Vol.38, No.1 Feb., 2017

DOI: 10.11758/yykxjz.20151105006

http://www.yykxjz.cn/

半滑舌鳎(Cynoglossus semilaevis) 黑色素聚集素受体(MCHR)表达特性 及其与无眼侧黑化的关系^{*}

史学营^{1,3} 柳学周^{1,20} 石 莹⁴ 徐永江^{1,2} 史 宝^{1,2} 王 滨^{1,2} 李 斌^{1,3}

 (1. 农业部海洋渔业可持续发展重点实验室 青岛市海水鱼类种子工程与生物技术重点实验室 中国水产科学研究院黄海水产研究所 青岛 266071; 2. 青岛海洋科学与技术国家实验室 海洋渔业科学与食物产出过程功能实验室 青岛 266071; 3. 上海海洋大学水产与生命学院 上海 201306;
4. 青岛市渔业技术推广站 青岛 266071)

摘要 利用 cDNA 末端快速克隆技术(RACE)获得了半滑舌鳎(Cynoglossus semilaevis) 2 种黑色素 聚集素受体(MCHR1 和 MCHR2)的 cDNA 全长序列,并采用定量 PCR 技术分析了 MCHR mRNA 的 组织表达特性,研究了其与无眼侧黑化程度的关系。结果显示,半滑舌鳎 MCHR1 cDNA 序列全长 为 1685 bp, 开放阅读框(ORF)长为 1080 bp, 编码 359 个氨基酸, 与牙鲆(Paralichthys olivaceus)同 源性高达 83.3%。系统进化分析显示,半滑舌鳎 MCHR1 与鳉形目、鲽形目和鲈形目鱼类聚为1个 小分支。MCHR2 cDNA 序列全长为 1626 bp, ORF 长为 1044 bp, 编码 347 个氨基酸, 与鲽形目同 源性最高达到 90%以上。系统进化分析显示,半滑舌鳎 MCHR2 与鲽形目、鲈形目鱼类聚为1个小 分支。MCHR1 mRNA 在鳃中表达量最高,而 MCHR2 mRNA 在有眼侧皮肤中表达量最高,性腺次 之。另外, MCHR1 和 MCHR2 mRNA 在其他组织中均检测到表达, 这表明半滑舌鳎黑色素聚集素 (MCH)可能通过内分泌方式和各组织中的 MCHR 介导参与生理调控。不同黑化面积表达分析显示, 在无眼侧黑化发生早期,脑垂体中 MCHR1 mRNA 显著升高,在无眼侧 50%黑化组达到峰值,皮肤 中 MCHR1 mRNA 在无眼侧 10%黑化组显著升高,其后保持较高水平;脑垂体和皮肤中 MCHR2 mRNA 表达表现出一致的变化趋势,在无眼侧黑化发生早期都达到峰值,其后逐渐下降至相对较低 水平。表明 MCHR 可能直接或通过其他信号通路参与了半滑舌鳎无眼侧黑化性状的调控过程。 半滑舌鳎;黑色素聚集素受体;基因克隆;表达调控;无眼侧黑化 关键词

中图分类号 S917.4 文献标识码 A 文章编号 2095-9869(2017)01-0091-12

黑色素聚集素(Melanin concentration hormone, MCH)是一种垂体神经肽,最早从大马哈鱼(Oncorhynchus keta)的垂体中被分离鉴定(Kawauchi et al, 1983),具

有调节体色、色素沉着、摄食(Kang *et al*, 2013; Kawauchi, 2006)、能量平衡、压力、繁殖、行为、知觉和神经 内分泌的作用(Kawauchi *et al*, 2004; Forray, 2003;

① 通讯作者:柳学周,研究员, E-mail: liuxz@ysfri.ac.cn

^{*}国家鲆鲽类产业技术体系(CARS-50)和国家国际科技合作专项(2013DFA31410)共同资助 [This work was supported by China Agriculture Research System (CARS-50) and International Science and Technology Cooperation Program of China (2013DFA31410)]. 史学营, E-mail: shixueying0106@sina.com

收稿日期: 2015-11-05, 收修改稿日期: 2015-12-30

Griffond et al, 2002; Pissios et al, 2003)。在硬骨鱼类 中, MCH 被认为是体色生理变化的一个关键调节因 子(Kishida et al, 1989; Suzuki et al, 1995), 其通过 G 蛋白偶联受体(MCHR)发挥生理作用,调节色素细胞 内色素颗粒凝聚而使体色变浅。第1个 MCH 的受体 MCHR1 是在哺乳动物中发现的(Chambers et al, 1999; Lakaye et al, 1998; Lembo et al, 1999; Saito et al, 1999)。随后,在人类基因组数据中,第2个受体 MCHR2 被鉴定,并且从人脑 cDNA 文库中克隆获得(An et al, 2001; Hill et al, 2001; Mori et al, 2001; Rodriguez et al, 2001)。哺乳动物 MCHR 一般有 2 个亚型, 而啮齿动 物只有1个 MCHR 亚型(Tan et al, 2002)。硬骨鱼类, 如金鱼(Carassius auratus)(Mizusawa et al, 2009)、条 斑星鲽(Verasper moseri)(Takahashi et al, 2009)和美洲 拟鲽 (Pseudopleuronectes americanus)(Tuziak et al, 2012)等, 一般有 2 种 MCHR 亚型, 而在斑马鱼(Danio rerio)中发现了 3 种 MCHR 亚型: MCHR1a、MCHR1b 及 MCHR2。其中, MCHR1a 只在胚胎期表达, MCHR1b 和 MCHR2 在胚胎期和成体期都表达,且 MCHR2 在成体期表达水平明显升高(Berman et al, 2009; Logan et al, 2003), 表明了其亚型基因功能的分 化。MCHR1 与啮齿类动物摄食行为和体内能量平衡 调控有关(Wang et al, 2001)。在鱼类中, MCHR 与摄 食行为和体色调控有关,如饥饿条件下,美洲拟鲽 MCHR2 mRNA 表达量无变化, 而 MCHR1 mRNA 表 达量升高,说明 MCHR1 参与了其摄食调节(Tuziak et al, 2012)。Takahashi 等(2004)对条斑星鲽的研究表 明,MCH和MCHR相互作用调控黑色素颗粒的聚合。 有眼侧皮肤在白色养殖环境下, MCHR2 mRNA 表达 量低于黑色养殖环境,而 MCHR1 mRNA 水平却没有 变化,表明 MCHR2 可能主要参与体色对环境的适应调 节(Takahashi et al, 2007)。目前, 鱼类 MCH 与 MCHR 系统对体色的调控作用及其机制仍不明了,亟待开展 深入的研究来阐释 MCHR 调节 MCH 作用的信号途径。

半滑舌鳎(Cynoglossus semilaevis)为我国鲆鲽 类三大主导养殖品种之一,已形成规模化养殖产业 (姜言伟等,1993;邓景耀等,1988;柳学周等,2014)。 近年来,在养殖生产中发现,养殖鱼存在较高比例的 无眼侧黑化现象(60%以上),且无眼侧黑化鱼市场价 格较无眼侧正常鱼低 20%-30%,严重影响其养殖效 益,成为制约产业持续发展的瓶颈之一。开展半滑舌 鳎无眼侧黑化调控机制研究已极为迫切。MCH 对硬 骨鱼类特别是鲆鲽类无眼侧体色黑化具有明显的抑 制作用,因此,有必要研究 MCH/MCHR 系统在养殖 半滑舌鳎无眼侧黑化调控中的作用及其可能机制,以 期为全面认识养殖半滑舌鳎无眼侧黑化的分子机制, 建立实用的体色调控技术提供基础资料。

