777<br>73777777<br>7377777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br>CTCA<br>L<br>16<br>17<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CACAA<br>T Q<br>ACAAO<br>D K<br>CCCTTTAA L<br>CACAAO<br>CCCTTTAA L<br>CACAAO<br>CCCTTTAA L<br>CACAAO<br>CCCTTTAA L<br>CACAAO<br>CCCTTTAA L<br>CACAAO<br>CCCTTTAA L<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO<br>CACAAO | 722<br>SATG<br>M<br>806<br>SAAC<br>N<br>890<br>1024<br>0<br>974<br>058<br>1627<br>142<br>142<br>142<br>1177<br>1310<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                | CTTC<br>V<br>CTTC<br>V<br>TTTC<br>F<br>TTTT<br>CTTT<br>ACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7<br>20<br>3<br>3<br>3<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                         | 32<br>CTTC<br>A 1<br>16<br>CACC<br>T 3<br>00<br>TTG3<br>CACC<br>CTT<br>S2<br>CACC<br>S2<br>CACC<br>36<br>CTT<br>20<br>CACT<br>20<br>CACT<br>20<br>CACT<br>20<br>CACT<br>20<br>CTTC<br>CACC<br>20<br>CTTC<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>CACC<br>10<br>C<br>CACC<br>10<br>CACC<br>10<br>C<br>CACC<br>10<br>C<br>CACC<br>10<br>C<br>CACC<br>10<br>C<br>CACC<br>CAC |           | AGG<br>AGG<br>ATT<br>ITTA<br>ITTI<br>ITTI<br>ITTI                                           | 742<br>GTX<br>8260<br>9100<br>9100<br>9100<br>9100<br>9100<br>9100<br>9100<br>91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ITTO<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | A<br>A<br>A<br>A<br>A<br>A<br>C<br>C<br>A<br>C<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 755<br>T (<br>833<br>500000<br>G (<br>92(<br>044000<br>N 1<br>1084<br>1084<br>1084<br>1084<br>1084<br>1084<br>1084<br>1084<br>1084<br>1084<br>1084<br>1084<br>1084<br>1084<br>1084<br>1084<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1095<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>10 | ATTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 673<br>197<br>757<br>225<br>841<br>253<br>925<br>281<br>1009<br>309<br>1093<br>1177<br>1261 | CACCTO<br>E L<br>CACAAA<br>E K<br>GICIGI<br>V C<br>ACCCIC<br>T L<br>CAACAC<br>E H<br>ACAGIG<br>ATATAG   | 682<br>ANGLC K T<br>766<br>CTGCA<br>L Q<br>850<br>TTCCT F L<br>934<br>NTCAR<br>1 N<br>1018<br>ANGCO<br>K G<br>1102<br>GTTCT<br>1186<br>NGCAT<br>TTCAT<br>1354              | ICIC<br>CONT<br>CONT<br>CONC<br>CONC<br>CONC<br>CONC<br>CONC<br>CON                                              | 655<br>CLANC<br>Q<br>777<br>SCCT<br>A<br>866<br>CLASS<br>Q<br>944<br>MATON<br>M<br>1022<br>MATON<br>K<br>1111<br>1125<br>ALAN<br>1225<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALAN<br>1257<br>ALA | 22<br>23<br>23<br>24<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CATHA                                                                                                                                                | 702<br>CAT<br>D<br>786<br>TAC<br>Y<br>870<br>CAA<br>E<br>954<br>CAC<br>E<br>954<br>CAC<br>D<br>1222<br>CAT<br>CAC<br>D<br>1222<br>CAT<br>CAC<br>CAC<br>CAC<br>CAC<br>CAC<br>CAC<br>CAC | CAACS<br>D<br>CAACS<br>CAACS<br>E<br>CAACS<br>H<br>ATCC<br>I<br>CAACS<br>H<br>CAACS<br>I<br>CAACS | 73777<br>73777<br>737777<br>737777<br>737777<br>737777<br>7377777<br>7377777<br>7377777<br>7377777<br>7377777<br>7377777<br>7377777<br>7377777<br>7377777<br>7377777<br>7377777<br>7377777<br>7377777<br>73777777<br>7377777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br>CTCA<br>L<br>6<br>6<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CACAA<br>T Q<br>ACAAO<br>D K<br>CCCTT<br>A L<br>CACAA<br>CCCTT<br>A L<br>CACAA<br>CCCTT<br>A L<br>CACAA<br>CCCTT<br>A L<br>CACAA<br>CCCTT<br>A L<br>CACAAO<br>CCCTT<br>A L<br>CACAAO<br>C<br>CCCTT<br>A L<br>CACAAO<br>C<br>A CAAO<br>C<br>A CAAO<br>C<br>C<br>C<br>C<br>T A CAAO<br>C<br>A CAAO<br>C<br>A CAAO<br>C<br>A CAAO<br>C<br>A CAAO<br>C<br>A CAAO<br>C<br>C<br>C<br>C<br>T<br>T<br>C<br>A CAAO<br>C<br>A CAAO<br>C<br>C<br>C<br>C<br>T<br>C<br>T<br>C<br>C<br>C<br>C<br>T<br>C<br>T<br>C<br>C<br>C<br>C<br>T<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 722<br>SATG<br>M<br>806<br>SAAC<br>N<br>890<br>102AA<br>0<br>974<br>SCAC<br>2058<br>162AT<br>142<br>142<br>142<br>142<br>147<br>142<br>147<br>142<br>147<br>142<br>147<br>142<br>147<br>142<br>147<br>147<br>147<br>147<br>147<br>147<br>147<br>147 | COLOR<br>V<br>CALAN<br>E<br>COLOR<br>V<br>CALAN<br>F<br>TTTC<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7<br>2)<br>2)<br>3<br>3<br>3<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                  | 32<br>CTTC<br>A 1<br>16<br>CACC<br>T 3<br>00<br>TTG<br>I<br>84<br>ACCC<br>N 1<br>84<br>ACCC<br>N 1<br>52<br>CACI<br>36<br>CTT<br>20<br>ATTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | AGG<br>AGG<br>ATT<br>ITTA<br>ITTI<br>ITTI<br>ATT                                            | 742<br>GTX<br>8260<br>9100<br>D 9940<br>D 9940<br>D 9940<br>D 9940<br>L 0780<br>K 162<br>TXG<br>1473<br>3300<br>TTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ITTO<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 755<br>T (<br>833<br>555<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

