渔业科学进展  2025, Vol. 46 Issue (1): 115-126  DOI: 10.19663/j.issn2095-9869.20231216001
0

引用本文 

林倩, 李政, 杨金龙, 马蕃, 梁箫. 贻贝肽对厚壳贻贝稚贝生长发育及微生物群落结构的影响[J]. 渔业科学进展, 2025, 46(1): 115-126. DOI: 10.19663/j.issn2095-9869.20231216001.
LIN Qian, LI Zheng, YANG Jinlong, MA Fan, LIANG Xiao. Effects of Mussel Peptides on Growth and Development and Microbial Community Structure of the Thick-Shelled Mussel Mytilus coruscus Plantigrades[J]. Progress in Fishery Sciences, 2025, 46(1): 115-126. DOI: 10.19663/j.issn2095-9869.20231216001.

基金项目

国家重点研发计划(2023YFD2401902; 2023YFE0115500; 2022YFE0204600)资助

作者简介

林倩,Email: m210100007@st.shou.edu.cn

通讯作者

杨金龙,教授,Email: jlyang@shou.edu.cn

文章历史

收稿日期:2023-12-16
收修改稿日期:2024-02-27
贻贝肽对厚壳贻贝稚贝生长发育及微生物群落结构的影响
林倩 1,2,3, 李政 1,2,3, 杨金龙 1,2,3, 马蕃 1,2,3, 梁箫 1,2,3     
1. 上海海洋大学水产与生命学院 科技部海洋生物科学国际联合研究中心 上海 201306;
2. 上海市水产动物良种创制与绿色养殖协同创新中心 上海 201306;
3. 中国-葡萄牙星海"一带一路"联合实验室 上海 200120
摘要:为探究海洋生物活性肽对厚壳贻贝(Mytilus coruscus)生长发育的影响,本研究以厚壳贻贝稚贝为实验对象,通过投喂不同浓度的贻贝肽(0、7、9、10、70和90 mg/L),测定壳长、壳高、湿重等指标,以确定最适贻贝肽浓度,并对投喂前后的稚贝微生物群落进行分析,实验周期为56 d。结果显示,相较于未投喂贻贝肽的对照组,投喂9 mg/L的贻贝肽显著促进稚贝生长,且壳长、壳高和湿重分别提升了27.37%、32.35%和115.49%;同时发现,高浓度贻贝肽(70 mg/L和90 mg/L)对厚壳贻贝稚贝产生了致死效应。通过16S rRNA基因扩增和测序对比分析了28 d和56 d贻贝肽投喂组与未投喂组的厚壳贻贝稚贝微生物组群落结构变化。研究结果显示,投喂9 mg/L贻贝肽改变了稚贝微生物群落结构组成,提高了拟杆菌门(Bacteroidota)和变形菌门(Proteobacteria)的丰度,降低了放线菌门(Actinobacteriota)的丰度;同时,属水平分析发现,贻贝肽投喂组有效增加了鲁杰氏菌属(Ruegeria)、黏着杆菌属(Tenacibaculum)、居海杆菌属(Maribacter)、栖砂杆菌属(Arenibacter)、十八碳杆菌属(Octadecabacter)和希瓦氏菌属(Shewanella)等有益菌的物种丰度,显著减少了红球菌属(Rhodococcus)、气单胞菌属(Aeromonas)等潜在致病菌的丰度。综上,贻贝肽能有效促进厚壳贻贝的稚贝生长发育,并且可以优化厚壳贻贝微生物群落结构,研究成果将为后续开展贻贝肽等海洋生物活性肽对贝类稚贝中间培育以及海水贝类养殖可持续发展提供基础和数据支撑。
关键词厚壳贻贝    生长    微生物    群落结构    贻贝肽    
Effects of Mussel Peptides on Growth and Development and Microbial Community Structure of the Thick-Shelled Mussel Mytilus coruscus Plantigrades
LIN Qian 1,2,3, LI Zheng 1,2,3, YANG Jinlong 1,2,3, MA Fan 1,2,3, LIANG Xiao 1,2,3     
1. International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
2. Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China;
3. China-Portugal Belt and Road Joint Laboratory on Space and Sea Technology Advanced Research, Shanghai 200120, China
Abstract: The thick-shelled mussel Mytilus coruscus belongs to Mollusca, Lanellibranchia, Anisomyaria, Mytilidae, and Mytilus. Due to its flavor and nutritional and high economic values, M. coruscus is a common commercial shellfish in the coastal area of Zhejiang and Fujian in China, and is an important cultured mussel species in China. With the increasing development of coastal areas and the changing habitat conditions, aquaculture industry of M. coruscus is facing problems such as slow growth of juvenile mussels, low meat production rate, and individual miniaturization of adult mussels, which affects the sustainable development of the mussel industry and economic income. Conversely, prebiotics are commonly used exogenous additives in aquaculture. Prebiotics help the organism to absorb nutrients by changing the morphology of the gastrointestinal tract and regulating the composition of the microbial community. They can promote the growth and development of aquatic organisms, enhance resistance to pathogenic bacteria, and improve the absorption and utilization rate of feed to increase the output of aquatic products. As a protein hydrolysate, mussel peptide is also a probiotic element with high nutritional value and multiple functions such as antimicrobial, antioxidant, and immune enhancement. In particular, low molecular weight mussel peptide has the function of anti-lipid peroxidation protective activity and scavenging of excess free radicals, which can be used as a natural antimicrobial food additive. In aquaculture, mussel peptides are considered to be natural active ingredients for treating infectious diseases in marine species. Till date, the relationship between mussel peptides and the growth and development of the thick-shelled mussel M. coruscus remains unclear. Therefore, the optimal concentration of mussel peptide for the potential application of mussel peptides in the M. coruscus aquaculture industry must be determined. In this study, we focused on the effects of mussel peptides on the growth and development of the thick-shelled mussel M. coruscus and on the structural composition of microbial communities. The aim was to provide a theoretical basis for green and efficient aquaculture of the thick-shelled mussel M. coruscus. Here, the thick-shell mussel plantigrades used in the experiment were provided by Donghai Mussel Technology Innovation Service Co., LTD., Shengsi County, Zhejiang Province, China. It was used in the experiment after 1 week of temporary cultivation at 18 ℃ and a salinity of 30. Before the bioassays, these mussel plantigrades were cultured in the lab at 18 ℃ and 30 for 7 d. Five feeding treatment groups and one non-feeding control group were set up in the experiment. The treatment groups were fed mussel peptides at concentrations of 7, 9, 10, 70 and 90 mg/L, and each group was set up with three replicates. On days 7, 14, 21, 28, 42, and 56; 50 plantigrades were randomly selected from different treatment groups for growth measurement including shell length, shell height, and wet body weight. In addition, samples of plantigrades from different treatment groups were collected on days 28 and 56 to analyze the change in microbial communities before and after feeding. The results showed that, compared with the control group, feeding 9 mg/L of mussel peptides could significantly promote plantigrade growth and the shell length, shell height, and wet body weight were increased by 27.37%, 32.35%, and 115.49%, respectively. However, the mussel peptide concentration was too high (70 mg/L and 90 mg/L), which could cause lethal effects on the thick-shelled mussel M. coruscus plantigrades. The microbiome of the thick-shelled mussel plantigrades in the 28-day and 56-day treatment and control groups was analyzed by 16S rRNA gene amplification and sequencing. The results of the study showed that feeding 9 mg/L mussel peptides could alter the structural composition of the thick-shelled mussel plantigrade microbial community, such as increase in the abundance of Bacteroidota and Proteobacteria, and decrease in the abundance of Actinobacteriota. Simultaneously, an increase was observed in the diversity of beneficial bacteria such as Ruegeria, Tenacibaculum, Maribacter, Arenibacter, Octadecabacter, and Shewanella and reduction in the potentially pathogenic bacteria such as Rhodococcus and Aeromonas. Therefore, the appropriate amount of mussel peptides is useful for promoting the growth and development of the thick-shelled mussel M. coruscus plantigrades and optimizing their microbial community structure. In summary, mussel peptides have potential prebiotic functions and have the advantage of easy absorption of small molecules. By changing and adjusting the structure composition of the microbial community, mussel peptides increase the relative abundance of probiotics and reduce the relative abundance of potential pathogenic bacteria in the mussel microbial community of thick-shell mussel plantigrades, and promotes the growth and development of thick-shell mussel plantigrades. The current findings provide a basis and data support for the subsequent cultivation of marine bioactive peptides such as mussel peptides for enhancing shellfish juvenile aquaculture and the sustainable development of marine shellfish aquaculture.
Key words: Mytilus coruscus    Growth    Microbe    Community composition    Mussel peptide    