1 材料与方法

1.1 实验用鱼及样品处理

实验用半滑舌鳎于 2013 年 6-8 月取自山东青岛 某养殖场。取样实验鱼 3 尾,全长为 25-35 cm,体 重为 250-350 g,用于 MCHR 基因克隆与组织表达特 性分析。实验鱼以 MS-222 (280 mg/L)麻醉后,快速 取性腺、肝脏、心脏、胃、肠、脾、肾、头肾、垂体、 脑、鳃、肌肉、有眼侧正常皮肤、无眼侧黑化皮肤、 无眼侧正常皮肤组织投入液氮速冻后,转入-80℃保 存,用于总 RNA 的提取。

选择同一批次受精卵孵化的鱼苗,按照发育进程,分别挑选无眼侧黑化面积为10%、50%和80%的半滑舌鳎各3尾,以无眼侧正常半滑舌鳎为对照。实验鱼体长为8-10 cm,体重为4-6g,每个黑化组分别取脑垂体与皮肤组织,用于分析*MCHR* mRNA表达与无眼侧黑化程度的关系。因实验鱼个体较小,取样时将脑与垂体合并取样,皮肤组织(去除肌肉)整体取样。

1.2 总 RNA 提取和 cDNA 第1 链合成

利用 RNAiso Plus (TaKaRa,日本)试剂盒并按照 操作说明提取各组织样品的总 RNA,通过 1%琼脂糖凝 胶电泳检测 RNA 的质量,Nanodrop 2000 (Thermo,美 国)测定 RNA 浓度。取适量脑组织总 RNA,以 PrimeScriptTM II 1st strand cDNA Synthesis Kit (TaKaRa) 合成 cDNA 第1链,于-20℃保存用于中间片段的克隆。 以 SMARTerTM RACE cDNA Amplification Kit (Clontech, 美国)合成 5′-RACE 及 3′-RACE cDNA 第1链,用于 MCHR 基因 RACE 全长克隆。取适量各组织样品的 总 RNA,用 PrimeScript RT Reagent Kit with gDNA Eraser 反转录试剂盒(TaKaRa,日本)合成 cDNA 第1链, 用于 MCHR mRNA 组织表达特性及其与无眼侧黑化程 度分析。各操作步骤均严格按照使用说明书进行。

1.3 中间片段扩增

根据 GenBank 登记的鲆鲽类 *MCHR*2 序列保守区 设计特异引物 MCHR2-F 和 MCHR2-R (表 1),以脑 cDNA 为模板,扩增半滑舌鳎 *MCHR*2 基因的核心序 列, PCR 反应体系(25 μl): 0.3 μl *Taq* 酶、2.5 μl 10× PCR Buffer、2 μl dNTP Mixture、1 μl 模板、1 μl MCHR2-F、1 μl MCHR2-R、17.2 μl ddH₂O。反应条 件:94℃ 5 min;94℃ 30 s, 58℃ 30 s, 72℃ 50 s, 34 个循环;72℃延伸 10 min。PCR 产物经 1%琼脂糖 凝胶电泳分离后,切胶回收目的条带并纯化。回收 PCR 产物与 pEASY-T1 载体(全式金,中国)连接,转 化至 Trans1-T1 感受态细胞(全式金,中国),LB 固体 培养基 37℃培养过夜,挑取阳性克隆送至生工生物 工程(上海)股份有限公司测序;*MCHR*1 的中间序列 已在 NCBI 数据库登录(序列号:XM_008316788.1), 直接下载其序列用于 RACE 引物设计。

1.4 MCHR 的 RACE 扩增

根据 NCBI 数据库登记的 MCHR1 和 MCHR2 中 间片段设计 RACE 引物 MCHR1-GSP1、MCHR1-GSP2、 MCHR1-NGSP1、MCHR1-NGSP2、MCHR2-GSP1、 MCHR2-GSP2、MCHR2-NGSP1、MCHR2-NGSP2(表 1), 用 Smart RACE Advantage 2 PCR 试剂盒(Clontech,美 国)进行梯度 PCR 扩增。第 1 次 PCR 使用引物 MCHR1-GSP1、MCHR1-GSP2 和 MCHR2-GSP1、MCHR2-GSP2,反应体系: 17.25 μ l ddH₂O、2.5 μ l Buffer、 0.5 μ l 50×dNTP Mix、0.5 μ l 50×Advantage 2 Polymerase Mix、1.25 μ l cDNA、2.5 μ l UPM 和 GSP 引物 0.5 μ l, 共计 25 μ l。PCR 反应条件为 94°C 30 s; 70°C 30 s, 16 个循环, Tm 每个循环降低 0.5°C, 72°C延伸 1 min; 然后,94°C 30 s, 63°C 30 s, 72°C 60 s, 28 个循环, 最后 72°C延伸 10 min。 以第 1 次 PCR 产物为模板,使用引物 MCHR1-NGSP1、MCHR1-NGSP2 和 MCHR2-NGSP1、MCHR2-NGSP2 进行巢式 PCR,反应体系: 1.25μ l 第 1 次 PCR 产物的稀释液、19.25 μ l ddH₂O、2.5 μ l Buffer、0.5 μ l 50× dNTP Mix、0.5 μ l 50×Advantage 2 Polymerase Mix、 0.5 μ l NUP、0.5 μ l NGSP 引物,共计 25 μ l。PCR 反应 条件同第 1 次 PCR。PCR 产物于 1%琼脂糖凝胶电泳 检测后,对目的条带进行胶回收、载体连接、转化、 筛选阳性克隆并测序。

93

1.5 MCHR mRNA 定量表达分析

根据获得的半滑舌鳎 MCHR1 和 MCHR2 的 cDNA 序列设计定量 PCR 引物 MCHR1-DF、MCHR1-DR 和 MCHR2-DF、MCHR2-DR(表 1), 以 β-actin 为 内参,设计引物 β-actin-F 和 β-actin-R (表 1) (Li *et al*, 2010)。利用 Mastercycler ep *realplex* real-time PCR 仪 (Eppendorf,德国),使用 SYBR Premix Ex *Taq*TM II 试 剂盒(Takara)进行定量扩增,PCR 体系(20 μ I)为 2 μ I cDNA 模板,0.8 μ I 上、下游引物(10 μ mol/L),10 μ I SYBR Premix Ex *Taq*TM II 和 6.4 μ I ddH₂O。PCR 反应 条件为 95℃预变性 30 s,95℃ 5 s,58℃ (*MCHR*1)、 60℃ (*MCHR*2) 20 s 共 40 个循环。每个样品测试设置 3 个重复。*MCHR* mRNA 的表达量以 β-actin mRNA 表 达量为基础,利用 2^{-ΔΔCt} 方法计算获得(Livak *et al*, 2001)。

