渔业科学进展  2025, Vol. 46 Issue (1): 71-81  DOI: 10.19663/j.issn2095-9869.20240307001
0

引用本文 

张现红, 李文洋, 刘宝良, 费凡, 高小强, 郭冉, 曹淑全, 朱智文. 密度胁迫对珍珠龙胆石斑鱼生长和生理的影响[J]. 渔业科学进展, 2025, 46(1): 71-81. DOI: 10.19663/j.issn2095-9869.20240307001.
ZHANG Xianhong, LI Wenyang, LIU Baoliang, FEI Fan, GAO Xiaoqiang, GUO Ran, CAO Shuquan, ZHU Zhiwen. Effects of Density Stress on Growth and Physiology of Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂[J]. Progress in Fishery Sciences, 2025, 46(1): 71-81. DOI: 10.19663/j.issn2095-9869.20240307001.

基金项目

国家重点研发计划(2022YFD2001704)、泰山产业领军人才工程、现代农业产业技术体系专项(CARS-47-G24)和中国水产科学研究院基本科研业务费(2023TD53)共同资助

作者简介

张现红,Email: qd2023zxh@163.com

通讯作者

刘宝良,研究员,Email: liubl@ysfri.ac.cn

文章历史

收稿日期:2024-03-07
收修改稿日期:2024-04-03
密度胁迫对珍珠龙胆石斑鱼生长和生理的影响
张现红 1,2, 李文洋 2, 刘宝良 2, 费凡 2, 高小强 2, 郭冉 1, 曹淑全 2, 朱智文 2     
1. 河北农业大学海洋学院 河北 秦皇岛 066000;
2. 海水养殖生物育种与可持续产出全国重点实验室 中国水产科学研究院黄海水产研究所 山东 青岛 266071
摘要:养殖密度是影响工厂化循环水养殖的重要因素之一,为探究密度胁迫对珍珠龙胆石斑鱼(Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂)幼鱼生长、消化代谢酶活性、抗氧化酶活性和下丘脑-垂体-肾间组织(HPI)轴相关激素水平及基因表达的影响,实验选取1 800尾规格一致、体格健康的珍珠龙胆石斑鱼,随机分为3个密度梯度:低密度100尾[(3.14±0.13) kg/m3, LD]、中密度200尾[(6.31±0.13) kg/m3, MD]和高密度300尾[(9.56±0.24) kg/m3, HD]进行实验。研究表明,HD组特定增长率、肥满度及存活率显著低于其他各组(P < 0.05);饵料系数和变异系数随密度的升高显著上升(P < 0.05);HD组抗氧化酶和代谢酶活性显著高于其他各组(P < 0.05),而消化酶活性显著低于其他各组(P < 0.05);HD组HPI轴相关激素水平显著高于其他各组(P < 0.05),HPI轴相关基因(crhr1nr3c1nr3c2)的表达量随密度的升高显著上调(P < 0.05),crh-bp表达量则相反(P < 0.05)。本研究结果可为深入认识密度胁迫对珍珠龙胆石斑鱼生长、消化代谢、氧化应激及内分泌的影响提供科学依据,为实际生产过程中珍珠龙胆石斑鱼幼鱼养殖密度的设定提供理论参考。
关键词珍珠龙胆石斑鱼    养殖密度    氧化应激    消化代谢    HPI轴    
Effects of Density Stress on Growth and Physiology of Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂
ZHANG Xianhong 1,2, LI Wenyang 2, LIU Baoliang 2, FEI Fan 2, GAO Xiaoqiang 2, GUO Ran 1, CAO Shuquan 2, ZHU Zhiwen 2     
1. College of Oceanography, Hebei Agricultural University, Qinhuangdao 066000, China;
2. State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
Abstract: The pearl gentian grouper (Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂) is the main cultured species of marine fish in factory recirculating aquaculture system (RAS). High density presents the main characteristic of intensive farming model represented by RAS, and density stress is a fundamental factors affecting fish welfare. Density stress causes a series of changes in fish growth performance, digestive and metabolic capacity, oxidative stress states, and endocrine homeostasis. However, research on how the pearl gentian grouper copes with density stress, and the effects of density stress on the growth, digestion, metabolism, oxidative stress, and endocrine production requires further research. Seeking a suitable stocking density can improve the culture efficiency of the pearl gentian grouper and avoid culture risks. Selecting an appropriate stocking density is an important problem to be solved in the factory recirculating aquaculture model. Therefore, this study investigated the changes of growth performance, digestive and metabolic capacity, oxidative stress, and Hypothalamus - Pituitary - Interrenal (HPI) axis related parameters of pearl gentian grouper under different density conditions. Three density gradient groups were set: low-density (LD), medium-density (MD), and high-density (HD). In the LD, MD, and HD groups, 100, 200, and 300 pearl gentian groupers were added per barrel with a density of (3.14±0.13), (6.31±0.13), and (9.56±0.24) kg/m3, respectively. The three experiments were performed in parallel for 