2022年度,全国海水贻贝养殖产量为771 230 t,较2021年减少58 251 t,同比下降7.02% (农业农村部渔业渔政管理局等, 2023)。厚壳贻贝(Mytilus coruscus)是我国主要养殖贻贝品种之一,隶属于软体动物门(Mollusca)、瓣鳃纲(Lanellibranchia)、异柱目(Anisomyaria)、贻贝科(Mytilidae)、贻贝属(Mytilus) (周轩等, 2015),其肉质鲜美,营养丰富,经济价值高。目前,厚壳贻贝养殖产业正面临稚贝生长缓慢、成贝出肉率低和成贝个体小型化等问题,严重影响了经济和产业发展(王朝新, 2021)。

在水产养殖中,益生元是常用的外源添加剂。益生元通过改变胃肠道形态和调节微生物群落组成等方式帮助机体吸收营养物质(Abdel-Aziz et al, 2020),起到促进水生生物生长发育(Adhikari et al, 2017)、增强抗病原菌(Akhter et al, 2015)和提高饲料吸收利用率(Rohani et al, 2022)等作用,从而提高水产品产量(高鸣等, 2022)。贻贝肽作为一种蛋白质水解物,也属益生元,其营养价值高、安全健康,具有抗菌、抗氧化和增强免疫力等多重功能(Grienke et al, 2014),特别是低分子量的贻贝肽具有抗脂质过氧化保护活性和清除多余自由基的功能,可作为天然抗菌食物添加剂(Cho et al, 2004; Jung et al, 2007; Rajapakse et al, 2005)。在水产养殖中,贻贝肽被认为是治疗海洋物种传染病的天然活性成分(Balseiro et al, 2011)。

本研究以我国东部海域主要的养殖贝类厚壳贻贝(杨金龙等, 2021)为研究对象,开展了贻贝肽对其稚贝生长发育状态以及体内外微生物群落结构组成特征变化的研究,旨在为贻贝等贝类绿色高效养殖提供理论依据和技术支撑。

1 材料与方法 1.1 材料

实验所用厚壳贻贝稚贝由中国浙江省嵊泗县东海贻贝科技创新服务有限公司提供。选择壳长为(3.28±0.05) mm、壳高为(2.21±0.03) mm且大小规格相近的3 600只个体作为实验材料,在温度为18 ℃、盐度为30的条件下,暂养1周后用于实验。实验所用贻贝肽由大连深蓝肽科技研发有限公司提供。该贻贝肽由贻贝组织经蛋白酶水解得到,其物理性状为浅黄色粉末状,其分子量小于1 000 Da。

1.2 方法 1.2.1 贻贝肽投喂

实验设5个投喂处理组和1个未投喂对照组,处理组分别按7、9、10、70和90 mg/L的浓度投喂贻贝肽进行实验观察,每组设置3个重复。以青岛大扁藻(Tetraselmis helgolandica)和湛江等鞭金藻(Isochrysis zhanjiangensis)等体积混合作为培育稚贝的饵料,每日投饵2次(06:30和18:30),每日投饵量为(4.0×105~5×105) cells/mL。为保证贻贝肽暴露浓度,每日定时定量换水,每次换水后按实验浓度添加贻贝肽。

