鲜饵不同投饵率对 2–5 龄大鲵
(Andrias davidianus) 生长的影响*

李 欣 1 张树明 2 卞秋云 2 王 震 2 陈宇珺 3 梁 刚 1

(1. 陕西师范大学生命科学学院 西安 710068; 2. 陕西省水产工作总站 渭南 714000; 3. 陕西龙泉大鲵养殖有限公司 宁陕 711600)

摘要 为探寻大鲵 (Andrias davidianus) 的适宜投饵率，在水温为 18–19℃、pH 为 8.0 和溶氧为 6.0 mg/L 的工厂化养殖条件下，用鲜饵分别投喂了 2、3、4 和 5 龄大鲵各 60 d。比较了各实验组体重增加量、全长增加量、饵料系数、平均增重率、特定生长率和饵料转化率等生长指标。结果显
示，2 龄大鲵的投饵率为 2.0% 时，其饵料系数均显著低于投饵率为 1.7%、2.6%、2.9% 的组，其平均增重率和特定生长率均显著高于投饵率为 1.7%、2.3%、2.6%、2.9% 的组，其特定生长率均显著
高于投饵率为 1.7%、2.6% 的组(P<0.05)；3 龄大鲵的投饵率为 2.2% 时，其饵料系数均显著低于投饵
率为 1.9%、2.5%、2.8% 的组，其平均增重率和特定生长率均显著高于投饵率为 1.6%、1.9%、2.5%、
2.8% 的组，其饵料转化率均显著高于投饵率为 2.5%、2.8% 的组(P<0.05)；4 龄大鲵的投饵率为 2.3%
时，其饵料系数均显著低于投饵率为 1.7%、2.0%、2.9% 的组，其平均增重率和特定生长率均显著
高于投饵率为 1.7%、2.0%、2.9% 的组，其饵料转化率均显著高于投饵率为 1.7%、2.9% 的组(P<0.05)；
5 龄大鲵的投饵率为 2.5% 时，其饵料系数显著低于投饵率为 1.9% 的组，其平均增重率和特定生长
率均显著高于投饵率为 1.9%、2.2%、2.8%、3.1% 的组，其饵料转化率均显著高于投饵率为 2.2%、
2.8%、3.1% 的组(P<0.05)。为使大鲵的饵料系数较低，平均增重率、特定生长率和饵料转化率较高，
研究表明，2、3、4 和 5 龄大鲵的适宜投饵率分别为 2.0%、2.2%、2.3%、2.5%；随着大鲵年龄的增
加，适宜投饵率呈逐渐增加的变化规律，关系式为 $y=0.000212x+2.07$ ($r^2=0.8797$)。

关键词 大鲵；鲜饵；投饵率；生长

中图分类号 S966.6 文献标识码 A 文章编号 2095-9869(2016)03-0148-06

大鲵(Andrias davidianus)隶属于两栖纲、有尾目、
隐鳃鲵科，是我国特有的有尾两栖类，也是全球现存
个体最大的两栖动物，国家 II 类重点保护野生动物
(费梁等，2006)。由于大鲵具有较高的经济价值(金桥
等，2012)，自 20 世纪 90 年代起，我国科研人员开展
大鲵人工繁殖研究并获得了突破，先后形成了大鲵全
人工繁育(Captive Breeding)、原生态繁育(Natural
Eco-breeding)与仿生态繁育(Imitated Natural Eco-
breeding) 3 种技术模式(梁刚，2007)，使大鲵人工种群
数量迅速增加。大鲵养殖作为新兴特种水产养殖业已
初具规模，并逐渐向规模化和集约化发展(王洪等，
2013)。但大鲵养殖业目前存在着诸如经济效益、养
殖规范、疾病防治和健康养殖等一系列技术和理论问
题(牟洪民等，2011)。投饵率与水产动物的种类、数量、
大小、食欲、环境及饵料质量等有关，因为投饵率过
低会导致养殖动物生长参差不齐，投饵率过高会导
致饵料浪费，增加养殖成本，并对养殖环境造成污染。
因此，对不同养殖对象务必探寻其适宜的投饵率(楼宝

* 农业部 2013 年农业技术服务创新项目(农财发[2013]111 号)资助。李 欣，E-mail: lixin9578@sina.com
① 通讯作者：梁 刚，副教授，E-mail: lianggang@snnu.edu.cn
收稿日期: 2015-06-09, 收修改稿日期: 2015-08-23
测试鲜饵的饲养效果和安全性 (Andrias davidianus) 生长的影响