图 1 中国明对虾 coat-ε 基因全长 cDNA 序列及相应的氨基酸序列推测 Fig.1 Predicted amino acid sequences of coat-ε cDNA in *F. chinensis* 

| coat-E M                 | QHSHR                    | ILRLGRT                                 | LQRGVR                   | NCRMP                  | TTYTKS                   | CWTRTS                                | SVNMA                  | SQEVI                  | ELFE                | VKNSF                  | YIGNY                  | QHCIN                   | EAQKL                               |
|--------------------------|--------------------------|-----------------------------------------|--------------------------|------------------------|--------------------------|---------------------------------------|------------------------|------------------------|---------------------|------------------------|------------------------|-------------------------|-------------------------------------|
| Bombus terrestris M      | KQYYRI                   | N <mark>d k</mark> m a <mark>r</mark> Q | 2 2 <mark>A</mark>       |                        |                          |                                       |                        | DVI                    | ELFD                | V <mark>K N</mark> H F | YIGNY                  | QQ <mark>C</mark> IN    | EAQKI                               |
| Cerapachys biroi -       |                          | M A R Q                                 | QQ                       |                        |                          |                                       |                        | DVI                    | ELFD                | V R N H F              | YIGNY                  | QQ <mark>C</mark> IN    | EAQKI                               |
| Branchiostoma floridae - |                          | <mark>M A A Q</mark>                    | G                        |                        |                          |                                       |                        | DVI                    | ELFD                | I <mark>K</mark> N A F | YLGNY                  | QQ <mark>C</mark> IN    | EAQKL                               |
| Crassostrea gigas -      |                          | MATE                                    | R                        |                        |                          |                                       |                        | DV                     | ELFE                | IKTAL                  | YTGNY                  | QHCIN                   | ECHKL                               |
| coat-E                   | QVSSP                    | ELRQERD                                 | IFLY <mark>R</mark> A    | LLGQR                  | K Y G V V Q              | S <mark>e</mark> i <mark>k</mark> a s | APPPL                  | QAL <mark>K</mark> L   | LAQY                | FQF <b>P</b> S1        | I <mark>R</mark> VTI   | VNDLE                   | S Q L S G 🕅                         |
| Bombus terrestris        | KSSSP                    | E V T M E R D                           | VFLY <mark>R</mark> A    | YIAQR                  | KFRVVL                   | DEINNS                                | SPPDL                  | Q P L K M              | LADY                | FANPAI                 | REVI                   | VT <mark>E</mark> L Q ( | Q <mark>a</mark> tn- <mark>r</mark> |
| Cerapachys biroi         | KPSSP                    | e vamer d                               | VLLYRA                   | YIAQR                  | FRVVL                    | d e i nn s                            | SPLEL                  | Q P L K I              | LADY                | TANPHI                 | IRDAI                  | VTELD                   | K <mark>e</mark> a s – h            |
| Branchiostoma floridae   | KTSSP                    | DVKTERD                                 | V Y M Y <mark>R</mark> A | YIAQK                  | YGVVL                    | DEVSGV                                | SASEL                  | QAVRL                  | YANYI               | ASDQI                  | RDAV                   | LKDLE                   | G Q <mark>M</mark> S S S            |
| Crassostrea gigas        | RLSNP                    | E L K T A K D                           | VIMY <mark>R</mark> A    | YLAQR                  | <b>K</b> YGVVL           | DEINSS                                | h P P <mark>e</mark> L | Q A V <mark>k</mark> M | FA <mark>D</mark> Y | SNENI                  | RTSI                   | VRDLD                   | 2 <mark>K</mark> M S G S            |
| coat-E                   | VDLSN                    | ALLIVA                                  | A T I Y C H              | EDNYE                  | ALRAL                    | SQS <mark>D</mark> AL                 | ECRAL                  | MVQTY                  | LKME                | LDAA                   | K <mark>e</mark> l k : | ILQEK                   | DDDATL                              |
| Bombus terrestris        | A DY DN H                | INFLIVA                                 | ATIYYH                   | EKNLE2                 | AAL <mark>R</mark> IL    | RNVDHL                                | ECLAL                  | TLQIY                  | LKMD                | LDLA                   | KELL                   | IMQEK                   | DDDATL                              |
| Cerapachys biroi         | P N F <mark>D</mark> N H | IN FLIVA                                | ATIYYH                   | EKNLE2                 | AAL <mark>R</mark> IL    | HDVDHL                                | ECMAL                  | TLQIY                  | LKMD                | LDLA                   | KELK                   | AMQEK                   | DDDATL                              |