1.2.2 生长指标测量

在第7、14、21、28、42和56天随机抽取不同处理组50枚稚贝,进行生长指标测量。实验中,通过电子游标卡尺测量其壳高、壳长,用分析天平测量稚贝湿重;同时,记录不同处理组稚贝存活率,存活率(survival rate, SR, %)计算公式为:

$ \mathrm{SR}=100 \times N_2 / N_1 $

式中,N1N2分别为随机抽取厚壳贻贝稚贝100个和100个稚贝中存活的个数,并进行3个重复。

稚贝的壳高和壳长特定生长率(specific growth rate, SGR, %/d)计算公式为:

$ \mathrm{SGR}=(\operatorname{lnSL} 2-\operatorname{lnSL} 1) / t \times 100 \% $

式中,SL1和SL2分别为实验前稚贝的初始壳高(或壳长)和实验结束后最终壳高(或壳长),t为实验时间(d)。

1.2.3 样品采集和微生物扩增子测序

在第28和56天分别采集不同处理组的稚贝样品。采集样品时,使用灭菌镊子夹取稚贝,并放入1.5 mL无酶离心管中,通过灭菌海水冲洗管中稚贝,重复冲洗2~3次,弃掉液体仅留下管中稚贝,最后,将冲洗过的稚贝用液氮速冻存入–80 ℃冰箱中保存,待后续分析。根据生长指标分析结果,选取第28天的0 mg/L对照组和9 mg/L处理组、第56天的0 mg/L对照组和9 mg/L处理组共4个分组的样品进行微生物扩增子测序分析。采用CTAB法(Nobleryder, 中国)标准化操作提取样品总DNA (Bokulich et al, 2013),利用1%琼脂糖凝胶电泳(DDY-6C, 北京市六一仪器厂, 中国)和酶标仪(BIOTEK XPS, 美国)检测DNA的纯度和浓度。总DNA检验合格后,使用引物341F (CCTAYGGGRBGC ASCAG)和806R (GGACTACNN GGGTATCTAAT)进行PCR (T100, Bio-rad, 美国)产物获取和纯化以及16S rDNA V3~V4区测序文库构建。使用NEB Next® Ultra™ Ⅱ FS DNA PCR-free建库试剂盒(New England Biolabs),按照说明书构建基因文库,利用Qubit和Q-PCR定量检测基因文库构建质量,文库合格后,通过NovaSeq6000进行PE250上机测序。

1.2.4 生物信息分析

存活率数据以平均值±标准差(Mean±SD)表示。利用GraphPad Prism软件绘制生长指标柱状图。使用JMP统计软件进行差异性分析,P < 0.05为显著差异。扩增子测序原始数据经过拼接、质量过滤和嵌合体去除后,使用DADA2降噪后生成扩增子序列变体(ASV) (Callahan et al, 2016)。使用QIIME2 (Quantitative Insights into Microbial Ecology 2)中的classify-sklearn算法对每个ASV进行分类和物种注释,并计算α多样性指数和β多样性(Bokulich et al, 2018; Bolyen et al, 2019)。使用SVG函数绘制Perl中物种相对丰度的分布直方图。利用R语言绘制热图、韦恩图、主成分分析(PCA)以及进行MetaStat分析并绘图等。使用LEfSe软件进行分析绘制LEfSe数据图。为研究组间显著性差异的物种,本研究将不同分组间的物种相对丰度数据通过T-test方法得到假设检验的P值,再根据P值大小筛选组间显著性的差异物种。

2 结果 2.1 不同浓度贻贝肽喂养下厚壳贻贝稚贝存活率

表 1可见,10 mg/L贻贝肽处理组存活率从第21天开始下降,而7 mg/L和9 mg/L贻贝肽处理组成活率保持稳定。贻贝肽喂养56 d后,7 mg/L和9 mg/L贻贝肽处理组成活率高于10 mg/L贻贝肽处理组;同时,相比低浓度(≤10 mg/L)处理组,对照组存活率明显下降(P < 0.05)。70 mg/L和90 mg/L高浓度贻贝肽处理组稚贝均在14 d后死亡。因此,低浓度贻贝肽对厚壳贻贝稚贝具有提高存活率的作用,而高浓度贻贝肽则具有致死效应。

表 1 不同浓度贻贝肽喂养下厚壳贻贝稚贝的存活率/% Tab.1 Survival rate of Mytilus coruscus plantigrades fed with mussel peptides of different concentrations/%
2.2 不同浓度贻贝肽喂养下厚壳贻贝稚贝壳长及特定生长率

图 1A可见,随着稚贝中间培育时间的延长,低浓度贻贝肽处理组稚贝的壳长逐渐增加,且显著高于对照组(P < 0.05)。随着贻贝肽浓度的增加,稚贝壳长呈现先升高后降低的趋势,其中,投喂9 mg/L贻贝肽显著促进稚贝生长,56天后壳长提升了27.37%,而70 mg/L和90 mg/L高浓度贻贝肽处理组稚贝壳长并无显著增加,且稚贝死亡率较高。

图 1 不同浓度贻贝肽喂养下厚壳贻贝稚贝的壳长(A)及特定生长率(B) Fig.1 Shell length (A) and specific growth rate (SGR) (B) in the thick-shelled mussel M. coruscus plantigrades fed with mussel peptides of different concentrations 柱子标有不同小写字母表示组间有显著性差异(P < 0.05),标有相同小写字母表示组间无显著性差异(P > 0.05)。下同。 Columns with different letters are significantly different at the 0.05 probability level, and the columns with the same letter are not significantly different. The same below.