引物名称 Primer name	引物序列 Primer sequence (5'-3')	用途 Usage
MCHR2-F	ATCCTGTGCTCGGTTGGAGTTAT	中间片段克隆
MCHR2-R	GGAACCATCTGTTTTGACGACTG	
UPM-long	CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGC AGAGT	5′和 3′-RACE PCR
UPM-short	CTAATACGACTCACTATAGGGC	
NUP	AAGCAGTGGTATCAACGCAGAGT	5′和 3′-RACE 巢式 PCR
MCHR1-GSP1 MCHR2-GSP1	CGTTGTAGGCGTAGTTGAAGGCGATG GGTGATGGTGGGCGTGTTGTTGCT	5'-RACE PCR
MCHR1-NGSP1 MCHR2-NGSP1	GCCAAAAGGAACTGATAAAGTGTGAACCA CTCTTCTCTGAGGTGGGGGTGGACAAT	5'-RACE 巢式 PCR
MCHR1-GSP2 MCHR2-GSP2	TCCATCGCCTTCAACTACGCCTAC CAGTGGGTCTTTGGGAACTTTATGTGTA	3'-RACE PCR
MCHR1-NGSP2 MCHR2-NGSP2	CGAGTGAACCCCAGTAAGACCGACG GTTCCTGATTTGCTGGTCGCCCTAC	3'-RACE 巢式 PCR
MCHR1-DF	CCAATCCGCTTCGACTACAT	MCHR1 qPCR
MCHR1-DR MCHR2-DF MCHR2-DR	GACCGGCGTACATCAACAC GTGCATGATGTGGCTGGAC GTGGTAGAGGGTGAGGGAGTAGAA	MCHR2 qPCR
β-actin-F	GTAGGTGATGAAGCCCAGAGCA	β -actin qPCR
β-actin-R	CTGGGTCATCTTCTCCCTGT	

表 1 半滑舌鳎 *MCHR* 基因克隆使用的 PCR 扩增引物序列 Tab.1 Nucleotide sequences of primers used for PCR amplification of *MCHR* of *C. semilaevis*

1.6 序列分析及数据处理

半滑舌鳎 MCHR 基因的序列拼接、氨基酸序列 推导、分子量预测、等电点预测及氨基酸同源性分析 均使用 DNAstar 5.0.1,信号肽预测使用 SignalP 4.1 (http://www.cbs.dtu.dk/services/SignalP/)。氨基酸序列 比对和系统进化分析使用 ClustalX 2.0.12 (http://www. clustal.org/download/current/)和 MEGA 5.1 (http://www. megasoftware.net/mega51.html)。蛋白结构预测使用 SWISS-MODEL(http://www.swissmodel.expasy.org/)。

实验数据均以平均值±标准差(Mean±SD)表示, 多组数据间比较采用 SPSS 16.0 统计软件进行单因素 方差分析(One-way ANOVA)和 Duncan's 多重比较分 析,当 *P*<0.05 时表示差异显著。

2 结果

2.1 MCHR cDNA 序列结构

半滑舌鳎 MCHR1 cDNA 序列全长为 1685 bp,包括 262 bp 的 5′非编码区(UTR)、1080 bp 的开放阅读 框(ORF)和 343 bp 的 3′UTR,编码 359 个氨基酸。N 端第 1–30 位氨基酸为信号肽序列,7 个糖基化位点 分别位于第 5、8、15、72、94、222 和 324 位氨基酸。存在 7 个跨膜结构域,分别位于 29–51、68–90、105–127、147–169、195–217、246–268 和 283–302 位氨基酸。3′端 UTR 含有 1 个加尾信号 AATTAA (图 1)。编码蛋白预测分子量为 39.9 kDa,等电点为 9.00。

A CAT GGG ACA CGG ACG AGG ACA GCG GCC AGT GCG GAG TGA GCG CAG CTC GGA TGC CAG TGA AGA TGC TCC TGA CTG GGA GAG $-262 \\ -240$ $-180 \\ -120$ GCT TGT TTA TGG CTG CAG GAG CAG AGC CGC TCT CTC ACA CAC GGA CTC AGG CAC AAT GCA AAA GGA CTG GAA TCA CTC CTG AAG AGT AGC AGG GAA CTC CAG GCG CTC ACA CCT TGC CCT TCA AGG ACA GAC AGC TGT ATT ATT AAC ACT TGG AAC TTG GAT TTT TTT CCT GTT TCC TCC -60 ATG GAT TTG TAC AAC GAC TCC AAT TCT TCC CTC GCA GAC AGT AAT TTA ACT ACA GCG GTT 1 N D GTC AAC GGA GCT CTT TAC TCC AGC GCC ATC CTC CCT GTC ATT TAT GGC ATC ATA TGT TTC 61 21 121 CTG GGG ATC ATC GGG AAC TGC ATC GTC CTC TAC ACC ATC ATG AAG AAG AAC AAG TGC CAC 41 181 GCT AAA CAA ACC GTG CCG GAC ATC TTC ATC TTA AAC CTG TCC ATC GTC GAC CTC CTG TTC 61 D CTC CTC GGG ATG CCA TTT CTC ATC CAC CAG TTG CTG GGC AAT GGC AGC TGG CAC TTC GGC 241 81 GGT CCG ATG TGT ACA GTC ATC ACC GCA CTC GAC TCC AAC AGC CAG ATT GTC AGC ACC TAC 301 101 ATC CTC ACC GCC ATG GCC CTC GAT CGC TAC CTG GCT ACG GTG CAT CCA ATC CGC TTC GAC 361 121 М D R Н TAC ATC CGC ACC CCC TGC GTG GCC GCG CTG GTC ATC GTG ATG GTG TGG TGT CTG TCC TTC 421 141 TTC ACC ATC ATC CCC GTG TTG ATG TAC GCC GGT CTG ATG CCG CTG CCG GAC GGC CTG GTG 481 F T I I P V L M Y A G L M P L P D G L V GCC TGC GCT CTG CTC CTG CCC GAC CCG GTC ACC AGC ACA TAC TGG TTC ACA CTT TAT CAG 161 541 181 D L TTC CTT TTG GCC TTT GCC ATG CCG CTG GCC ATA ATC TGC CTG GTG TAC TTT AAA ATC CTC 601 201 F L L A F A M P L A I I C L V Y F K I L CAG AAC ATG TCC ACC AGC GTG GCA CCA CTG CCT CCA CGG AGT TTG AGG GTG CGC ACG AGG 661 221 R AAG GTG ACC CGC ATG GCG GTG GCG ATA TGC CTG GCC TTC TTC GTC TGC TGG GCT CCG TAC 721 241 TAC ACC CTC CAG TTG GTG CAC CTG GGC GTG CAG AAG CCG TCC ATC GCC TTC AAC TAC GCC 781 261 Q G Κ 841 281 TAC AAC GTT GCC ATC AGC ATG GGC TAC GCC AAC AGC TGC ATC AAC CCC TTC ATC TAC ATC Y N V A I S M G Y A N S C I N P F I Y I ACA CTC AGT GAC ACC TTC AAA AGG CAG TTT CTG AGA GCC GTG CAT CCG ATT AAC AGG AAG 901 301 R R TTC CGA GTG AAC CCC AGT AAG ACC GAC GCA GGC AGC GTC AGC ATG CAA ATG GTC CCC GAG 961 321 D Κ Α G GEC GTC CGG CCC GAG CCG GCC CCG CGG GAC ATG ATA CCA TCC AAT CTG GTT TCT CAG TGA 1021 341 R E Ρ А P R D М Ρ N ATG TCA ATC TCT GTT TTT ACA ATC AGA CAA TCA TTC TGC AGT TTC TCC ACC CAA AAC AAA 1081 1141 ACA GAA TTG TCT TTT TTC TTT TTC TTT TTT TTT GGA GAT GAT CCG GTC TAT ATT TGA CAG TTC TAC GAT TAT TAA AAA TAG GAA ACA CAC TGA CGT GTC TGG AGC CCG TGT GTC GTA 1201 AAA GAA <u>AAT TAA</u> CCT AGT TCT CTT AGT TAT TTT TAC AAT CAC AGT TAA TGT GTA ACC ACC CAC AGA GAC TCC AGG AGG CGG TGT AAC TGT TCA TGG AAA AAT ATA TTT TCT TGC CAG TAG 1261 1321 1381