| Branchiostoma floridae   | LDVGNI                   | T F L L M A                             | ASIYLH                   | E DNY D2               | AAL <mark>R</mark> CL    | HQSDSL                                | ECSAL                  | ΤVQΙΥ                  | LKMD                | VDLA                   | KELKI                  | LMQEK                   | DDDATL                              |
| Crassostrea gigas        | VDVSNS                   | T F L V M A                             | A S I Y N H              | EQNS D2                | AAL <mark>R</mark> AL    | HQS <mark>D</mark> AL                 | ECIAL                  | SIQIL                  | LKLD                | VDLAI                  | KELKI                  | MQEI                    | DEDSIL                              |
| cost-F                   | TOMAO                    |                                         |                          |                        |                          | KNVSTA                                | TTTNC                  |                        | T.COA               | z <del>v z z </del> 2  | SALO                   |                         |                                     |
| Bombug terrestrig        | TOLAO                    | ANTNICS                                 | CONTO                    | DAVVT                  | FORMER                   | VUCCTC                                | MILING                 |                        | TCTA                |                        | TALO                   |                         |                                     |
| Coronochuz biroi         |                          |                                         |                          |                        |                          |                                       | MITIMO                 |                        | TCON                |                        |                        |                         |                                     |
| Cerapacitys birdi        | TOVAT                    |                                         |                          |                        |                          |                                       | TTTT                   |                        | TURA                |                        |                        |                         |                                     |
| Branchiostoma fioridae   | IUMAL                    | AMINMEV                                 |                          | AFTI                   | FUEMID                   | KNSASP                                | TTTNC                  | QAAUU                  | THACE               | CIEDA.                 | GILU                   | AMUR                    |                                     |
| Crassostrea gigas        | TQLAQ                    | AMFNLSV                                 | GG <mark>E</mark> KYÇ    | AYYI                   | FQEMAD                   | KHNST                                 | LLLNG                  | QAAQY                  | MAQC                | FDDA                   | SVLQ                   | AIDK                    | DSNNPE                              |
|                          |                          |                                         |                          |                        |                          |                                       |                        |                        |                     |                        |                        |                         |                                     |
| coat-E                   | Пт. т                    | NIMULS                                  | HHTCK                    | PORVZ                  | NRYTV                    |                                       | HKCH                   | TUR                    | TAT                 | EDDE                   |                        |                         |                                     |
| Bombus terrestris        | TLI                      | NMIVLS                                  | OHMGK                    |                        | NRYLS                    | OLKDS                                 | HLEH                   | FVK                    | YLOR                | EIEF                   | ORLR                   | KOYSS                   | ST                                  |
| Cerapachys biroi         | TLI                      | NMIVLS                                  | OHMGK                    |                        | NRYLS                    | OLKDS                                 | HLEH                   | FVK                    | YLOR                | EIEF                   | HRLR                   | EOYSS                   | SA                                  |
| Branchiostoma florida    | e ILI                    | NMIVL                                   | OHLGK                    | APEIS                  | NRYLS                    | OLKTS                                 | HONH                   | FVK                    | FTAR                | ENEF                   | ERLM                   | KOYAP                   | A                                   |
| Crassostrea gigas        | TLV                      | NMIVL                                   | QHIGK                    | P P <mark>E</mark> V S | S N <mark>R</mark> Y V S | QLKDS                                 | HRNH                   | FVR                    | YLQ                 | ESDF                   | DRIS                   | RNYAP                   | SVTA                                |