图 1B可见,实验结束时,低浓度贻贝肽处理组稚贝壳长特定生长率均显著高于对照组(P < 0.05),而高浓度贻贝肽处理组不仅无法促进稚贝壳长增加,反而导致稚贝全部死亡。

2.3 不同浓度贻贝肽喂养下厚壳贻贝稚贝壳高及其特定生长率

图 2A可见,随着稚贝养殖时间的延长,低浓度贻贝肽处理组稚贝的壳高逐渐增加,且显著高于对照组(P < 0.05)。随着贻贝肽浓度的增加,稚贝壳高呈现先升高后降低的趋势,其中投喂9 mg/L的贻贝肽显著促进稚贝生长,56 d后壳高提升了32.35%,而70 mg/L和90 mg/L高浓度贻贝肽处理组稚贝壳高并没有显著增加,且稚贝死亡率较高。

图 2 不同浓度贻贝肽喂养下厚壳贻贝稚贝的壳高(A)及特定生长率(B) Fig.2 Shell height (A)and specific growth rate (SGR) (B) in shell height of the thick-shelled mussel M. coruscus plantigrades fed with mussel peptides of different concentrations

图 2B可见,实验结束时,低浓度贻贝肽处理组稚贝壳高特定生长率均显著高于对照组(P < 0.05),而高浓度贻贝肽处理组并不能促进稚贝壳高增加。

2.4 不同浓度贻贝肽喂养下厚壳贻贝稚贝湿重

图 3可见,随着稚贝养殖时间的延长,低浓度贻贝肽处理组稚贝的湿重逐渐增加,且显著高于对照组(P < 0.05)。随着贻贝肽浓度的增加,稚贝湿重呈现先升高后降低的趋势,其中投喂9 mg/L贻贝肽显著促进稚贝生长,56 d后湿重提升了115.49%;而70 mg/L和90 mg/L高浓度贻贝肽处理组稚贝的湿重并未显著增加,且稚贝死亡率较高。

图 3 不同浓度贻贝肽喂养下厚壳贻贝稚贝的湿重 Fig.3 Wet body weight of the thick-shelled mussel M. coruscus plantigrades fed with mussel peptides of different concentrations
2.5 微生物群落组成 2.5.1 扩增子序列变体(ASVs)和多样性指数

28 d对照组(CG.28 d)、56 d对照组(CG.56 d)、28 d的9 mg/L贻贝肽处理组(EG.28 d)和56 d的9 mg/L贻贝肽处理组(EG.56 d)共4组的24个样本平均产生69 593条高质量序列(SD=8 271.03)。

图 4A所示,CG.28 d、EG.28 d、CG.56 d和EG.56 d的ASVs数量分别为984、854、1 117和902。这4个组共享316个ASV。EG.28 d (538)和EG.56 d (586)的独特ASV数量均低于CG.28 d (668)和CG.56 d (801),表明贻贝肽对厚壳贻贝稚贝微生物群落组成具有调节作用。

图 4 不同分组微生物群的特征序列(ASVs)的维恩图(A)和主成分分析图(B) Fig.4 Venn diagram (A) and PCA plots (B) of microbial communities of different groups

基于ASV,通过主成分分析(PCA)来评估各组之间微生物群落的差异(图 4B)。PC1 (8.99%)和PC2 (8.47%)的总交替率为17.46%。添加贻贝肽的28 d和56 d的处理组均与对照组差异显著,表明贻贝肽对厚壳贻贝稚贝微生物群落的组成具有调节作用。

表 2所示,CG.56 d的Shannon和Simpson指数显著高于其他处理组(P < 0.05),EG.56 d组的Shannon和Simpson指数也高于CG.28 d组和EG.28 d组的Shannon指数,存在显著差异(P < 0.05),且CG.56 d与EG.56 d的Shannon和Simpson指数也存在显著差异(P < 0.05),表明贻贝肽可以降低厚壳贻贝稚贝微生物群落的多样性,且在56 d后才发挥作用。

表 2 处理组和对照组微生物群落结构α多样性分析 Tab.2 Analysis of alpha diversity of microbial community in the experimental group and control group
2.5.2 微生物群落物种组成

图 5A可见,门水平的稚贝微生物群落结构主要由变形菌门(Proteobacteria)、蓝细菌门(Cyanobacteria)、拟杆菌门(Bacteroidota)、放线菌门(Actinobacteriota)、脱硫菌门(Desulfobacterota)、蛭弧菌门(Bdellovibrionota)、厚壁菌门(Firmicutes)等组成。相比对照组,添加贻贝肽组优势门相对丰度出现明显变化;添加贻贝肽组其拟杆菌门和变形菌门的相对丰度高于对照组,而放线菌门相对丰度则低于对照组。

图 5 微生物群落多样性 Fig.5 Microbial community diversity A:基于门水平的细菌多样性;B:基于属水平的细菌多样性。 A: Bacterial diversity at phylum; B: Bacterial diversity at genus.

图 5B可知,在已鉴定的445个属中,某些细菌类群的相对丰度在不同养殖期间存在明显差异。例如,相比对照组,添加贻贝肽组中的鲁杰氏菌属(Ruegeria)、黏着杆菌属(Tenacibaculum)、十八杆菌属(Octadecabacter)和海洋阿伦斯氏菌属(Ahrensia)等菌属相对丰度较高,而红球菌属(Rhodococcus)和线状微球菌属(Filomicrobium)相对丰度较低。

2.5.3 不同分组之间的具体微生物学分析 2.5.3.1 线性判别分析(LEfSe)

为了获得不同分组之间的特征微生物,进行了LEfSe分析。图 6分别显示了不同时间的线性判别分析(LDA)值得分大于4的不同分组的特定微生物。由图 6A可见,EG.28 d处理组中主要是根瘤菌科(Rhizobiaceae)的海洋阿伦斯氏菌属和黄杆菌科(Flavobacteriaceae)的居海杆菌属(Maribacter)等微生物种类富集;在图 6B中EG.56 d处理组主要是鲁杰氏菌属、十八杆菌属、黏着杆菌属等微生物种类富集。

图 6 28 d (A)和56 d (B)微生物群落的LDA分布柱状图 Fig.6 Histogram of the distribution of linear discriminant analysis scores of microbial communities after fed by 28 d (A) and 56 d (B)
2.5.3.2 组间物种差异分析(T-test)