60 days. Fish were fed a formula feed of 2.5% of their body weight in the morning and evening (08:00, 17:00) daily. The density stress test was performed for 60 days in a factory recirculating aquaculture system [temperature (27±2) ℃, dissolved oxygen (8.0±1.0) mg/L, pH 7.8 and salinity 24±1]. The body weight, body length, and total length of all the fish were measured every 20 days. A total of 18 juvenile pearl gentian groupers were randomly collected from each density group, for a total of 54. Anesthesia was administered (MS-222, 80 mg/L), tail vein blood was drawn with a 2 mL disposable syringe, and centrifuged (4 000 r/min, 4 ℃, 10 min) to obtain a supernatant that was stored at –20 ℃ for testing. Before testing the corresponding indicators, the brain, liver, intestine, stomach, and kidney were frozen in liquid nitrogen. The results showed that the optimum stocking density of pearl gentian grouper was (15.48–29.67) kg/m3 under the conditions of water [temperature (27±2) ℃, dissolved oxygen (8.0±1.0) mg/L, pH 7.8, and salinity 24±1]. In terms of growth, the specific growth rate and condition factor in the HD group were significantly lower than those in the other groups (P < 0.05), and the feed coefficient and coefficient of variation were significantly increased with the increase of density (P < 0.05). In addition, the survival rate of the HD group was significantly lower than that of the other groups (P < 0.05). Density stress results indicated that the growth retarded, weight difference increased, and mortality increased with increasing density. In terms of digestion and metabolism, the digestive enzyme activities (pepsin, trypsin, lipase, and amylase) in the HD group were significantly lower than those in the other groups (P < 0.05). Density stress results in a significant decrease in the digestive performance of the fish. The metabolic enzyme activities (PK, SDH, HK and LDH) in the HD group were significantly higher than those in the other groups (P < 0.05). In terms of oxidative stress, the activities of antioxidant enzymes (MDA, SOD, CAT and GSH-Px) in the HD group were significantly higher than those in other groups (P < 0.05). In terms of HPI axis, the levels of HPI axis related hormones (CRH, ACTH and CORT) in the HD group were significantly higher than those in other groups (P < 0.05). qRT-PCR was used to determine the expression levels of HPI axis-related genes, and the density stress upregulated crhr 1, nr3c 1, and nr3c 2 (P < 0.05), while crh-bp was downregulated (P < 0.05). In summary, the study revealed that the effects of density stress on growth performance, digestive and metabolic capacity, stress, and HPI axis of the pearl gentian grouper. Density was negatively correlated with the growth performance and caused a significant decrease in digestive enzyme activity, significantly increased metabolic enzyme activity, intensified oxidative stress, and dysregulated HPI axis hormones and related genes. The results of this experiment can provide theoretical reference for the establishment of stocking density for juvenile pearl gentian grouper in the production process. Our findings provide scientific evidence for further understanding the effects of density stress on the growth, digestive metabolism, oxidative stress, and endocrine production of the pearl gentian grouper.
Key words: Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂    Stocking density    Oxidative stress    Digestion and metabolism    HPI axis    