图 2 中国明对虾 coat-ε 氨基酸序列与其他物种 coat-ε 氨基酸序列的比较 Fig.2 Multiple alignments of amino acid sequences of coat-ε in *F. chinensis* and other species

各物种 coat-ε 序列登录号: 欧洲熊蜂(XP012169272.1)、毕氏粗角蚁(XP011333357.1)、 佛州文昌鱼(XP002586747.1)、长牡蛎(XP011436400.1)

The GenBank accession numbers of coat-ɛ: Bombus terrestris (XP012169272.1), Cerapachys biroi (XP012169272.1), Branchiostoma floridae (XP002586747.1), Crassostrea gigas (XP011436400.1)



图 3 预测的中国明对虾 coat-ε 蛋白功能域 Fig.3 Putative conserved domains of coat-ε in *F. chinensis* 



图 4 coat-ε 蛋白二级结构分析 Fig.4 Secondary structure analysis of coat-ε

的氨基酸序列,将此序列输入到 NCBI 的 protein blast 序列框中,比对得出同源的氨基酸序列。结果 显示,中国明对虾 coat-ε 氨基酸序列与欧洲熊蜂 (Bombus terrestris)、毕氏粗角蚁(Cerapachys biroi)、 木蚁(Camponotus floridanus)、爪蟾(Xenopus laevis)、 佛州文昌鱼(Branchiostoma floridae)、长牡蛎 (Crassostrea gigas)等的相似性分别为 64%、63%、 62%、59%、58%、57%。从基于 MEGA 5.05 建立的 系统发育树可以看出(图 6),该基因进化过程中与膜 翅目的蜂、蚁的亲缘关系相近,它们都属于节肢动 物门,而与野猪、骆驼等哺乳动物的亲缘关系相对 远一些。



图 5 coat-ε 蛋白的空间结构模型 Fig.5 The spatial structure of coat-ε protein



图 6 不同物种 coat-ε 氨基酸序列的系统进化树 Fig.6 Phylogenetic tree based on coat-ε amino acids of different species

```
野猪(XP003123584.1)、野骆驼(XP006186292.1)、星鼻鼹
(XP004688653.1)、非洲象(XP003413572.1)、灰短尾负鼠
(XP001363383.1)、爪蟾(NP001085327.1)、雀鳝(XP006640066.1)、
佛州文昌鱼(XP002586747.1)、中国明对虾、欧洲熊蜂
(XP012169272.1)、苜蓿切叶蜂(XP003699284.2)、毕氏粗角蚊
(XP011333357.1)、木蚊(XP011267506.1)
Sus scrofa (XP003123584.1), Camelus ferus (XP006186292.1),
Condylura cristata (XP004688653.1), Loxodonta Africana
(XP003413572.1), Monodelphis domestica (XP001363383.1),
Xenopus laevis (NP001085327.1), Lepisosteus oculatus
(XP006640066.1), Crassostrea gigas (XP011436400.1),
Branchiostoma floridae (XP002586747.1), Fenneropenaeus
chinensis, Bombus terrestris (XP012169272.1), Megachile rotundata
(XP003699284.2), Cerapachys biroi (XP011333357.1),
Camponotus floridanus (XP011267506.1)
```

#### 2.4 中国明对虾 coat-ε 基因在各组织中的表达

通过 Real-time PCR 技术分析 coat-ε mRNA 在中 国明对虾不同组织中的表达,结果显示, coat-ε 基因 在中国明对虾的这 11 个组织中均有表达(图 7),其中, 在肌肉、鳃、附肢中的表达量最高。经统计分析, 除鳃 之外, 肌肉与附肢中的表达量差异显著(P < 0.05), 与其 他组织的差异均极显著(P<0.01)。



图 7 中国明对虾 coat-ε 基因在各组织的分布 Fig.7 Tissues distribution of *F. chinensis* coat-ε

#### 3 讨论

目前,在节肢动物门的蚂蚁、蜜蜂及脊椎动物亚 门的野猪、野骆驼等的 coat-ε 基因的全长已经克隆, 而在甲壳动物中的报道非常少。本研究首次克隆出中 国明对虾的 coat-ε 基因全长,所表达的蛋白是 coatomer 复合体的一个小亚基,coat-ε 基因编码的蛋 白无跨膜区和信号肽,亚细胞定位预测其是一种胞内 蛋白,可能在细胞内发挥各种功能。从构建的系统发 育树可以发现,中国明对虾与欧洲熊蜂、苜蓿切叶蜂、 毕氏粗角蚁、木蚁聚为一类,它们都属于节肢动物门, 与其他脊索动物门的野骆驼、佛周文昌鱼等聚类关系 都较远,而且在同源性方面与其他种类的相似性均在 60%-50%左右,说明在进化过程中保守性不高。转录 分析显示其在肌肉、鳃和附肢组织有较高的分布。