图 7A可见,相比对照组,添加9 mg/L贻贝肽的EG.28 d组的鲁杰氏菌属、海洋阿伦斯氏菌属、居海杆菌属、黏着杆菌属、科维尔氏菌属(Colwellia)、列文氏菌属(Lewinella)、深海短杆菌属(Thalassotalea)和栖砂杆菌属(Arenibacter)等类群的相对丰度显著升高;而红球菌属、线状微菌属、甲基海洋杆菌属(Methyloceanibacter)、弧菌属(Vibrio)、副球菌属(Paracoccus)、气单胞菌属(Aeromonas)和亚硫酸盐杆菌属(Sulfitobacter)等类群的相对丰度显著降低。由图 7B可见:与对照组相比,添加9 mg/L贻贝肽的EG.56 d组中的鲁杰氏菌属、海洋阿伦斯氏菌属、十八碳杆菌属、居海杆菌属、亚硫酸盐杆菌属、黏着杆菌属、科维尔氏菌属、烂泥单胞菌属(Lutimonas)、深海短杆菌属、希瓦氏菌属(Shewanella)、交替单胞菌属(Alteromonas)和假暗棕色杆菌属(Pseudophaeobacter)等类群的相对丰度显著升高;而萤光杆菌属(Ilumatobacter)、红球菌属、线状微菌属、甲基海洋杆菌属、解环菌属(Cycloclasticus)、HTCC5015、诺卡氏菌属(Nocardioides)、海沙胞菌属(Arenicella)和副球菌属等类群的相对丰度显著降低。

图 7 属水平微生物群落的T-test组间物种差异分析 Fig.7 T-test analysis of microbial communities at the genus level for species differences between groups (A) 28 d对照组与28 d实验组;(B) 56 d对照组与56 d实验组。**表示差异极显著(P < 0.01);*表示差异显著(0.01 < P < 0.05)。 (A) CG.28 d and EG.28 d groups; (B) CG.56 d and EG.56 d groups. ** indicates highly significant difference (P < 0.01); * indicates significant difference (0.01 < P < 0.05).
3 讨论 3.1 贻贝肽促进厚壳贻贝生长发育

研究已经证实,贻贝粉能够促进凡纳对虾(Penaeus vannamei)的生长(Claessens et al, 2023)。另外,饲料中添加7.5 mg/kg抗菌肽APSH-07也对鲍鱼(Haliotis discus hannai)的生长性能产生积极影响(Chen et al, 2020)。本研究证实了低浓度贻贝肽同样能够显著促进厚壳贻贝稚贝的生长,且提高了其存活率。不同蛋白质水平的饲料会对克氏原螯虾(Procambarus clarkii)的生长性能产生影响(郭赛等, 2023);锦绣龙虾(Panulirus ornatus)摄食高蛋白、高脂颗粒饲料后生长良好,但摄食新鲜解冻的绿唇贻贝(Perna canaliculus)的软体组织对生长却没有促进作用(Barclay et al, 2006; Smith et al, 2005)。由此可见,蛋白质大分子在动物体内难以消化,其并未充分发挥作用就被排出体外。因此,易消化吸收的小分子贻贝肽在促进动物生长发育方面具有良好的研究和产业价值。

此外,贻贝肽营养组成中的C2H2锌指蛋白、ADP核糖基化因子4、α微管蛋白白等组分是其发挥功效的重要原因之一(Nankervis et al, 2022)。C2H2锌指蛋白,参与生长发育相关基因的调控、转录和表达(Seetharam et al, 2013)。ARF4是哺乳动物ADP-核糖基化因子(ARF)家族中的Ⅱ类蛋白,其在无脊椎动物中的作用尚不明确。以往研究发现,ARF能通过与细胞生长调控蛋白结合来自由激活生长素从而响应基因的表达,进而促进生长发育(Yoon et al, 2010)。α微管蛋白可以调节神经元的生长和再生,促进神经系统的发育(Gloster et al, 1994)。因此推测,贻贝肽促进稚贝生长发育可能是因为其组分中存在的生长发育相关的因子在发挥作用。然而,这些蛋白与基因之间的相互作用关系以及它们在生物体中发挥作用的具体机制仍需要进一步深入的研究。

3.2 贻贝肽改变厚壳贻贝微生物群落结构

海洋无脊椎动物的微生物群落组成对其生长发育具有重要作用(Ghanbari et al, 2015)。肠道微生物群落可以将原本无法消化的大分子化合物转化为可吸收利用的小分子代谢物(Danckert et al, 2021),为海洋无脊椎动物提供丰富的消化酶并促进新陈代谢(Clements et al, 2014),同时,还可以通过优化群落中的有益菌和潜在致病菌的菌群结构,为宿主提供健康保障(Ghanbari et al, 2015; Wang et al, 2018)。然而,目前贻贝的发育过程与微生物群落的关系尚不明确。

以往研究发现,水生生物的微生物群落结构与其摄食的不同饲料之间存在显著的相关性(Simon et al, 2020)。本研究发现,贻贝肽显著改变了厚壳贻贝的微生物群落。PCA分析表明,贻贝肽的添加使厚壳贻贝微生物群落呈现差异。然而,稚贝养殖28 d后,CG.28 d和EG.28 d的微生物群落组成相似;但在稚贝养殖56 d后,CG.56 d与EG.56 d的微生物群落组成存在较大差异。这表明贻贝肽对稚贝微生物群落结构的改变是在28 d后才发挥作用。

研究表明,健康的贻贝以变形菌门为主(Cheikh et al, 2022)。同样,变形菌门也是本研究中的主要类群。添加贻贝肽后,拟杆菌门和变形菌门的丰度高于对照组,放线菌门的丰度则低于对照组。拟杆菌门可帮助宿主降解碳水化合物、蛋白质和大量宿主本身难以消化的其他物质,为宿主提供能量,促进生长,对生物体的健康平衡具有积极作用(刘艳霞等, 2023)。拟杆菌门中有许多种属能够作为益生菌用在水产养殖中发挥积极作用(Zhou et al, 2018)。肠道菌群组成结构的不平衡或不稳定通常会导致变形菌门的相对丰度的减少,例如,受病原体感染或生长缓慢的对虾肠道中变形菌门的数量通常较少(Holt et al, 2021)。