珍珠龙胆石斑鱼(Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂)又称龙虎斑、珍珠斑,其肉质细腻、抗病力强、环境适应能力优秀,深受市场欢迎(胡金城, 2017; 相智巍等, 2023)。2022年石斑鱼年产量约为2.06万t (王丹等, 2023)。工厂化循环水养殖系统(RAS)具有节能减排、自动化、规模化及养殖效率高等诸多优点(蔡青霖等, 2023),是珍珠龙胆石斑鱼目前主要的养殖模式。然而,由于对珍珠龙胆石斑鱼的适宜养殖密度不明确,常出现养殖密度过高造成的密度胁迫等问题。因此,选择何种适宜的养殖密度是工厂化养殖珍珠龙胆石斑鱼中亟待解决的重要问题。

现阶段,国内外关于鱼类密度胁迫的研究已有较多报道,且普遍认为养殖密度越高,鱼类的生长性能越差(李大鹏等, 2004; 薛宝贵等, 2013)。已有研究证明,密度胁迫会抑制哲罗鲑(Hucho taimen)、虹鳟(Oncorhynchus mykiss)、翘嘴鳜(Siniperca chuatsi)和斜带石斑鱼(Epinephelus coioides)的生长(白庆利等, 2009; 江仁党, 2009; 郑乐云等, 2013; 陆可等, 2023)。过高密度的养殖会对鱼类造成胁迫,长期密度胁迫会导致鱼类消化能力降低、代谢异常以及内分泌紊乱(张曦文等, 2012; 程佳佳等, 2015)。研究表明,密度胁迫会对西伯利亚杂交鲟(Acipenser baerii♀ × Acipenser schrenckii♂)、大口黑鲈(Micropterus salmoides)和草鱼(Ctenopharyngodon idella)造成氧化应激(赵大显等, 2022; Li et al, 2023; Zheng et al, 2024)。值得注意的是,氧化应激的发生往往伴随着机体消化代谢能力异常以及内分泌系统紊乱(Jing et al, 2018)。据报道,尖吻鲈(Lates calcarifer)和牙鲆(Paralichthys olivaceus)消化酶的活性随着养殖密度增加而降低(Guo et al, 2017; Selvaram et al, 2022)。密度胁迫会导致美洲红点鲑(Salvelinus fontinalis)的多种代谢酶活性[磷酸果糖激酶(PFK)、果糖二磷酸酶(FBP)等]显著升高(Vijayan et al, 1990)。此外,密度胁迫会导致点带石斑鱼(Epinephelus coioides)和塞内加尔鳎(Solea senegalensis)内分泌调控受到干扰进而导致HPI轴相关激素分泌紊乱,血液皮质醇含量显著增加(Salasleiton et al, 2010; 逯尚尉等, 2011)。综上所述,适宜的密度对鱼类的生长和生理健康至关重要。

目前,关于工厂化养殖模式下密度胁迫对珍珠龙胆石斑鱼生长以及生理生化影响的研究甚少。因此,本研究通过设定3种养殖密度探究密度胁迫对珍珠龙胆石斑鱼生长、氧化应激、消化代谢酶活性和HPI轴激素分泌水平及基因表达的影响,以期为珍珠龙胆石斑鱼的集约化健康养殖提供理论参考。

1 材料与方法 1.1 实验用鱼

实验所用珍珠龙胆石斑鱼购于山东省日照市禹海红旗有限公司,鱼体无外伤、强壮健康,初始体重为(18.00±0.50) g,体长为(8.50±0.86) cm,共1 800尾。实验前于连续充氧的0.6 m3的养殖桶中暂养7 d以适应环境,暂养期间密度为(3.18±0.21) kg/m3

1.2 实验设计

实验在山东省日照市禹海红旗有限公司开展,养殖周期60 d。选用工厂化循环水养殖系统,源水采用砂滤海水。养殖桶高90 cm,半径50 cm (有效水体0.6 m3),系统循环水量为600 L/h,每日补充新水量在系统最大水量的20%以下。保持水温(27±2) ℃,溶氧(8.0±1.0) mg/L,pH 7.8和盐度24±1,氨氮含量均保持在0.02 mg/L以下,每天记录饲料投喂量及死亡鱼数量。