1 材料与方法

实验在陕西龙泉大鲵养殖有限公司合阳大鲵养殖基地进行，坐标为 35°05′27″N，110°17′36″E。海拔为 (348±7) m。该区域在工厂化养殖条件下，2、3、4、5 岁大鲵的适宜养殖密度分别为 27、17、10、5 尾/m² (王芳等，2013) 及该区域养殖池大小，分别选择健康活泼的 2、3、4、5 岁大鲵各 50、30、20、10、5 尾，单尾体重分别为 (50.16±6.72) g、(165.04±33.91) g、 (1134.91±171.23) g 和 (2015.32±210.51) g。将选取的大鲵分别放入已消毒的养殖池内，预实验 7 日，以确定 2-5 岁大鲵的饱和投饵率。以已确定的饱和投饵率为中值，分别设置 1-5 岁大鲵的投饵率梯度为 1.7%。将各年龄段大鲵平均分为 5 个投饵率梯度组，每个投饵率组设置 3 个重复。

正式实验时间为 2014 年 5 月 25 日-7 月 24 日，共 60 d。实验前，后分别称量各组大鲵的体重与全长。将体长为 3-5 cm 的鲤鱼苗，用 1% 的食盐水消毒，然后放入饲料池中暂养。在投喂前 30 min 将鲤鱼苗捞出，暴露在空气中使其自然死亡作为鲜饵，实验全部使用鲜饵。4 岁、5 岁大鲵投喂长约 5 cm 的鲜饵，3 岁大鲵投喂长约 3 cm 的鲜饵，2 岁大鲵投喂加工成长约 1 cm 的鲤鱼肉丝。每天 18:00 投饵，次日 08:00 捞出残饵，分别记录每天各组的投饵量与残饵量。实验用水为抽取的地下水，pH 8.0，水温为 18-19℃，溶解氧为 6.0 mg/L。2 岁、3 岁大鲵的养殖水深均为 5 cm，4 岁、5 岁大鲵的养殖水深均为 9 cm。在实验过程中，若出现死亡、病变的大鲵个体，立即捞出并用相同规格的大鲵代替，以保持养殖密度不变。

实验数据采用 Excel 和 SPSS20.0 分析软件处理，并进行单因素方差分析 (One-way ANOVA)，所有数据均采用样本平均值±标准差 (Mean±SD) 表示。各参数的计算公式如下:

体重增加量 (Weight gain, g) = W₂ - W₁;
全长增加量 (Total length increment, cm) = L₂ - L₁;
饵料系数 (Feed coefficient) = (F₁ - F₂)/(W₂ - W₁);
平均增重率 (Weight gain rate, %) = [(W₂ - W₁)/W₁] × 100%

特定生长率 (Specific growth rate, %/d) = [(lnW₂ - lnW₁)/t] × 100%

饵料转化率 (Feed conversion ratio, %) = (W₂ - W₁)/(F₁ - F₂) × 100%

式中，W₁ 为实验前大鲵的总重、W₂ 为实验后大鲵的总重，L₁ 为实验前大鲵的全长，L₂ 为实验后大鲵全长，n 为各组大鲵的样本数，F₁ 为总投饵量，F₂ 为总残饵量，t 为实验总天数。

2 结果与分析

2.1 鲜饵不同投饵率对 2-5 岁大鲵生长的影响

在工厂化养殖条件下，2、3、4、5 岁大鲵的饱和投饵率分别为 2.3%、2.2%、2.3% 和 2.5%，2-5 岁大鲵的投饵率、实验前、后的体重与全长等数据见表 1。表 2 列出并比较了在鲜饵不同投饵率时，2-5 岁大鲵的体重增加量、全长增加量、饵料系数、平均增重率、特定生长率和饵料转化率等 6 个参数。

图 1A 分别比较了在鲜饵不同投饵率时，2 岁大鲵的饵料系数、平均增重率、特定生长率和饵料转化率等参数。从图 1A 与表 2 可以看出，在 5 个投饵率梯度中，2 岁大鲵的饵料系数呈现先减后增的趋势，其中，投饵率为 2.0% 时的饵料系数最低，且投饵率为 2.0% 时的饵料系数均与投饵率为 1.7%、2.6%、2.9% 时的饵料系数差异显著 (P<0.05)。在 5 个投饵率梯度中，2 岁大鲵的平均增重率、特定生长率与饵料转化率均呈先减后增再减的趋势，三者均以投饵率为 2.0% 时的最高，且投饵率为 2.0% 时的平均增重率和饵料转化率均与投饵率为 1.7%、2.3%、2.6%、2.9% 时的值差异显著 (P<0.05)，投饵率为 2.0% 时的特定生长率均与 1.7%、2.6% 时的值存在显著差异 (P<0.05)。基于以上分析，在工厂化养殖条件下，2 岁大鲵的适宜投饵率为 2.0%。