图 1 半滑舌鳎 MCHR1 基因 cDNA 全长序列及推导的氨基酸序列

Fig.1 The full-length cDNA sequence of C. semilaevis MCHR1 gene and deduced amino acid sequence

推导的氨基酸序列用单字母表示,从阴影显示的起始甲硫氨酸开始计数。信号肽用单下划线表示,糖基化位点以粗体表示,跨膜螺旋用斜体表示,AATTAA加尾信号用框表示,终止密码子(TGA)用*表示。下同

The deduced amino acid residues were represented as single letter abbreviations and numbered from the initiating methionine which was shadowed. The signal peptide was underlined. The potential glycosylation sites were bolded. The transmembrane helices were italicized. The AATTAA sequence that indicated the polyadenylation signal was boxed. The boxed stop codon was marked by an asterisk. The same as below

半滑舌鳎 MCHR2 cDNA 序列全长为 1626 bp,包括 213 bp 的 5'UTR、1044 bp 的 ORF 和 369 bp 的 3'UTR,编码 347 个氨基酸。N 端第 1-47 位氨基酸 为信号肽序列,4 个糖基化位点分别位于第 2、11、15 和 23 位氨基酸,存在 7 个跨膜结构域,位置分别 为 41-63、76-98、118-140、152-174、204-226、247-269 和 282-304 位氨基酸。3'UTR 区含有 1 个加尾信号 AATAA (图 2)。编码蛋白预测的分子量为 39.8 kDa,等电点为 9.16。

2.2 MCHR 的氨基酸序列同源性比较

同源性分析显示,半滑舌鳎 MCHR1 的氨基酸序 列与鲽形目、鲈形目的相似度达 81.8%-83.3%,与牙 鲆(*Paralichthys olivaceus*)的相似度为 83.3%,与爬行 类、鸟类和人的相似度分别为 63.5%、62.2%和 14.1%。 半滑舌鳎 MCHR2 的氨基酸序列与鲽形目的相似度达 到 90%以上,与鲤形目鱼类相似度为 33.0%-75.7%, 而与爬行类、鸟类和人的相似度分别仅为 33.6%、 29.6%和 34.2%。另外,半滑舌鳎 MCHR1 和 MCHR2 的氨基酸序列相似度仅为 30.1%(表 2)。

95

利用 ClustalX 2.0.12 对半滑舌鳎 MCHR 的氨基酸 序列与其他物种的 MCHR 氨基酸序列进行了比较(图 3)。 结果发现,半滑舌鳎与其他鱼类 MCHR 的氨基酸序 列保守性较强,仅在 C 端和 N 端删除了一些氨基酸, 中间部分较为保守。

2.3 MCHR 系统进化分析

ACA TOO OCA TTO TOO TOO ACT TTO TOT TOA CAO

构建了半滑舌鳎 MCHR 和其他脊椎动物 MCHR 的系统进化树(图 4),半滑舌鳎 MCHR1 与鳉形目、 鲽形目鱼类聚为 1 个小分支,与其他硬骨鱼类和鸟 类、爬行类、人类聚为1个大分支;半滑舌鳎 MCHR2 与鲽形目聚为1个小分支,与其他硬骨鱼类聚为1个 大分支,与 MCHR1 遗传距离较大,分别向2个方向 进化。