实验设置3个密度梯度,低密度组(LD)每桶投放珍珠龙胆石斑鱼100尾,密度为(3.14±0.13) kg/m3;中密度组(MD)每桶投放珍珠龙胆石斑鱼200尾,密度为(6.31±0.13) kg/m3;高密度组(HD)每桶投放珍珠龙胆石斑鱼300尾,密度为(9.56±0.24) kg/m3,每组3个平行,共养殖60 d。每日早、晚(08:00, 17:00)按鱼体重的2.5%定量投喂沉降颗粒配合饲料(青岛福满堂海水仔稚鱼3#号配合饲料,粗蛋白≥53%,粗脂肪≥10%,粗灰分≤16%)。

1.3 样品采集

实验期间,每20 d测定全部珍珠龙胆石斑鱼的体重、体长和全长。实验结束后,每桶取6尾鱼,共54尾,80 mg/L MS-222麻醉后于尾部静脉抽取血液,4 ℃ 4 000 r/min离心10 min,取上清液于–20 ℃保存待测。在冰上依次取珍珠龙胆石斑鱼脑、肝、肠、胃、肾组织,液氮速冻,随后转运至–80 ℃留存待测。

1.4 酶活性测定

从实验室–80 ℃超低温冰箱中取出保存的脑、胃、肠、肝组织,将各组织分别准确称量0.1 g,加入9倍体积的生理盐水,冰水浴条件下机械匀浆,制成10%的组织匀浆,将匀浆液放入离心机(2 500 r/min, 4 ℃, 离心10 min),取上清液进行预实验,根据结果选择上清液直接检测或稀释一定倍数后测定。胃蛋白酶(PPS)、胰蛋白酶(TPS)、淀粉酶(AMS)、脂肪酶(LPS)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-PX)、过氧化氢酶(CAT)、己糖激酶(HK)、丙酮酸激酶(PK)、琥珀酸脱氢酶(SDH)及乳酸脱氢酶(LDH)活性,促肾上腺激素释放激素(CRH)、促肾上腺激素(ACTH)分泌水平,丙二醛(MDA)、皮质醇(CORT)含量检测所需试剂盒均购自南京建成生物工程有限公司,测试方法按试剂盒说明书操作。

1.5 总RNA提取、cDNA合成和qRT-PCR

根据制造商的说明书,使用快速纯RNA试剂盒(Accurate Biology,湖北)从脑、肝、肾组织中提取总RNA。在1%琼脂糖凝胶上检测RNA降解,并使用Nano Drop 2000分光光度计(Nano Drop Technologies,美国)检查RNA浓度和纯度。按照制造商的说明书,使用Prime Script RT试剂盒从2 μg总RNA合成单链cDNA。cDNA模板储存在–80 ℃直到用于进一步分析。

表 1列出了用于评估HPI轴基因表达的引物。β-actin用作qRT-PCR内部对照。qRT-PCR数据通过LightCycler®480 Ⅱ使用SYBR Green Pro Taq HS(精确生物学)进行分析。qRT-PCR扩增在20 μL的总反应体积中进行。

表 1 荧光定量PCR引物序列 Tab.1 Primers used in real-time PCR
1.6 数据计算

特定生长率(SGR)、饲料系数(FCR)、肥满度(K)、存活率(SR)和变异系数(CV)的具体计算公式如下:

$ \begin{aligned} & \mathrm{SGR}(\% / \mathrm{d})=100 \times\left(\ln W_2-\ln W_1\right) /\left(t_2-t_1\right) \\ & K=\left(W / L^3\right) \times 100 \\ & \mathrm{FCR}=F /\left[\mathrm{n}\left(W_2-W_1\right)\right] \\ & \mathrm{SR}(\%)=D_2 / D_1 \times 100 \\ & \mathrm{CV}(\%)=(\mathrm{SD} / \mathrm{Mean}) \times 100 \end{aligned} $

式中,n为鱼尾数,F为总投饵量(g),W1W2为时间t1t2时的平均体重(g),W为鱼的重量(g),L为鱼的体长(cm),D1为初始存活数,D2为最终存活数,SD为该组鱼体重的标准差,Mean为该组鱼体重的平均值。

1.7 数据分析

本实验所有数据以平均值±标准差(Mean±SD)形式表示,使用SPSS 22.0进行单因素方差分析(one-way ANOVA),若具有显著差异,后使用邓肯法(Duncan´s)进行多重比较,显著水平设置为P < 0.05,数据结果使用Graph Pad Prime 7.0作图。