在鲜饵不同投饵率条件下，3 岁大鲵的饵料系数、平均增重率、特定生长率和饵料转化率等比较结果见图 1B。从图 1B 与表 2 可以看出，在 5 个投饵率梯
表 1 鲜饵不同投饵率时2-5龄大鲵实验前、后的体重与全长

<table>
<thead>
<tr>
<th>年龄</th>
<th>分组</th>
<th>投饵率</th>
<th>体重</th>
<th>全长</th>
<th>体重增加量</th>
<th>长度增加量</th>
<th>饲料系数</th>
<th>平均增重率</th>
<th>特定生长率</th>
<th>饲料转化率</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 岁</td>
<td>2-1</td>
<td>1.7</td>
<td>48.90±7.97</td>
<td>60.72±24.13</td>
<td>22.71±1.03</td>
<td>23.71±2.81</td>
<td>2.15±0.32</td>
<td>24.17±0.01</td>
<td>0.36±0.01</td>
<td>23.66±3.23</td>
</tr>
<tr>
<td></td>
<td>2-2</td>
<td>2.0</td>
<td>51.60±6.72</td>
<td>74.44±25.82</td>
<td>22.32±1.51</td>
<td>23.84±3.35</td>
<td>2.15±0.32</td>
<td>24.17±0.01</td>
<td>0.36±0.01</td>
<td>23.66±3.23</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>2.3</td>
<td>52.75±7.49</td>
<td>73.44±30.24</td>
<td>22.04±1.15</td>
<td>23.83±3.05</td>
<td>2.15±0.32</td>
<td>24.17±0.01</td>
<td>0.36±0.01</td>
<td>23.66±3.23</td>
</tr>
<tr>
<td></td>
<td>2-4</td>
<td>2.6</td>
<td>52.75±7.96</td>
<td>67.50±29.64</td>
<td>23.20±1.14</td>
<td>25.20±2.94</td>
<td>2.15±0.32</td>
<td>24.17±0.01</td>
<td>0.36±0.01</td>
<td>23.66±3.23</td>
</tr>
<tr>
<td></td>
<td>2-5</td>
<td>2.9</td>
<td>158.00±67.90</td>
<td>242.54±80.11</td>
<td>35.21±3.61</td>
<td>36.52±3.76</td>
<td>2.15±0.32</td>
<td>24.17±0.01</td>
<td>0.36±0.01</td>
<td>23.66±3.23</td>
</tr>
</tbody>
</table>

注：同列数据上标不同字母表示差异显著（P<0.05）

Note: Data within each column with different superscripts are significantly different (P<0.05)
度中，3 龄大鲵的饵料系数整体变化较小，其中，投饵率为 2.2% 时的饵料系数最低，且投饵率为 2.2% 时的饵料系数均与投饵率为 1.9%、2.5%、2.8% 时的值差异显著 (P<0.05)。在 5 个投饵率梯度中，3 龄大鲵的平均增重率、特定生长率与饵料转化率基本上均呈先增量后减的趋势，其中均以投饵率为 2.2% 时的值最高，且投饵率为 2.2% 时的平均增重率和特定生长率均与投饵率为 1.6%、1.9%、2.5%、2.8% 时的值差异显著 (P<0.05)，投饵率为 2.2% 时的饵料转化率与投饵率为 2.5%、2.8% 时的值存在显著差异 (P<0.05)。由此可见，在工厂化养殖条件下，3 龄大鲵的适宜投饵率应为 2.2%。