-213										ACA	100	GGA	TIU	IGC	100	AGI	110	101	TUA	CAG	
-180	AGT	CAC	ACG	GCT	GAG	ATG	ATC	AGC	CTG	GAG	CCC	GTG	CTC	CGG	TCG	CTG	GGG	TTT	TAT	ATT	
-120	TGA	GTT	TCA	GAG	GAG	AAC	CGC	TGC	CGT	CCA	GCA	GGG	AGT	GCG	CGC	ACT	TGG	AGA	GTG	CGT	
-60	AAA	TCT	GCT	GTC	CAA	CTT	TGG	GAA	GCG	GAG	CGC	GCG	CGC	GTC	TGG	AAC	GAG	GAC	CCG	AAG	
1	ATG	AAC	GAC	TCC	GGG	GTG	TTC	TGC	AAA	GGC	AAC	CAG	TCG	GAC	AAC	ATG	ACA	GAG	CCG	TCA	
1	M	N	D	S	G	V	F	C	K	G	N	Q	S	D	N	M	T	E	P	S	
61	TGT	CTG	AAC	TCG	ACT	CGG	CCG	ACG	TAC	AAC	CAC	ATC	GAC	ATC	ACC	ACC	TTC	ATG	CAC	ATC	
21	$\frac{101}{C}$	L	N	S	T	R	P	<u>T</u>	Y	N	H	T	D	T	T	T	F	M	H	T	
121	TTC	ccc	TCC	ATC	TÂC	0.00	ATC	CTG	TĜC	TCG	GTC	GĜA	GTG	ATT	GCC	AAC	GGA	CTG	GTC	ATT	
121	$\frac{110}{F}$	<i>p</i>	5	T	V	6000		1	C	S	V	C	V	T	4	N	C	1	V	T	
41	TAC	202	GTG	272	000	TGC	AAG	AAG	AAG	ATG	GTG	тсс	GAC	ATC	TAC	GTG	CTG	AAC	CTG	222	
61	V	A	V	A	A	C	K	K	K	M	V	S	D	T	Y	V	L	N	L	A	
241	ATA	GCC	GAC	ATG	CTG	TTC	CTG	CTG	GTG	ATG	ccc.	TTC	AAC	ATC	CAC	CAG	CTG	GTC	AGG	GAC	
241 91	T	4	n	M	I	F	I	I	V	M	P	F	N	T	H	0	I	V	R	n	
301		CAG	тсс	CTC	TTT	222		TTT	ATC.	тат	ΔΔΔ	222	CTT.	aTa	CTC	ara.	GAC	crc.	ACT		
101	R	0	W	V	F	6000	N	F	M	C 101	K	Δ	V	V	V	V	D	V	S	N	
361	CAG	TTC	ACC.	ACC	стс	222	ATT	CTT	ACT	стс	CTG	тас	ΔTT	CAT	202	тас	ΔΤΔ	ດດີ ເ	ATT	CTC	
121	0	F	T	T	V	G	T	V	T	V	I	C	T	D	R	V	T	4	T	V	
421	CĂC	222	ACC	TCA	GAG	AAG	AGG	ACC	ATC	CAC	TGG	ACC	ATC	ATA	ATC	AAC	AĈA	CTG	GTG	TGG	
141	Н	P	Т	S	F	K	R	Т	T	Н	W	T	T	T	T	N	T	I	V	W	
481	GTG	GGC	AGC	TTC	CTC	CTC	ACC	GTG	CCG	GTC	ATG	ATG	TAC	0.00	AGG	GTG	GÂG	cõc	AAG	CAG	
161	V	G	S	F	L	L	T	V	P	V	M	M	Y	A	R	v	E	R	K	0	
541	CAC	ATG	GAG	GTG	тбС	ATG	ATG	TGG	CTG	GAC	GGT	CCC	GAG	GAC	ATG	TAC	TGG	TAC	ACC	TTC	
191	Н	M	F	V	С	м	M	W	T	D	G	P	F	D	M	v	W	v	т	F	
601	TAC	CAG	тсс	ATC	CTG	000	TAC	ATC	ATT	сст	CTC	ATC	ATC	ATC	AGC	ACC	TTC.	TAC	TCC	CTC	
201	Y	0	S	I	L	G	V	I	T	p	L	T	I	I	S	T	F	V	S	L	
661	ACC	CTC	TAC	CAC	GTC	TTC	AGC	TCC	GTC	CGC	CGC	GTC	AAA	CGC	AAG	CAG	ACG	GTT	TGG	GCT	
221	T	L	V	H	V	F	S	S	v	R	R	v	K	R	K	0	T	v	W	A	
721		ວລົວ	222	ACC	AAG	ATG	GTG.	CTG	ATG	GTA	ATT	GCA	TTG	TTC	CTG	AŤT	TGC	TGG	TCG	000	
241	K	R	A	Т	K	M	V	I	M	V	T	A	I	F	I	T	C	W	S	P	
781	TAC	CAT	GTC	ATT	CAA	GTG	ATC	AAC	CTG	AGC	AAC	AAC	ACG	222	ACC	ATC	ACC	TTC	GTA	TAT	
261	Y	H	V	T	Q	V	I	N	L	S	N	N	Т	P	Т	T	Т	F	v	Y	
201 841	GTC	TAC	CAC	ATC	AGC	ATC	TGC	CTG	AGC	TAC	TCC	CAC	AGC	TGC	ATC	AÂC	CĈG	CTC	ATG	CTG	
2011	V	Ŷ	H	Ī	S	Ī	C	Ĺ	S	Ŷ	S	H	S	C	Ī	N	P	Ĺ	M	L	
201	CTC	ATC	TTC	GCC	CAG	AAC	TAT	CGC	GAC	CGC	CTC	TGT	CGC	AGA	AAC	GCC	CCG	CAC	AGC	TCC	
301	L	I	F	A	Q	N	Y	R	D	R	L	C	R	R	N	A	P	Н	S	S	
961	CAG	CÂC	TCC	TCC	AAG	CTC	ACG	GTG	GTC	AAA	ACG	GAT	GGT	TCC	AGC	GTA	ACC	AGT	AAC	CCC	
321	0	Н	S	S	K	L	T	V	V	K	T	D	G	S	S	V	Т	S	N	P	
1021		TAC	ົງລົງ	тсс	ACG	GTT	GTG	TTCAI	AAC	GTT	GTA	GAT	ATT	ТАТ	GTA	AAC	GCT	TTG	ATG	ວົງງ	
2/1	N	v	R	100 C	T	V	V	*	mo	011	0111	0/11		1111	0111	mo	001	110	mo	000	
1081	ACT	TCA	ΔΔΔ	TCA	CTC	crc.	CTC.	ATC	ACA	AGT	GTC	CCC	ССТ	CAA	ATC		CCC	TCC	CTC	ттт	
1141	CCA	CAA	TTC	TAA	ATC-	ACT	CAA	ACC	AGA	GTC-	CCT	600	CAC	CAC	CAT	CAT	CAT	CAT	CAT		
1201	CAT	CAT	CAT	CAT	CAT	CAT	CAT	CAT	CAT	CAT	CAT	CAT	CAT	САТ	CAT	CAT	CAT	CAT	CAT	CAT	
1201	CAT	CAT	CTT	CAT	CTT	CAT	CAT	CAT	CAT	CAC	CTC	CAC	ТАА	CAC	TAA	ACA	TCA	CTC		CAC	
1201	ATC	MC	CTC	ACC	TCC	CAC	CAA	ACC	TTT	CTT	TTT	ACA	CIAA	TAM	ACC	ACA	CTC		TTC	TCC	
1321	AIG	AAU		AGG	100	LAC	LAA A A A	AGG	111		111	ACA	GAA	IAA	AGG	AAG	010	AUU	ΠŪ	100	
1381	AAA	AAA	AAA	AAA	AAA	AAA	AAA	AAA	AAA	AAA	AAA										

图 2 半滑舌鳎 MCHR2 基因 cDNA 全长序列及推导的氨基酸序列

Fig.2 The full-length cDNA sequence of C. semilaevis MCHR2 gene and deduced amino acid sequence

表 2 半滑舌鳎 MCHR 氨基酸序列与其他脊椎动物的同源性比较

Tab.2 Comparison of homology of the precursor peptide sequences of MCHR gene between

C. semilaevis and other vertebrates

物种	序列号	与 MCHR1 同源性	与 MCHR2 同源性		
Species	GenBank accession no.	Homology with MCHR1 (%)	Homology with MCHR2 (%)		
半滑舌鳎 C. semilaevis-1		100.0	30.1		
半滑舌鳎 C. semilaevis-2		30.1	100.0		
牙鲆 P. olivaceus-1	ACJ45803.1	83.3	31.6		
牙鲆 P. olivaceus-2	ACJ45804.1	30.3	91.0		
条斑星鲽 V. moseri-1	BAF49517.1	81.8	31.4		
条斑星鲽 V. moseri-2	BAF49518.1	30.7	91.6		
美洲拟鲽 P. americanus-1	AEE36641.1	6.5	13.8		
美洲拟鲽 P. americanus-2	AEE36643.1	12.3	9.5		
布氏新亮丽鲷 Neolamprologus brichardi-1	XP_006787523.1	81.8	32.0		
布氏新亮丽鲷 N. brichardi-2	XP_006781728.1	5.5	10.5		
罗非鱼 Oreochromis niloticus-1	XP_003447997.1	81.8	32.0		
罗非鱼 O. niloticus-2	XP_003445904.1	31.0	87.3		
网纹鳉 Poecilia reticulate-1	XP_008412904.1	80.1	31.9		
网纹鳉 P. reticulate-2	XP_008418194.1	30.7	84.4		
红鳍东方鲀 Takifugu rubripes-1	XP_003972036.1	76.4	32.7		
红鳍东方鲀 T. rubripes-2	XP_003970585.1	29.9	81.0		
斑点雀鳝 Lepisosteus oculatus-1	XP_006635517.1	68.9	31.9		
斑点雀鳝 L. oculatus-2	XP_006631982.1	31.1	71.8		
鲫鱼 Carassius auratus-1	BAH70338.1	66.9	31.3		
鲫鱼 C. auratus-2	BAH70339.1	32.4	75.5		
斑马鱼 D. rerio-1a	XP_001343144.1	67.7	30.0		
斑马鱼 D. rerio-1b	XP_692413.3	66.0	30.7		
斑马鱼 D. rerio-2	XP_001921716.2	34.3	33.0		
扬子鳄 Alligator sinensis-1	XP_006018414.1	63.5	28.7		
扬子鳄 A. sinensis-2	XP_006020523.1	33.7	33.6		
鸡 Gallus gallus-1	XP_004946431.1	62.2	29.6		
人 Homo sapiens-1	CAC16691.1	14.1	14.7		
人 H. sapiens-2	AAK32193.1	34.1	34.2		