2 结果 2.1 密度胁迫对珍珠龙胆石斑鱼生长性能的影响

密度胁迫对珍珠龙胆石斑鱼生长性能的影响如表 2所示。珍珠龙胆石斑鱼SGR、K和SR随养殖密度的增加呈下降趋势,FCR随养殖密度的增加呈上升趋势。HD组SGR和K均显著低于LD组(P < 0.05),HD组的SR显著低于LD组和MD组(P < 0.05)。LD组FCR显著低于HD组(P < 0.05)。实验结束后,LD组、MD组及HD组终末密度分别为(15.48± 0.67)、(29.67±0.38)和(38.46±1.19) kg/m3

表 2 密度胁迫对珍珠龙胆石斑鱼生长性能的影响 Tab.2 Effect of density on the growth performance of E. fuscoguttatus♀×E. lanceolatus♂

密度胁迫对珍珠龙胆石斑鱼体重(Wt)和CV的影响如图 1所示。实验20 d时,LD组、MD组、HD组之间Wt差异不显著;40 d和60 d时,珍珠龙胆石斑鱼的Wt随密度增加呈下降趋势,MD组Wt显著高于HD组(P < 0.05),显著低于LD组(P < 0.05)。实验20 d和40 d时,MD组和LD组CV无显著性差异,均显著低于HD组(P < 0.05)。60 d时,珍珠龙胆石斑鱼CV随密度增加呈上升趋势,MD组CV显著低于HD组(P < 0.05),显著高于LD组(P < 0.05)。

图 1 密度胁迫对珍珠龙胆石斑鱼体重和体重变异系数的影响 Fig.1 Effect of density stress on weight and coefficient of variation of body weight of E. fuscoguttatus♀×E. lanceolatus♂ 不同英文字母表示差异显著(P < 0.05),下同。 Different letters represent significant difference (P < 0.05), the same below.
2.2 密度胁迫对珍珠龙胆石斑鱼消化代谢性能的影响

密度胁迫对珍珠龙胆石斑鱼消化酶和代谢酶活性的影响如图 2所示。消化酶活性随密度的增加呈下降趋势,LD组和MD组PPS活性无显著性差异,均显著高于HD组(P < 0.05);MD组TPS、LPS和AMS活性均显著低于LD组(P < 0.05),显著高于HD组(P < 0.05)。代谢酶活性随密度的增加呈上升趋势,LD组和MD组的PK和SDH活性无显著性差异,均显著低于HD组(P < 0.05);MD组HK和LDH活性显著高于LD组(P < 0.05),显著低于HD组(P < 0.05)。

图 2 密度胁迫对珍珠龙胆石斑鱼消化及代谢酶活性的影响 Fig.2 Effect of density stress on digestion and metabolic enzyme activities of E. fuscoguttatus♀×E. lanceolatus♂
2.3 密度胁迫对珍珠龙胆石斑鱼氧化应激的影响

密度胁迫对珍珠龙胆石斑鱼抗氧化酶活性的影响如图 3所示。珍珠龙胆石斑鱼的抗氧化酶活性随密度的增长呈上升趋势,MD组珍珠龙胆石斑鱼肝脏MDA含量、SOD活性、CAT活性及GSH-Px活性显著高于LD组(P < 0.05),显著低于HD组(P < 0.05)。

图 3 密度胁迫对珍珠龙胆石斑鱼抗氧化指标的影响 Fig.3 Effect of density stress on antioxidant indexes of E. fuscoguttatus♀×E. lanceolatus♂
2.4 密度胁迫对珍珠龙胆石斑鱼HPI轴的影响

密度胁迫对珍珠龙胆石斑鱼HPI轴相关激素分泌的影响如图 4所示。珍珠龙胆石斑鱼HPI轴相关激素分泌水平随密度的增长呈上升趋势,MD组CRH分泌水平、ACTH分泌水平和CROT含量显著高于LD组(P < 0.05),显著低于HD组(P < 0.05)。

图 4 密度胁迫对珍珠龙胆石斑鱼HPI轴相关激素分泌影响 Fig.4 Effect of density stress on the secretion of HPI axis related hormones of E. fuscoguttatus♀×E. lanceolatus♂