在添加贻贝肽的处理组中观察到有益菌属富集。黏着杆菌属和鲁杰氏菌属已被证实是厚壳贻贝生长发育过程中的核心物种,其中,黏着杆菌属形成的生物被膜能够诱导厚壳贻贝稚贝附着并且其诱导活性较高(杨娜等, 2017)。鲁杰氏菌属不仅可以对抗多种海洋病原体并限制其生长(Prol García et al, 2014Sonnenschein et al, 2017),而且能够合成对贻贝生长具有重要影响的维生素B12 (Shiau et al, 1993)。亚硫酸盐杆菌属除了具有抗病毒和抗细菌的作用外(Long et al, 2011; Sharifah et al, 2012),还能产生维生素B1、B7和B12以及抗生素,对宿主的健康起到积极作用(Cheng et al, 2023)。科维尔氏菌属能够降解一些有机化合物(Krolicka et al, 2019),是地中海贻贝(Mytilus galloprovincialis)受精卵和幼虫阶段最丰富的类群。这表明科维尔氏菌属伴随地中海贻贝的生长发育并为其提供营养和保护(Balbi et al, 2020)。有研究指出,科维尔氏菌属与太平洋牡蛎(Crassostrea gigas)的抗病性有关(Clerissi et al, 2020)。栖砂杆菌属的一些种类可产生具有抗生素活性的苯乙胺衍生物(Chen et al, 2013)。相对丰度较高的烂泥单胞菌属能促进凡纳对虾的生长(Tang et al, 2017)。居海杆菌属中的一些类群具有较高相对丰度的与碳水化合物代谢相关的基因,居海杆菌属相对丰度的升高标志着水质得到改善(Xie et al, 2017)。希瓦氏菌属不仅与鱼类的营养和抗病相关(Díaz-Rosales et al, 2009; Zadeh et al, 2010),而且其形成的生物被膜具有诱导厚壳贻贝幼虫附着变态的作用(Yang et al, 2013)。假暗棕色杆菌属可以作为病原微生物的潜在拮抗剂(Feng et al, 2021),用于对抗病原体,保护海参(Apostichopus japonicus)肠道(Zhang et al, 2023),因此,假暗棕色杆菌属具有益生菌特性(Liang et al, 2021)。

贻贝肽可以降低稚贝微生物群落中致病菌属的相对丰度。例如,本研究中相对丰度下降的红球菌属是人类和动物的致病病原体(Prescott, 1991),此外,气单胞菌属中大多数细菌种类被认为是广泛存在于水产养殖中的潜在传染性病原体,对鱼类、双壳贝类和人类具有致病性(Awan et al, 2018; Maki et al, 1998)。因此,贻贝肽可以通过提高有益菌相对丰度和降低致病菌相对丰度的方式来促进厚壳贻贝稚贝的生长发育。

综上,贻贝肽具有益生元的作用。以小分子易吸收的优势为前提,贻贝肽增加了厚壳贻贝稚贝微生物群落中鲁杰氏菌属、黏着杆菌属、居海杆菌属、栖砂杆菌属、十八碳杆菌属、亚硫酸盐杆菌属和希瓦氏菌属等益生菌的相对丰度,减少了红球菌属和气单胞菌属等潜在致病菌的相对丰度,通过优化厚壳贻贝微生物群落结构,从而促进厚壳贻贝稚贝生长发育。