coat-E基因表达的蛋白是组成 coatomer 复合体的 βδ/γζ-COP 必不可少的,虽然对于 COP I 普遍认为是 将内质网上的逃逸蛋白从高尔基体运回到内质网,但 是许多研究发现其还存在很多其他功能,例如通过未 感染细胞的 COP I 功能的研究发现, COP I 在病毒的 复制中发挥着一定作用,通过 siRNA 干扰实验发现, COPI在牛痘、脊髓灰质炎和流感病毒的复制中起作 用(Zhang et al, 2009; Cherry et al, 2006; Konig et al, 2010)。通过更深一步的研究发现, COP I 在病毒的 生活周期中起着多种作用,包括病毒的入侵、RNA 的复制和病毒的胞内运输。通过 COP I 的 4 个亚基的 RNA 干扰实验,发现它们是流感病毒在体内复制的 重要因素(Konig et al, 2010)。细胞中缺乏 coat-ε 会使 疱疹性口炎(Vesicular stomatitis, VSV)和塞姆利基森 林病毒(Semliki Forest viruses)的感染降低(Daro et al, 1997),并且在进一步的 RNA 干扰试验中印证了这一

结论(Cureton *et al*, 2012)。coat-ε 基因是否参加对虾病 毒感染过程尚不清楚,本研究所获得的 coat-ε 基因全 长为研究 COP I 在对虾病毒感染中的作用提供基础。

#### 参考文献

- Bremser M, Nickel W, Schweikert M, *et al.* Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell, 1999, 96(4): 495–506
- Cherry S, Kunte A, Wang H, *et al.* COPI activity coupled with fatty acid biosynthesis is required for viral replication. PLoS Pathogens, 2006, 2(10): 900–912
- Cureton DK, Burdeinick-Kerr R, Whelan SPJ. Genetic inactivation of COPI coatomer separately inhibits vesicular stomatitis virus entry and gene expression. J Virol, 2012, 86(2): 655–666
- Daro E, Sheff D, Gomez M, *et al.* Inhibition of endosome function in CHO cells bearing a temperature-sensitive defect in the coatomer (COP I) component ε-COP. J Cell Biol, 1997, 139(7): 1747–1759
- Duden R, Kajikawa L, Wuestehube L, *et al.*  $\epsilon$ -COP is a structural component of coatomer that functions to stabilize  $\alpha$ -COP. EMBO J, 1998, 17(4): 985–995
- Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature, 1999, 399(6736): 541–8

- Gabriely G, Kama R, Gerst JE. Involvement of specific COP I subunits in protein sorting from the late endosome to the vacuole in yeast. Mol Cell Biol, 2007, 27(2): 526–540
- Konig R, Stertz S, Zhou Y, et al. Human host factors required for Influenza virus replication. Nature, 2010, 463(7282): 813–817
- Misselwitz B, Dilling S, Vonaesch P, *et al.* RNAi screen of Salmonella invasion shows role of COPI in membrane targeting of cholesterol and CDC42. Mol Sys Biol, 2011, 7(1): 474
- 7(1): 474
  Nickel W, Malsam J, Gorgas K, *et al.* Uptake by COPI-coated vesicles of both anterograde and retrograde cargo is inhibited by GTPgammaS *in vitro*. J Cell Sci, 1998, 111(5): 3081–3090
- Serafini T, Orci L, Amherdt M, *et al.* ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell, 1991, 67(2): 239–253
- Styers ML, O'Connor AK, Grabski R, et al. Depletion of beta-COP reveals a role for COP-I in compartmentalization of secretory compartments and in biosynthetic transport of caveolin-1. Am J Physiol Cell Physiol, 2008, 294(6): 1485–1498
- Waters MG, Serafini T, Rothman JE. 'Coatomer': a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature, 1991, 349(6306): 248–251
- Zhang L, Lee SY, Beznoussenko GV, et al. A role for the host coatomer and KDEL receptor in early vaccinia biogenesis. Proc Natl Acad Sci, 2009, 106(1): 163–168