密度胁迫对珍珠龙胆石斑鱼HPI轴相关基因表达的影响如图 5所示。MD组珍珠龙胆石斑鱼的crhr1nr3c1nr3c2表达量显著高于LD组(P < 0.05),显著低于HD组(P < 0.05),而crh-bp表达量MD组显著高于HD组(P < 0.05),显著低于LD组(P < 0.05)。

图 5 密度胁迫对珍珠龙胆石斑鱼HPI轴相关基因表达的影响 Fig.5 Effect of density stress on HPI axis related gene expression of E. fuscoguttatus♀×E. lanceolatus♂
3 讨论 3.1 密度胁迫对珍珠龙胆石斑鱼生长的影响

Sharawy等(2022)研究发现,随着密度增加,鱼类生长速率降低,养殖密度和鱼类生长速率呈负相关关系。曹阳等(2014)研究表明,在高密度组(3.2 kg/m3)中俄罗斯鲟(Acipenser gueldenstaedtii)的增重率(WG)和肥满度(K)显著低于中密度组(1.6 kg/m3)和低密度组(0.8 kg/m3)。黄宁宇等(2005)的研究也表明,瓦氏黄颡鱼(Pelteobagrus vachelli)的日增重、增长率及生长效率与密度呈负相关。本研究结果与上述研究一致,在60 d时,HD组珍珠龙胆石斑鱼幼鱼的WtK和SGR显著低于MD组和LD组,并且其FCR显著高于LD组。结果表明,随着密度增加,珍珠龙胆石斑鱼种内空间和食物竞争加剧,导致摄入的能量更多地被消耗而非用于生长,从而生长缓慢。在高密度养殖模式下,具有生长优势的鱼会占据更多生存资源,并因此表现出较快的生长速度。然而,由于生长处于劣势的鱼竞争性差,无法获得更多的生存资源,导致其生长缓慢,最终鱼群产生更大的生长差异(Cutts et al, 1998)。在本研究中,实验20 d时各密度组珍珠龙胆石斑鱼的CV并未呈现出显著性差异。然而在实验40 d时,HD组CV显著高于LD组和MD组。实验60 d时,MD组CV显著高于LD组,显著低于HD组。这表明密度胁迫在一定程度上加剧了珍珠龙胆石斑鱼个体间的差异性。

3.2 密度胁迫对珍珠龙胆石斑鱼消化代谢性能的影响

消化酶作为鱼体内重要的酶类,在鱼类生长发育的过程中对其适应食物变化和摄取营养物质具有显著影响(Gisbert et al, 2009)。大量研究表明,密度胁迫会降低鱼类消化酶活性,在对大菱鲆(Scophthalmus maximus)的研究中发现,随着养殖密度增加,其体内TPS和AMS活性呈下降趋势(乔玮等, 2014);在对银鲳(Pampus argenteus)的研究中也发现,高密度组幼鱼的PPS、TPS和LPS活性显著低于其他密度组(孔煜夫等, 2023);此外,在对鲤(Cyprinus carpio)、虹鳟和团头鲂(Megalobrama amblycephala)的研究中同样发现,鱼体内AMS活性随密度增加呈下降趋势(Trenzado et al, 2018; Adineh et al, 2019; Wang et al, 2019)。类似的,本研究中,珍珠龙胆石斑鱼体内的PPS、TPS、LPS、AMS活性均随着养殖密度的增加呈下降趋势。由此可见,密度胁迫可能在一定程度上对鱼类消化生理产生负面影响。研究表明,鱼类受到密度胁迫时会引起一系列生理反应,进而改变代谢酶的活性(Menezes et al, 2015)。PK和HK均为糖酵解过程中的关键限速酶,其活性改变对调控糖代谢有很大的作用,也反映了糖酵解的水平(陈婉情等, 2016)。SDH和LDH是动物体内有氧和无氧呼吸过程中重要的酶,当机体能量需求增加时,通过提升LDH活性来提供更多的能量(Zakhartsev et al, 2004)。本研究发现,珍珠龙胆石斑鱼代谢酶(PK、HK、LDH和SDH)活性均随着密度的增加呈上升趋势。这表明HD组珍珠龙胆石斑鱼在密度胁迫的影响下提高了机体内PK、HK、LDH和SDH的活性,这些酶活性的升高更可能是机体通过糖酵解获取更多的能量以应对强烈的应激胁迫。这与Vijayan等(1990)对美洲红点鲑以及余友斌等(2023)对大黄鱼(Larimichthys crocea)的研究结果类似,但王兴春(2021)研究发现,养殖密度对黄姑鱼(Nibea albiflora)谷草转氨酶(AST)、谷丙转氨酶(ALT)、LDH等代谢酶的影响不显著,这可能是实验鱼规格、实验鱼品种和所设置密度的差异所致。