图 1-C 分别比较了在鲜饵不同投饵率时，4 龄大鲵的饵料系数、平均增重率、特定生长率和饵料转化率等参数。从图 1-C 与表 2 可以看出，在 5 个投饵率梯度中，4 龄大鲵的饵料系数呈先减后增的趋势，其中，以投饵率为 2.3% 时的饵料系数最低，且投饵率为 2.3% 时的饵料系数均与投饵率为 1.7%、2.0%、2.9% 时的值差异显著 (P<0.05)。在 5 个投饵率梯度中，4 龄大鲵的平均增重率、特定生长率与饵料转化率均呈先增后减的趋势，其中以投饵率为 2.3% 时的值最高，且投饵率为 2.3% 时的平均增重率和特定生长率均与投饵率为 1.7%、2.0%、2.9% 时的值差异显著 (P<0.05)。在 5 个投饵率梯度中，4 龄大鲵的饵料系数呈先减后增的趋势，其中，以投饵率为 2.5% 时的值最高，且投饵率为 2.5% 时的饵料系数均与投饵率为 1.9%、2.5%、3.1%、2.8%、2.2% 时的值差异显著 (P<0.05)。在 5 个投饵率梯度中，5 龄大鲵的饵料系数整体变化较小，饵料系数从高到低依次是投饵率为 1.9%、2.5%、3.1%、2.8%、2.2%，且投饵率为 2.5% 时的饵料系数与投饵率为 1.9% 时的值差异显著 (P<0.05)。在 5 个投饵率梯度中，5 龄大鲵的平均增重率、特定生长率与饵料转化率都呈先增后减的趋势，其中以投饵率为 2.5% 时的值最高，且投饵率为 2.5% 时的平均增重率和特定生长率均与投饵率为 1.9%、2.2%、2.8%、3.1% 时的值差异显著 (P<0.05)，投饵率为 2.5% 时的饵料转化率均与投饵率为 2.2%、2.8%、3.1% 时的值存在显著差异 (P<0.05)。
综合考虑以上参数变化趋势，本研究表明，5 龄大鲵较适宜的投饵率应为 2.5%。

2.2 大鲵鲜饵适宜投饵率与体重的相关性

对 2-5 龄大鲵的鲜饵适宜投饵率与体重之间进行了回归分析，结果显示，大鲵的鲜饵适宜投饵率与体重之间存在显著的正相关性(图 2)，其关系式为 $y = 0.000212x + 2.07$（$r^2 = 0.8797$）。由图 2 可以看出，随着大鲵体重的增加，鲜饵适宜投饵率会逐渐增加，这可能与大鲵的摄食、消化及吸收能力同时逐渐增强有关。

图 2 大鲵鲜饵适宜投饵率与体重的相关性

![Fig.2 Correlation between the suitable fresh diet feeding rate and the weight of A. davidianus](image)

3 讨论

迄今为止，有关适宜投饵率的研究主要集中在鱼类，而对于包括大鲵在内的经济两栖动物适宜投饵率的研究仍为空白。研究表明，鱼类的摄食率与水温、养殖密度和饲料蛋白质含量等均有密切关系(朱秋华等，2004); 陈云祥等(2006) 指出，大鲵的摄食量随着体重的增加逐渐增加。本研究结果显示，在大鲵养殖水温、密度与饵料等养殖条件基本相同时，2、3、4、5 龄大鲵的适宜投饵率分别是 2.0%、2.2%、2.3%、2.5%。从以上结果可进一步得出，随着大鲵年龄的增加，适宜投饵率基本呈逐渐增加的规律性变化。

此外，鲜饵不同投饵率对 2-5 龄大鲵的体重增加量、全长增加量、饵料系数、平均增重率、特定生长率和饵料转化率等均有显著影响，且随着投饵率由低到高，体重增加量、全长增加量、平均增重率、特定生长率和饵料转化率均呈先升高后下降的趋势，饵料系数呈先下降后升高的趋势。本实验结果与黑鲷、白鲈、鲈鱼、施氏鲟幼鱼、黄颡鱼、花鳗鲡、暗纹东方鲀幼鱼、细鳞鲑等的研究结果基本一致(楼宝等，2007; Deng et al., 2003; 朱秋华等，2004; 赵吉伟等，2004; 王吉桥等，2005; 邓伟霞等，2011; 杨诚等，2012; 徐革锋等，2013)。基于以上研究结果，作者认为在人工养殖条件下，不同投饵率对无羊膜水生脊椎动物生长的影响可能具有基本一致的规律。

若投饵率低于适宜投饵率，会使大鲵不能发挥其生长潜能，影响大鲵的正常生长和发育。原因可能主要有两个方面：一是由于食物不足，摄取的能量与营养将更多用于维持大鲵的基础代谢，用于生长发育的能量与营养相对较少甚至缺乏，从而限制了大鲵自身的生长潜能; 二是由于食物不足，会引起大鲵个体之间的捕食竞争，导致大鲵机体损伤甚至相互残食(费梁等，2006)，这样会使大鲵的活动量加大，能量消耗相对增加，用于大鲵生长发育的能量与营养相对减少。

如果投饵率大于适宜投饵率，虽然在一定程度上减少了大鲵个体之间的捕食竞争，满足了大鲵生长和发育的基本食物需求，但从大鲵养殖业的经济效益与生态效益考虑，产生的残饵至少具有如下两个明显缺陷：首先，残饵不仅使养殖成本明显增加，使大鲵养殖经济效益下降，且造成了不必要的资源浪费; 其次，残饵长时间浸泡在水中，会逐渐发酵甚至腐败，使养殖水体富营养化，不仅给大鲵养殖池中的病菌滋生创造了良好的环境条件，增加了大鲵的患病率，甚至引起大鲵死亡，而且富营养化的养殖用水排放后，也会对周围的水环境造成一定程度的污染。