(编辑 冯小花)

## cDNA Cloning of Coat-Epsilon Gene and Its Tissue Distribution in Fenneropenaeus chinensis

## WANG Xiufang<sup>1,2</sup>, LIU Qinghui<sup>2,3<sup>(1)</sup></sup>, WU Yin<sup>1<sup>(1)</sup></sup>, HUANG Jie<sup>2,3</sup>

 Dalian Ocean University, Dalian 116023; 2. Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071;
 Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071)

Abstract Coat-epsilon protein (coat- $\varepsilon$ ) is a subunit of the coatomer complex that forms COP I. To obtain the full-length sequence of coat-e of Fenneropenaeus chinensis, we first acquired the sequences of 3' and 5' ends using rapid amplification of cDNA ends (RACE). The results were then spliced by DNAMAN to obtain the full-length 1402 bp sequence. The predicted 5' non-coding region (UTR) had 84 bp and the 3' non-coding region (UTR) had 310 bp. The open reading frame had 1008 bp that was supposed to encode 335 amino acids. The fragment including 230aa to 300aa belonged to the TPR superfamily. Signalp 3.0 server and TMHMM Server Version 2.0 analysis suggested that the amino acid sequence did not contain a signal peptide or a transmembrane structure. PSORT I Prediction showed that coat-epsilon was probably located in mitochondria, cytoplasm, and endoplasmic reticulum. The phylogenetic tree analysis showed that coat- $\varepsilon$  of F. chinensis was closely related to that of Arthropoda. We also analyzed the mRNA expression of coat- $\varepsilon$  in different tissues with quantitative real-time PCR, and found that it was expressed in all tested tissues including appendage, hepatopancreas, epithelium, heart, stomach, intestine, eyestalk, muscles, gill, lymphoid organ and hemocytes. The expression level was the highest in muscles, followed by the gill and appendage. Our results provided important information for the functional study of coat-ε.

Key words Fenneropenaeus chinensis; Coat-ɛ; Gene clone; Tissue distribution

① Corresponding author: LIU Qinghui, E-mail: liuqh@ysfri.ac.cn; WU Yin, E-mail: wuyin@dlou.edu.cn

## 《渔业科学进展》编辑委员会

THE EDITORIAL BOARD OF PROGRESS IN FISHERY SCIENCES

#### 主 编 Editor-in-Chief 唐启升 TANG Qisheng

副主编 Associate Editors-in-Chief 金显仕 JIN Xianshi 麦康森 MAI Kangsen 孙 松 SUN Song 孔 杰 KONG Jie

顾 问 Advisors (以姓名笔画为序)

苏纪兰 SU Jilan 林浩然 LIN Haoran 赵法箴 ZHAO Fazhen 徐 洵 XU Xun
 曹文宣 CAO Wenxuan <u>雷霁霖 LEI Jilin</u> 管华诗 GUAN Huashi
 编 委 Editorial Committee(以姓名笔画为序)
 于志刚 YU Zhigang 戈贤平 GE Xianping 方建光 FANG Jianguang 王清印 WANG Qingyin