参考文献
ABDEL-AZIZ M, BESSAT M, FADEL A, et al. Responses of dietary supplementation of probiotic effective microorganisms (EMs) in Oreochromis niloticus on growth, hematological, intestinal histopathological, and antiparasitic activities. Aquaculture International, 2020, 28: 947-963 DOI:10.1007/s10499-019-00505-z
ADHIKARI P A, KIM W K. Overview of prebiotics and probiotics: Focus on performance, gut health and immunity-A review. Annals of Animal Science, 2017, 17(4): 949-966 DOI:10.1515/aoas-2016-0092
AKHTER N, WU B, MEMON A M, et al. Probiotics and prebiotics associated with aquaculture: A review. Fish and Shellfish Immunology, 2015, 45(2): 733-741 DOI:10.1016/j.fsi.2015.05.038
AWAN F, DONG Y H, WANG N N, et al. The fight for invincibility: Environmental stress response mechanisms and Aeromonas hydrophila. Microbial Pathogenesis, 2018, 116: 135-145 DOI:10.1016/j.micpath.2018.01.023
BALBI T, VEZZULLI L, LASA A, et al. Insight into the microbial communities associated with first larval stages of Mytilus galloprovincialis: Possible interference by estrogenic compounds. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 2020, 237: 108833 DOI:10.1016/j.cbpc.2020.108833
BALSEIRO P, FALCÓ A, ROMERO A, et al. Mytilus galloprovincialis myticin C: A chemotactic molecule with antiviral activity and immunoregulatory properties. PLoS One, 2011, 6(8): e23140 DOI:10.1371/journal.pone.0023140
BARCLAY M C, IRVIN S J, WILLIAMS K C, et al. Comparison of diets for the tropical spiny lobster Panulirus ornatus: Astaxanthin-supplemented feeds and mussel flesh. Aquaculture Nutrition, 2006, 12(2): 117-125 DOI:10.1111/j.1365-2095.2006.00390.x
BOKULICH N A, KAEHLER B D, RIDEOUT J R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome, 2018, 6(1): 1-17 DOI:10.1186/s40168-017-0383-2
BOKULICH N A, SUBRAMANIAN S, FAITH J J, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 2013, 10(1): 57-59 DOI:10.1038/nmeth.2276
BOLYEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019, 37(8): 852-857 DOI:10.1038/s41587-019-0209-9
Bureau of Fisheries, Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. China fishery statistical yearbook 2023. Beijing: China Agriculture Press, 2023 [农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2023中国渔业统计年鉴. 北京: 中国农业出版社, 2023]
CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 2016, 13(7): 581-583 DOI:10.1038/nmeth.3869
CHEIKH Y B, TRAVERS M A. Vibrio splendidus infection induces dysbiosis in the blue mussel and favors pathobiontic bacteria. Microbiological Research, 2022, 261: 127078 DOI:10.1016/j.micres.2022.127078
CHEN F Y, LI X X, WU Y J, et al. Influences of dietary antimicrobial peptide APSH-07 on the growth performance, immune response and vibriosis resistance of abalone Haliotis discus hannai Ino. Aquaculture Nutrition, 2020, 26(5): 1736-1747 DOI:10.1111/anu.13124
CHEN Y P, TANG J S, TANG X X, et al. New phenethylamine derivatives from Arenibacter nanhaiticus sp. nov. NH36AT and their antimicrobial activity. Journal of Antibiotics, 2013, 66(11): 655-661 DOI:10.1038/ja.2013.65
CHENG J G, MEISTERTZHEIM A L, LEISTENSCHNEIDER D, et al. Impacts of microplastics and the associated plastisphere on physiological, biochemical, genetic expression and gut microbiota of the filter-feeder amphioxus. Environment International, 2023, 172: 107750 DOI:10.1016/j.envint.2023.107750
CHO M J, UNKLESBAY N, HSIEH F H, et al. Hydrophobicity of bitter peptides from soy protein hydrolysates. Journal of Agricultural and Food Chemistry, 2004, 52(19): 5895-5901 DOI:10.1021/jf0495035
CLAESSENS S, ARAGÃO C, HOFFLING F B, et al. Mussel meal as a promotor of growth performance for the whiteleg shrimp (Litopenaeus vannamei). Journal of Marine Science and Engineering, 2023, 11: 1670 DOI:10.3390/jmse11091670
CLEMENTS K D, ANGERT E R, MONTGOMERY W L, et al. Intestinal microbiota in fishes: What's known and what's not. Molecular Ecology, 2014, 23(8): 1891-1898 DOI:10.1111/mec.12699
CLERISSI C, DE LORGERIL J, PETTON B, et al. Microbiota composition and evenness predict survival rate of oysters confronted to Pacific oyster mortality syndrome. Frontiers in Microbiology, 2020, 11: 311 DOI:10.3389/fmicb.2020.00311
DANCKERT N P, WILSON N, PHAN-THIEN K Y, et al. The intestinal microbiome of Australian abalone, Haliotis laevigata and Haliotis laevigata× Haliotis rubra, over a 1-year period in aquaculture. Aquaculture, 2021, 534: 736245 DOI:10.1016/j.aquaculture.2020.736245
DÍAZ-ROSALES P, ARIJO S, CHABRILLÓN M, et al. Effects of two closely related probiotics on respiratory burst activity of Senegalese sole (Solea senegalensis, Kaup) phagocytes, and protection against Photobacterium damselae subsp. piscicida. Aquaculture, 2009, 293(1/2): 16-21
FENG S B, ZENG Y H, CAI Z H, et al. Polystyrene microplastics alter the intestinal microbiota function and the hepatic metabolism status in marine medaka (Oryzias melastigma). Science of the Total Environment, 2021, 759: 143558 DOI:10.1016/j.scitotenv.2020.143558
GAO M, CHEN J, YAO Z. Green development of freshwater aquaculture in China: Improving quality and increasing efficiency and the future path. Journal of Huazhong Agricultural University, 2022, 41(3): 96-106 [高鸣, 陈洁, 姚志. 中国淡水养殖业绿色发展: 提质增效与未来路径. 华中农业大学学报, 2022, 41(3): 96-106]
GHANBARI M, KNEIFEL W, DOMIG K J. A new view of the fish gut microbiome: Advances from next-generation sequencing. Aquaculture, 2015, 448: 464-475 DOI:10.1016/j.aquaculture.2015.06.033
GLOSTER A, WU W, SPEELMAN A, et al. The T alpha 1 alpha-tubulin promoter specifies gene expression as a function of neuronal growth and regeneration in transgenic mice. Journal of Neuroscience, 1994, 14(12): 7319-7330 DOI:10.1523/JNEUROSCI.14-12-07319.1994
GRIENKE U, SILKE J, TASDEMIR D. Bioactive compounds from marine mussels and their effects on human health. Food Chemistry, 2014, 142: 48-60 DOI:10.1016/j.foodchem.2013.07.027
GUO S, CHEN X R, YUAN H W, et al. Effects of dietary protein levels and processing techniques on the growth performance, digestibility, and antioxidant capacity of red swamp crayfish (Procambarus clarkii). Progress in Fishery Sciences, 2023, 44(5): 90-103 [郭赛, 陈效儒, 袁汉文, 等. 饲料蛋白质水平和加工工艺对克氏原螯虾生长性能、消化力和抗氧化性能的影响. 渔业科学进展, 2023, 44(5): 90-103]