3.3 密度胁迫对珍珠龙胆石斑鱼肝脏抗氧化指标的影响

抗氧化防御系统在对机体的氧化应激进行抵抗时发挥着至关重要的作用(Wang et al, 2018),其中SOD首先将产生于机体内的氧自由基分解为过氧化氢(McCord et al, 1969),与此同时,SOD所生成的过氧化氢一方面被CAT还原成氧分子和水(Rudneva et al, 1997),另一方面则被GSH-Px消除。此外,GSH-Px还能清除体内脂质过氧化物(Arthur, 2000),以维持机体的正常生理活动并阻断氧化应激对机体的进一步损伤。本研究中,HD组珍珠龙胆石斑鱼的SOD、CAT和GSH-Px 3种指标均显著高于其他密度组,这与之前对黑鲷(Acanthopagrus schlegelii)和豹纹鳃棘鲈(Plectropomus leopardus)的研究结果一致(林琳等, 2017; 孙鹏等, 2023),表明密度胁迫对珍珠龙胆石斑鱼的抗氧化系统造成一定影响,需要机体提供更多的抗氧化酶以对抗密度胁迫所带来的氧化损伤,从而免受应激伤害。此外,MDA含量的变化能反应生物体内脂质过氧化程度,脂质过氧化被认为是细胞氧化损伤的重要标志之一(Zhang et al, 2018)。本研究发现,珍珠龙胆石斑鱼机体MDA含量与养殖密度呈正相关,这与陶俊合(2023)对红鳍东方鲀(Takifugu rubripes)以及宋志飞(2015)对俄罗斯鲟的研究结果一致。这也进一步说明了密度胁迫在一定程度上导致了珍珠龙胆石斑鱼氧化应激反应。

3.4 密度胁迫对珍珠龙胆石斑鱼HPI轴的影响

CRH是下丘脑在应激胁迫下释放的一种多肽,刺激垂体产生ACTH,ACTH又刺激肾上腺产生CORT,CORT是鱼类应激状态下HPI轴中分泌的一种重要的应激相关激素,其含量会在外界环境刺激下迅速升高(张伟等, 2014)。已有研究表明,在密度、盐度、低氧、重金属暴露、细菌感染等各种环境应激因素作用下,硬骨鱼体内CRH、ACTH和CORT的含量及mRNA表达水平均显著增加(Craig et al, 2005; Bernier et al, 2012; Madison et al, 2013; Choi et al, 2015; Hou et al, 2019)。在本研究中,珍珠龙胆石斑鱼的CRH、ACTH和CORT分泌水平随着养殖密度的增加而显著上升,这与对花斑溪鳉(Kryptolebias marmoratus)的研究结果一致(Amano et al, 2022)。此外,Jia等(2016)报道大菱鲆血浆中CRH、ACTH和CORT水平随着氨氮胁迫时间和浓度的增加而上升,说明大菱鲆的HPI轴被激活。这些结果表明,密度胁迫会导致珍珠龙胆石斑鱼应激激素的合成与分泌,从而激活了HPI轴,导致了机体氧化应激。