司徒建通 SITU Jiantong 王新鸣 WANG Xinming 包振民 BAO Zhenmin 关瑞章 GUAN Ruizhang 刘海金 LIU Haijin 刘占江 LIU Zhanjiang 孙效文 SUN Xiaowen 孙 谧 SUN Mi 庄 平 ZHUANG Ping 曲克明 QU Keming 江世贵 JIANG Shigui 何建国 HE Jianguo 吴常文 WU Changwen 吴淑勤 WU Shuqin 张士璀 ZHANG Shicui 张全启 ZHANG Quanqi 张国范 ZHANG Guofan 张显良 ZHANG Xianliang 李来好 LI Laihao 李杰人 LI Jieren 李 健 LI Jian 李家乐 LI Jiale 杨红生 YANG Hongsheng 邹桂伟 ZOU Guiwei 陈立侨 CHEN Liqiao 陈松林 CHEN Songlin 陈雪忠 CHEN Xuezhong 周永灿 ZHOU Yongcan 俞志明 YU Zhiming 姚 杰 YAO Jie 相建海 XIANG Jianhai 林 洪 LIN Hong 徐 皓 XU Hao 桂建芳 GUI Jianfang 殷邦忠 YIN Bangzhong 赵宪勇 ZHAO Xianyong 贾晓平 JIA Xiaoping 常亚青 CHANG Yaqing 常剑波 CHANG Jianbo 秦 松 QIN Song 魏宝振 WEI Baozhen 黄 *ŧ*HUANG Jie 董双林 DONG Shuanglin 翟毓秀 ZHAI Yuxiu

## 渔业科学进展

YUYE KEXUE JINZHAN (双月刊, 1980年创刊) 第37卷 第4期 2016年8月

#### PROGRESS IN FISHERY SCIENCES

No.4

(Bimonthly, founded in 1980)

Aug. 2016

| 主管单位                 | 中华人民共和国农业部                                        | Administrated        | by | Ministry of Agriculture,P.R.China                                                                                |
|----------------------|---------------------------------------------------|----------------------|----|------------------------------------------------------------------------------------------------------------------|
| 主办单位                 | 中国水产科学研究院黄海水产研究所                                  | Sponsored            | by | Yellow Sea Fisheries Research Institute,                                                                         |
| . I. 11-11 - 12 - 23 | 中国水产学会                                            |                      |    | Chinese Academy of Fishery Sciences<br>China Society of Fisheries                                                |
| 出版单位                 | (科 学 出 版 社<br>地址,北京东黄城根北街16号,邮编,100717            | Published            | by | Science Press                                                                                                    |
| 编辑单位                 | 山国水产科学研究院黄海水产研究所                                  |                      |    | Add:16 Donghuangchenggen North Street, Beijing 100717, China                                                     |
|                      | 地址:青岛市南京路106号 邮编: 266071                          | Edited               | by | Yellow Sea Fisheries Research Institute,                                                                         |
|                      | 电话: 0532-85833580                                 |                      |    | Chinese Academy of Fishery Sciences                                                                              |
|                      | http://www.yykxjz.cn<br>E–mail:yykxjz@ysfri.ac.cn |                      |    | Add:106 Nanjing Koad,Qingdao,2660/1,China; Tel: 0532–85833580<br>http://www.yykxjz.cn; E–mail:yykxjz@ysfri.ac.cn |
| 主 编                  | 唐启升                                               | Editor-in-Chief      |    | Tang Qisheng                                                                                                     |
| 印 刷                  | 青岛国彩印刷有限公司                                        | Printed              | by | Qingdao Guocai Printing Co.,Ltd.                                                                                 |
| 国内发行                 | 中国邮政集团公司山东省分公司                                    | Domestic Distributed | by | China Post Group Corporation Shandong Branch                                                                     |
| 订 购                  | 全国各地邮政局                                           | Subscription         |    | Post Offices All Over China                                                                                      |
| 国外发行                 | 中国国际图书贸易总公司                                       | Overseas Distributed | by | China International Book Trad-                                                                                   |
| 日月次日                 | 地址:北京339信箱 邮编: 100044                             |                      |    | ing Corporation                                                                                                  |
|                      |                                                   |                      |    | P.O.Box 399, Beijing 100044, China                                                                               |
|                      |                                                   |                      |    |                                                                                                                  |

Vol.37

中国标准刊号 ISSN 2095-9869 CN 37-1466/S 国内邮发代号:24-153 国外发行代号:4578Q 国内外公开发行

定价: 30.00元