2.4 MCHR mRNA 的组织表达特性

半滑舌鳎 MCHR1 mRNA 在鳃中表达量最高,有 眼侧皮肤、性腺、脾脏和无眼侧正常皮肤中检测到较 高的表达量,而垂体、脑、无眼侧黑化皮肤、肝、肠、 心脏中表达量较低,胃、肾、头肾、肌肉中检测到微 量表达;半滑舌鳎 MCHR2 mRNA 在有眼侧皮肤中表 达量最高,性腺次之,而在垂体、脑、无眼侧黑化皮 肤、无眼侧正常皮肤和头肾中有少量表达,在肝、肠、 胃、肾、肌肉、心脏和脾脏中微量表达(图 5)。MCHR 在性腺中的高表达表明其可能会参与生殖活动调控。 另外,有眼侧皮肤中这 2 种 MCHR 亚基表达水平均 显著高于无眼侧黑化和正常皮肤,而无眼侧黑化皮肤 中, MCHR1 表达显著低于无眼侧正常皮肤,无眼侧 黑化皮肤中 MCHR2 则显著高于无眼侧正常皮肤,表现出差异表达特性。

2.5 MCHR mRNA 表达调控与无眼侧黑化程度的关系

本研究分析了半滑舌鳎脑垂体和皮肤中 MCHR mRNA 表达与无眼侧黑化程度的关系(图 6)。无眼侧 黑化发生早期,脑垂体中的 MCHR1 mRNA 显著升高, 在无眼侧 50%黑化组达峰值,其后又显著降低;皮肤 中的 MCHR1 mRNA 在无眼侧 10%黑化组显著高于对 照组,其后保持较高表达水平。脑垂体和皮肤中的 MCHR2 mRNA 表达表现出一致的变化趋势,在无眼 侧黑化发生早期(10%黑化组),垂体和皮肤中的 MCHR2 mRNA 都达到峰值,随后逐渐下降至相对较 低水平。

图 3 半滑舌鳎与其他物种的 MCHR 氨基酸序列比较 Fig.3 Comparison of the amino acid sequences of *C.semilaevis* MCHR and other species

"*"表示一致的氨基酸; ":"表示高度保守度的氨基酸; "."表示低保守度的氨基酸; MCHR 氨基酸序列号见表 2; AS1、AS2:扬子鳄; CA1、CA2: 鲫鱼; CS1、CS2: 半滑舌鳎; DR1a、DR1b、DR2: 斑马鱼; Gallus: 鸡; Homo1、Homo2:人; LO1、LO2: 斑点雀鳝; NB1、NB2: 布氏新亮丽鲷; ON1、ON2: 尼罗罗非鱼; PA1、PA2: 美洲拟鲽; PR1、PR2:

网纹鳉; PO1、PO2: 牙鲆; TR1、TR2: 红鳍东方鲀; VM1、VM2: 条斑星碟

Asterisks (*) indicated identical amino acid sequences; Dot (:) indicated highly conserved amino acid sequences; Dot (.) indicated amino acid sequences of low degree conserved; GenBank accession numbers were shown in Tab. 2; AS1, AS2: *A. sinensis*; CA1, CA2: *C. auratus*; CS1, CS2: *C. semilaevis*; DR1a, DR1b, DR2: *D. rerio*; Gallus: *G. gallus*; Homo1, Homo2: *H. sapiens*; LO1,

LO2: L. oculatus; NB1, NB2: N. brichardi; ON1, ON2: O. niloticus; PA1, PA2: P. americanus; PR1, PR2: P. reticulate; PO1, PO2: P. olivaceus; TR1, TR2: T. rubripes; VM1, VM2: V. moseri

P: 垂体; BR: 脑; ES: 有眼侧皮肤; BHS: 无眼侧黑化皮肤; BWS: 无眼侧白皮肤; SP: 脾; L: 肝; I: 肠; ST: 胃; H: 心; K: 肾; HK: 头肾; GO: 性腺; GI: 鳃; M: 肌。不同字母代表差异显著(P<0.05), 下同

P: Pituitary; B: Brain; ES: Eye-side skin; BHS: Blind-side hypermelanosis skin; BWS: Blind-side white skin; SP: Spleen; L: Liver; I: Intestine; ST: Stomach; H: Heart; K: Kindey; HK: Head kidney; GO: Gonad; GI: Gill; M: Muscle. Different letters denoted significant differences (P<0.05), the same as below

图 6 半滑舌鳎脑垂体和皮肤中 *MCHR* mRNA 的表达与无眼侧黑化程度的关系 Fig.6 Correlation between expression of *MCHR* mRNAs in hypophysis cerebri and skin of *C. semilaevis* and its pigmentation degree on the blind-side

2.6 MCHR 编码蛋白质三级结构预测

通过 SWISS-MODEL 网站预测了半滑舌鳎 *MCHR* 编码的蛋白质的三级结构,如图7、图8所示。

3 讨论

本研究获得了半滑舌鳎 MCHR 的 2 个亚型 MCHR1 和 MCHR2 cDNA 序列全长,并研究了其组 织表达特性和不同黑化面积表达特性,为进一步研究 MCH 对体色调控的作用信号途径提供了基础。本研 究获得了半滑舌鳎 2 个 MCHR 亚型的结构,这种单 个或多个亚型的现象可能是由早期基因组的复制或 者在进化分离过程中丢失造成的。在基因结构方面, 半滑舌鳎 MCHR1 编码 359 个氨基酸,含有 7 个糖基 化位点,其中,3 个位于 N 端,1 个位于 C 端。美洲 拟鲽 MCHR1序列中没有发现糖基化位点(Tuziak et al, 2012),条斑星鲽中含有 5 个糖基化位点,其中 2 个 N 端糖基化位点(Takahashi et al, 2007)。MCHR2 编码 347 个氨基酸,含有 4 个 N 端糖基化位点和 7 个跨膜 结构域,这与条斑星鲽的 MCHR2 序列中糖基化位点 数量与位置相同(Takahashi et al, 2007),而在美洲拟 鲽 MCHR2 只发现 1 个糖基化位点、3 个跨膜结构域 (Tuziak et al, 2012)。糖基化位点的存在可赋予蛋白质 传导信号的功能,同时糖基化有助于某些蛋白的正确 折叠,而跨膜结构对于受体蛋白发挥生物学功能起到 决定性作用。不同鱼种间 MCHR 基因结构的差异可 能与种的特异性和 MCHR1 功能的差异有关,具体机 制还有待研究确认。同源性分析和系统进化分析表 明,半滑舌鳎 MCHR1 和 MCHR2 的进化保守性较强, 特别是 MCHR1。但 MCHR1 和 MCHR2 的氨基酸同源 性仅为 30.1%,表明在进化过程中,其祖先基因发生了 复制和功能的分化,且这种分化发生的时期可能较早。