参考文献

王吉桥，王凯，王声权，等. 不同投饲率对黄颡鱼幼鱼生长和存活的影响. 水产学杂志，2005, 18(2): 1–5

王芳，刘小军，冯骞，等. 工厂化养殖条件下大鲵适宜养殖密度的研究. 淡水渔业，2013, 43(6): 73–77

邓伟霞，袁重桂，阮成旭，等. 不同投饵率对花鳗鲡黑仔苗生长的影响. 福建水产，2011, 33(2): 50–52

朱秋华，钱国英，许梓荣. 投饵率对鲈鱼生长和体成分的影响. 浙江农业学报，2004, 16(6): 384–388

牟洪民，李媛，姜伟杰，等. 大鲵生物学研究的新进展. 水产学科学，2011, 30(8): 513–516

李欣，孙增民，王明文，等. 活饵与鲜饵对 3-5 龄大鲵生长的影响. 中国水产，2015(7): 85–88

杨诚，袁重桂，阮成旭，等. 不同投饵率对暗纹东方鲀幼鱼生长的影响. 福建水产，2012, 34(2): 160–162

陈云祥，阳爱生，王伟军，等. 温度和体重对大鲵摄食的影响. 水利渔业，2006, 26(5): 32–47

金桥，成芳，曲柄，等. 大鲵的开发研究现状. 广州化工，2012, 40(2): 9–10, 35

Effects of Frequency of Feeding with Fresh Diet on the Growth of the 2 to 5-year-old Andrias davidianus

LI Xin1, ZHANG Shuming2, BIAN Qiuyun2, WANG Zhen2, CHEN Yujun3, LIANG Gang1

(1. College of Life Sciences, Shaanxi Normal University, Xi’an 710119; 2. Shaanxi Province Fisheries Working Station, Weinan, 714000; 3. Shaanxi Longquan Giant Salamander Breeding Co. Ltd, Ningshan, 711600)

Abstract In this study we aimed to explore the influence of feeding rate on the growth of the Chinese giant salamander Andrias davidianus under certain conditions in industrial aquaculture such as water temperature 18–19℃, pH 8.0 and dissolved oxygen 6.0 mg/L. Chinese giant salamander aged 2, 3, 4 and 5-year-old were fed with fresh dead carp at five different rates, and the corresponding growth rates were recorded during 60 days. We compared a variety of growth traits between different groups including the weight gain, the total length increment, the feed coefficient, the weight gain rate, the specific growth rate and the food conversion rate. Two-year-old Chinese giant salamander with feeding rate 2.0% had a significantly lower feed coefficient but higher weight gain rate and food conversion rate than those fed at 1.7%, 2.3%, 2.6%, and 2.9%. Moreover, its specific growth rate was also higher than that of groups fed at 1.7% and 2.6% (P<0.05). Three-year-old Chinese giant salamander with feeding rate 2.2% had a significantly lower feed coefficient than those fed at 1.9%, 2.5%, 2.8%, but higher weight gain rate and specific growth rate than those fed at 1.6%, 1.9%, 2.5% and 2.8%. Their food conversion rate was significantly higher than those fed at 2.5% and 2.8% (P<0.05). Four-year-old Chinese giant salamander with feeding rate 2.3% had a significantly lower feed coefficient but higher weight gain rate and specific growth rate compared to those fed at 1.7%, 2.0% and 2.9%, and its the food conversion rate were significantly higher than those fed at 1.7% and 2.9% (P<0.05). Five-year-old Chinese giant salamander fed at 2.5% had a significantly lower feed coefficient than those fed at 1.9%, higher weight gain rate and specific growth rate than those fed at 1.9%, 2.2%, 2.8% and 3.1%, and higher food conversion rate than those fed at 2.2%, 2.8% and 3.1% (P<0.05). In order to reduce the feed coefficient and to raise the weight gain rate, specific growth rate and food conversion rate, we recommended that the appropriate feeding rates should be 2.0%, 2.2%, 2.3% and 2.5% for 2, 3, 4 and 5-year-old Chinese giant salamander respectively. The optimal feeding rate appeared to increase along with growing age, which conformed to equation y=0.000212x+2.07 (r²=0.8797).

Key words Andrias davidianus; Fresh diet; Feeding rate; Growth