HOLT C C, BASS D, STENTIFORD G D, et al. Understanding the role of the shrimp gut microbiome in health and disease. Journal of Invertebrate Pathology, 2021, 186(Suppl C): 107387
JUNG W K, QIAN Z J, LEE S H, et al. Free radical scavenging activity of a novel antioxidative peptide isolated from in vitro gastrointestinal digests of Mytilus coruscus. Journal of Medicinal Food, 2007, 10(1): 197-202 DOI:10.1089/jmf.2006.101
KROLICKA A, BOCCADORO C, NILSEN M M, et al. Identification of microbial key-indicators of oil contamination at sea through tracking of oil biotransformation: An Arctic field and laboratory study. Science of the Total Environment, 2019, 696: 133715 DOI:10.1016/j.scitotenv.2019.133715
LIANG J Y, LUO W W, YU K F, et al. Multi-omics revealing the response patterns of symbiotic microorganisms and host metabolism in scleractinian coral Pavona minuta to temperature stresses. Metabolites, 2021, 12(1): 18 DOI:10.3390/metabo12010018
LIU Y X, ZHANG J J, ZHOU Y Q, et al. Characteristics and correlation analysis of bacterial community structure in the gut of Apostichopus japonicus and culture water in suspension cages from north China. Progress in Fishery Sciences, 2023, 44(6): 190-202 [刘艳霞, 张靖婧, 周叶青, 等. 北方吊笼养殖刺参肠道及其养殖环境菌群结构特征及其相关性分析. 渔业科学进展, 2023, 44(6): 190-202]
LONG C, LU X L, GAO Y, et al. Description of a Sulfitobacter strain and its extracellular cyclodipeptides. Evidence-Based Complementary and Alternative Medicine, 2011, 2011(1): 1-6
MAKI J S, PATEL G, MITCHELL R. Experimental pathogenicity of Aeromonas spp. for the zebra mussel, Dreissena polymorpha. Current Microbiology, 1998, 36: 19-23
NANKERVIS L, JONES C. Recent advances and future directions in practical diet formulation and adoption in tropical Palinurid lobster aquaculture. Reviews in Aquaculture, 2022, 14(4): 1830-1842
PRESCOTT J F. Rhodococcus equi: An animal and human pathogen. Clinical Microbiology Reviews, 1991, 4(1): 20-34
PROL GARCÍA M J, D´ALVISE P W, RYGAARD A M, et al. Biofilm formation is not a prerequisite for production of the antibacterial compound tropodithietic acid in Phaeobacter inhibens DSM17395. Journal of Applied Microbiology, 2014, 117(6): 1592-1600
RAJAPAKSE N, MENDIS E, JUNG W K, et al. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Research International, 2005, 38(2): 175-182
ROHANI M F, ISLAM S M, HOSSAIN M K, et al. Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. Fish and Shellfish Immunology, 2022, 120: 569-589
SEETHARAM A, STUART G W. A study on the distribution of 37 well conserved families of C2H2 zinc finger genes in eukaryotes. BMC Genomics, 2013, 14: 420
SHARIFAH E N, EGUCHI M. Benefits of live phytoplankton, Chlorella vulgaris, as a biocontrol agent against fish pathogen Vibrio anguillarum. Fisheries Science, 2012, 78: 367-373
SHIAU S Y, LUNG C Q. Estimation of the vitamin B12 requirement of the grass shrimp, Penaeus monodon. Aquaculture, 1993, 117(1/2): 157-163
SIMON C J, TRUONG H H, NOBLE T H, et al. Microbial biomass, marine invertebrate meals and feed restriction influence the biological and gut microbiota response of shrimp Penaeus monodon. Aquaculture, 2020, 520: 734679
SMITH D M, WILLIAMS K C, IRVIN S J. Response of the tropical spiny lobster Panulirus ornatus to protein content of pelleted feed and to a diet of mussel flesh. Aquaculture Nutrition, 2005, 11(3): 209-217
SONNENSCHEIN E C, NIELSEN K F, D'ALVISE P, et al. Global occurrence and heterogeneity of the Roseobacter- clade species Ruegeria mobilis. The ISME Journal, 2017, 11(2): 569-583
TANG Y, LIU W L, SONG X L, et al. Effects of dietary with Bacillus cereus on the growth rate and intestinal microflora of Litopenaeus vannamei. Journal of Fisheries of China, 2017, 41(5): 766-774
WANG A R, RAN C, RINGØ E, et al. Progress in fish gastrointestinal microbiota research. Reviews in Aquaculture, 2018, 10(3): 626-640
WANG C X. Large-scale Breeding Technology for Mytilus coruscus Seedlings. Modern Agricultural Technology, 2021(17): 208-210 [王朝新. 厚壳贻贝苗种规模化繁育技术. 现代农业科技, 2021(17): 208-210]
XIE X F, HE Z L, HU X J, et al. Large-scale seaweed cultivation diverges water and sediment microbial communities in the coast of Nan'ao Island, South China Sea. Science of the Total Environment, 2017, 598: 97-108
YANG J L, DUAN Z H, DING W Y, et al. Effects of VB7 and VB12 on biofilm formation and larval metamorphosis of the mussel Mytilus coruscus. Progress in Fishery Sciences, 2021, 42(5): 113-123 [杨金龙, 段志鸿, 丁文扬, 等. 维生素B7和B12对细菌生物被膜形成及厚壳贻贝幼虫变态的影响. 渔业科学进展, 2021, 42(5): 113-123]
YANG J L, SHEN P J, LIANG X, et al. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. Biofouling, 2013, 29(3): 247-259
YANG N, LIANG X, PENG L H, et al. Effects of gut bacteria on the settlement of spats of Mytilus coruscus. Marine Sciences, 2017, 41(11): 45-54 [杨娜, 梁箫, 彭莉华, 等. 肠道细菌对厚壳贻贝稚贝附着的作用研究. 海洋科学, 2017, 41(11): 45-54]
YOON E K, YANG J H, LIM J, et al. Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Research, 2010, 38(4): 1382-1391
ZADEH S S, SAAD C R, CHRISTIANUS A, et al. Assessment of growth condition for a candidate probiotic, Shewanella algae, isolated from digestive system of a healthy juvenile Penaeus monodon. Aquaculture International, 2010, 18: 1017-1026
ZHANG S Y, RU X S, ZHANG L B, et al. Effects of a high-fat diet on intestinal and gonadal metabolism in female and male sea cucumber Apostichopus japonicus. Biology, 2023, 12(2): 212
ZHOU S X, XIA Y, ZHU C M, et al. Isolation of marine Bacillus sp. with antagonistic and organic-substances-degrading activities and its potential application as a fish probiotic. Marine Drugs, 2018, 16(6): 196
ZHOU X, GUO X P, CHEN Y R, et al. Effects of bacterial biofilms formed on low surface wettability on settlement of plantigrades of the mussel Mytilus coruscus. Journal of Dalian Ocean University, 2015, 30(1): 30-35 [周轩, 郭行磐, 陈芋如, 等. 低湿度表面的海洋附着细菌对厚壳贻贝附着的影响. 大连海洋大学学报, 2015, 30(1): 30-35]