组织表达分析显示,半滑舌鳎 *MCHR*1 mRNA 主要在鳃、有眼侧皮肤、性腺、脾脏和无眼侧白皮中表达,这种广泛的表达特性与美洲拟鲽 MCHR1 的研究结果相似(Tunisia *et al*, 2012),而对条斑星鲽的研究发现,*MCHR*1 只在脑中表达(Takahashi *et al*, 2007),说明 MCHR1 的生理功能具有种属特异性。本研究还

图 7 SWISS-MODEL 预测的半滑舌鳎 MCHR1 蛋白三级结构 Fig.7 Tertiary structure of *C. semilaevis* MCHR1 protein predicted by SWISS-MODEL

图 8 SWISS-MODEL 预测的半滑舌鳎 MCHR2 蛋白三级结构 Fig.8 Tertiary structure of *C. semilaevis* MCHR2 protein predicted by SWISS-MODEL

发现, MCHR2 mRNA 主要在有眼侧皮肤、性腺中表达,这与美洲拟鲽和条斑星鲽的研究结果一致。说明半滑舌鳎 MCHR2 可能具有与美洲拟鲽和条斑星鲽类似的生理功能,参与皮肤黑化和摄食行为的调控(Takahashi et al, 2007; Tuziak et al, 2012)。除主要靶器官外,在半滑舌鳎其他组织中也检测到 MCHR mRNA的表达,这种表达模式在美洲拟鲽(Tuziak et al, 2012)、条斑星鲽(Takahashi et al, 2007)、斑马鱼(Berman et al, 2009)、金鱼(Mizusawa et al, 2009)等鱼类中也同样存在,暗示 MCHR 可能与其他硬骨鱼类一样具有多样化的生理功能。

本研究发现,半滑舌鳎有眼侧皮肤中 MCHR 的 表达水平显著高于无眼侧黑化皮肤和无眼侧正常皮 肤,表明皮肤中的 MCHR 直接参与了黑色素细胞的 代谢调控过程。在 MCH 的研究中,我们发现半滑舌 鳎 MCH1 和 MCH2 的主要靶器官为垂体,而本研究 发现,MCHR1 和 MCHR2 的主要靶器官分别为鳃和 有眼侧皮肤,提示 MCHR 介导 MCH 的生理功能可能 是通过旁分泌和自分泌的信号途径。与无眼侧黑化皮 肤和正常皮肤相比,有眼侧皮肤中 MCH 和 MCHR 的 表达水平都显著升高。同时,在无眼侧黑化皮肤中的 MCH1 和 MCHR1 表达水平显著高于无眼侧正常皮 肤,而无眼侧黑化皮肤中 MCH2 和 MCHR2 表达水平 显著低于无眼侧正常皮肤。由此说明, MCH/MCHR 信 号系统在有眼侧体色调控和无眼侧黑化调控过程中可 能存在协同作用,但具体的作用途径和机制尚需深入研 究验证。

Takahashi 等(2004)在条斑星鲽 MCHR 的研究中 发现, MCH 通过与 MCHR 结合控制着色素细胞中黑 色素颗粒的聚合。条斑星鲽有眼侧皮肤中, MCH 通 过与MCHR2特异结合调控体色以适应不同环境背景 的变化,如白色养殖环境下有眼侧皮肤 MCHR2 mRNA 表达量低于黑色养殖环境,表明 MCHR2 可能 直接参与了对养殖环境的适应调控(Takahashi et al, 2007)。本研究初步揭示了 MCHR 与无眼侧黑化发生 过程的关系,结合 MCH 的表达情况,发现在无眼侧 黑化程度不同的半滑舌鳎垂体中, MCH1 和 MCHR1 具有互补表达的变化趋势,即无眼侧 10%黑化鱼垂体 MCH1 达峰值后显著下降,而 MCHR1 在 10%黑化鱼 中表达开始升高,而在50%黑化鱼中达峰值并在80% 黑化鱼中保持较高水平,这种互补表达特性提示了 MCH 与 MCHR 之间可能存在协同调控作用。皮肤中 MCH1 与 MCHR1 也存在类似的协同表达调控关系, 其具体的信号通路尚需进一步研究。作者还发现, 垂 体和皮肤中的 MCH1 与 MCHR2 都分别存在类似的表 达变化趋势, MCH 可能与 MCHR1、MCHR2 同时结 合而发挥生理功能。有趣的是,我们发现半滑舌鳎垂 体和皮肤中 MCH2 与 MCHR1、MCHR2 也具有类似 的表达调控关系。综上所述, MCH/MCHR 系统对半 滑舌鳎无眼侧黑化性状发生和发展的过程具有重要 的调控作用,但 MCH/MCHR 结合作用途径及机制尚 不明了。目前研究尚无法确定哪种因子是参与无眼侧 黑化调控的关键因子,通过构建基因敲除型模式鱼类 可能为基因的功能解析提供支撑, 探明 MCH/MCHR 信号系统对无眼侧黑化的调控作用机制将有利于建 立实用的体色调控技术。

参考文献

- An S, Cutler G, Zhao JJ, *et al.* Identification and characterization of a melanin-concentrating hormone receptor. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(13): 7576–7581
- Berman JR, Skariah G, Maro GS, *et al.* Characterization of two melanin-concentrating hormone genes in zebrafish reveals evolutionary and physiological links with the mammalian MCH system. Journal of Comparative Neurology, 2009, 517(5): 695–710

- Chambers J, Ames RS, Bergsma D, *et al.* Melanin-concentrating hormone is the cognate ligand for the orphan G-proteincoupled receptor SLC-1. Nature, 1999, 400(6741): 261–265
- Deng JY, Meng TX, Ren SM, et al. Composition and quantity distribution of the Bohai Sea fish species. Marine Fisheries Research, 1988, 9: 11-89 [邓景耀, 孟田湘, 任胜民, 等. 渤海鱼类种类组成及数量分布. 海洋水产研究, 1988, 9: 11-89]
- Forray C. The MCH receptor family: Feeding brain disorders? Current Opinion in Pharmacology, 2003, 3(1): 85–89
- Griffond B, Baker BI. Cell and molecular cell biology of melanin concentrating hormone. International Review of Cytology, 2002, 213(4): 233–277
- Hill J, Duckworth M, Murdock P, *et al.* Molecular cloning and functional characterization of MCH2, a novel human MCH receptor. Journal of Biological Chemistry, 2001, 276(23): 20125–20129
- Jiang YW, Wang JR, Chen RS, et al. Artificial fry rearing of *Cynoglossus semilaevis* Günther in Bohai Sea. Marine Fisheries Research, 1993, 14: 25–33 [姜言伟, 万瑞景, 陈 瑞盛, 等. 渤海半滑舌鳎人工育苗工艺技术的研究. 海洋 水产研究, 1993, 14: 25–33]
- Kang DY, Kim HC. Functional characterization of two melaninconcentrating hormone genes in the color camouflage, hypermelanosis, and appetite of starry flounder. General and Comparative Endocrinology, 2013, 189: 74–83
- Kawauchi H, Baker BI. Melanin-concentrating hormone signaling systems in fish. Peptides, 2004, 25(10): 1577–1584
- Kawauchi H, Kawazoe I, Tsubokawa M. Characterization of melanin concentrating hormone in chum salmon pituitaries. Nature, 1983, 305(5932): 321–323
- Kawauchi H. Functions of melanin-concentrating hormone in fish. Journal of Experimental Zoology Part A Comparative Experimental Biology, 2006, 305(9): 751–760
- Kishida M, Baker BI, Eberle AN. The measurement of melanin concentrating hormone in trout blood. General and Comparative Endocrinology, 1989, 74(2): 221–229
- Lakaye B, Minet A, Zorzi W, et al. Cloning of the rat brain cDNA encoding for the SLC-1 G protein-coupled receptor reveals the presence of an intron in the gene. Biochimica et Biophysica Acta, 1998, 1401(2): 216–220
- Lembo PM, Grazzini E, Cao J, *et al.* The receptor for the orexigenic peptide melanin-concentrating hormone is a Gprotein-coupled receptor. Nature Cell Biology, 1999, 1(5): 267–271
- Li ZJ, Yang LJ, Wang J, *et al.* β-Actin is a useful internal control for tissue-specific gene expression studies using quantitative real-time PCR in the half-smooth tongue sole *Cynoglossus semilaevis* challenged with LPS or *Vibrio anguillarum*. Fish and Shellfish Immunology, 2010, 29(1): 89–93
- Liu XZ, Zhuang ZM. Reproduction biology and culture technology of half-smooth tongue sole *Cynoglossus semilaevis*. Beijing: China Agriculture Press, 2014, 1–10 [柳学周, 庄

志猛. 半滑舌鳎繁育理论与养殖技术. 北京: 中国农业出版社, 2014, 1–10]

- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta CT}$ method. Methods, 2001, 25(4): 402–408
- Logan DW, Bryson-Richardson RJ, Pagán KE, *et al.* The structure and evolution of the melanocortin and MCH receptors in fish and mammals. Genomics, 2003, 81(2): 184–191
- Mizusawa KL, Saito Y, Wang Z, *et al.* Molecular cloning and expression of two melanin-concentrating hormone receptors in goldfish. Peptides, 2009, 30(11): 1990–1996
- Mori M, Harada M, Terao Y, *et al.* Cloning of a novel G proteincoupled receptor, SLT, a subtype of the melanin-concentrating hormone receptor. Biochemical and Biophysical Research Communications, 2001, 283(5): 1013–1018
- Pissios P, Maratos-Flier E. Melanin-concentrating hormone: From fish skin to skinny mammals. Trends in Endocrinology and Metabolism Tem, 2003, 14(5): 243–248
- Rodriguez M, Beauverger P, Naime I, et al. Cloning and molecular characterization of the novel human melaninconcentrating hormone receptor MCH2. Molecular Pharmacology, 2001, 60(4): 632–639
- Saito Y, Nothacker HP, Wang Z, et al. Molecular characterization of the melanin-concentrating-hormone receptor. Nature, 1999, 400(6741): 265–269
- Suzuki M, Narnaware YK, Baker BI, et al. Influence of environmental colour and diurnal phase on MCH gene expression in the trout. Journal of Neuroendocrinology, 1995, 7(4): 319–328
- Takahashi A, Kobayashi Y, Amano M, et al. Structural and functional diversity of proopiomelanocortin in fish with special reference to barfin flounder. Peptides, 2009, 30(7): 1374–1382
- Takahashi A, Kosugi T, Kobayashi Y, *et al.* The melaninconcentrating hormone receptor 2 (MCH-R2) mediates the effect of MCH to control body color for background adaptation in the barfin flounder. General and Comparative Endocrinology, 2007, 151(2): 210–219
- Takahashi A, Tsuchiya K, Yamanome T, *et al.* Possible involvement of melanin concentrating hormone in food intake in a teleost fish, barfin flounder. Peptides, 2004, 25(10): 1613–1622
- Tan CP, Sano H, Iwaasa H, et al. Melanin-concentrating hormone receptor subtypes 1 and 2: Species-specific gene expression. Genomics, 2002, 79(6): 785–792
- Tuziak SM, Volkoff H. A preliminary investigation of the role of melanin-concentrating hormone (MCH) and its receptors in appetite regulation of winter flounder (*Pseudopleuronectes americanus*). Molecular and Cellular Endocrinology, 2012, 348(1): 281–296
- Wang S, Behan J, O'Neill K, *et al.* Identification and pharmacological characterization of a novel human melaninconcentrating hormone receptor, mch-r2. Journal of Biological Chemistry, 2001, 276(37): 34664–34670

Molecular Characterization of *MCHR* and Its Corelation with Blind-Side Hypermelanosis in *Cynoglossus semilaevis*

SHI Xueying^{1,3}, LIU Xuezhou^{1,2}, SHI Ying⁴, XU Yongjiang^{1,2}, SHI Bao^{1,2}, WANG Bin^{1,2}, LI Bin^{1,3}

(1. Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071; 2. Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071; 3. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306; 4. Qingdao Extension Station of Fisheries Technology, Qingdao 266071)

Abstract The full-length cDNA of melanin concentration hormone receptor (MCHR) was isolated from the brain of Cynoglossus semilaevis using RACE (rapid amplification of cDNA ends) method. The spatial and temporal expression patterns of MCHR mRNA in different tissues were analyzed to link with the degree of pigmentation on the blind-side of fish by the quantitative real-time PCR. Results showed that C. semilaevis MCHR1 cDNA sequence was 1685 bp in length and contained a 642 bp of open reading frame encoding 359 amino acids. It shared 83.3% identity with Paralichthys olivaceus. Based on the phylogenetic analysis, C. semilaevis MCHR1 was clustered with the Pleuronectiformes, Cyprinodontiformes and Perciformes species. In addition, C. semilaevis MCHR2 cDNA sequence was 1626 bp in length and contained a 1044 bp of open reading frame encoding 347 amino acids. The identity was more than 90% homology to pleuronectiformes species. C. semilaevis MCHR2 was clustered with the pleuronectiformes and perciformes species based on the phylogenetic analysis. MCHR1 mRNA was mainly expressed in gill and MCHR2 mRNA was primarily expressed in the eye-side skin, followed by gonad. The spatial expression patterns of MCHR mRNA implied that MCHR regulates the physiology of C. semilaevis through endocrine, paracrine and autocrine pathways. Pituitary MCHR1 mRNA level significantly increased during the initial stage of blind-side pigmentation and peaked when fish had 50% pigmentation on the blind-side. By comparison, skin MCHR1 mRNA maintained at high levels during the pigmentation occurring on the blind-side of fish. Both pituitary and skin MCHR2 mRNA levels peaked when fish had about 10% blind-side pigmentation, then significantly decreased as the degree of pigmentation reduced. The results showed that the MCHR is directly or indirectly involved in the regulation of blind-side hypermelanosis in half-smooth tongue sole.

Key words *Cynoglossus semilaevis*; Melanin concentration hormone receptor; Gene cloning; Expression regulation; Hyperpigmentation on blind side

① Corresponding author: LIU Xuezhou, E-mail: liuxz@ysfri.ac.cn