CRH受体主要有crhr1crhr2两种不同基因编码的亚型组成,其中,crhr1基因在中枢神经系统表达丰富,能够调动机体各系统应答应激,介导CRH对ACTH分泌的刺激作用,诱导ACTH释放入血,最终导致糖皮质激素分泌(Aguilera et al, 2004)。crh-bp基因对CRH发生的应激反应活性起着重要负调节作用(Seasholtz et al, 2002);nr3c1nr3c2基因有维持糖皮质激素合成的作用(罗应杰等, 2017)。在本研究中,HD组珍珠龙胆石斑鱼crhr1nr3c1nr3c2表达量均显著性上调,crh-bp基因表达量显著下调,这与对塞内加尔鳎的研究结果相似(Yvette et al, 2011)。此外,斑马鱼(Danio rerio)在急性应激状态下crhr基因表达显著上调(Gabriele et al, 2012)。类似的研究表明,HD组在应激状态下,CRH和CORT分泌旺盛,crhr1作为中央神经系统中ACTH的主要受体之一(Vaughan et al, 1995),其基因表达量随之显著上调,诱导ACTH释放入血,调动机体各系统增加机体能量应对应激环境。nr3c1nr3c2基因作为糖皮质激素的主要受体基因,能调控CRH的持续产生(张岫竹等, 2005)。本研究中,HD组由于长期受密度胁迫影响,HPI轴被激活,血液中CORT水平远高于其他组,因此,HD组珍珠龙胆石斑鱼nr3c1nr3c2基因表达量显著上调。CRH-BP作为CRH的抑制剂,能够阻断由CRH介导的ACTH在小鼠垂体前叶细胞中的分泌以保持其内分泌轴的稳定(Potter et al, 1991),本研究中,crh-bp表达量的下调可能是由于长时间的应激干扰了CRH-BP的反馈机制,导致了HPI轴相关激素分泌及相关基因表达的紊乱。

4 结论

综上所述,密度胁迫不仅会导致珍珠龙胆石斑鱼饵料系数升高、生长性能降低、个体之间体重差异扩大,还会引发一系列的生理变化,主要表现为消化酶活性降低、代谢酶活性升高、氧化应激加剧和HPI轴激活。本研究结果可为工厂化循环水养殖珍珠龙胆石斑鱼养殖密度的制定提供理论参考。

参考文献
ADINEH H, NADERI M, HAMIDI M K, et al. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish and Shellfish Immunology, 2019, 95: 440-448 DOI:10.1016/j.fsi.2019.10.057
AGUILERA G, NIKODEMOVA M, WYNN P C, et al. Corticotropin releasing hormone receptors: Two decades later. Peptides, 2004, 25(3): 319-329 DOI:10.1016/j.peptides.2004.02.002
AMANO M, AMIYA N, FUKUSHIMA K, et al. Effects of crowding stress on the hypothalamo-pituitary-interrenal axis of the self-fertilizing fish, Kryptolebias marmoratus. Comparative Biochemistry and Physiology, Part A: Molecular and Integrative Physiology, 2022, 264: 111110 DOI:10.1016/j.cbpa.2021.111110
ARTHUR J R. The glutathione peroxidases. Cellular and Molecular Life Sciences, 2000, 57(13/14): 1825-1835
BAI Q L, YU H X, ZHANG Y Y, et al. Effect of stocking density on growth and survival of juvenile Hucho taimen during domestication. Journal of Northeast Forestry University, 2009, 37(2): 63-64 [白庆利, 于洪贤, 张玉勇, 等. 养殖密度对哲罗鱼稚鱼生长和存活的影响. 东北林业大学学报, 2009, 37(2): 63-64]
BERNIER N J, GORISSEN M, FLIK G, et al. Differential effects of chronic hypoxia and feed restriction on the expression of leptin and its receptor, food intake regulation and the endocrine stress response in common carp. Journal of Experimental Biology, 2012, 215(13): 2273-2282 DOI:10.1242/jeb.066183
CAI Q L, HAN Q F. Development status and trends of industrialized circulating water aquaculture technology at home and abroad. South China Agriculture, 2023, 17(17): 247-251 [蔡青霖, 韩庆富. 国内外工厂化循环水养殖技术发展现状及趋势. 南方农业, 2023, 17(17): 247-251]
CAO Y, LI E C, CHEN L Q, et al. Effects of stocking density on growth, physiological and immune responses in juvenile Russian sturgeon. Acta Hydrobiologica Sinica, 2014, 38(5): 968-974 [曹阳, 李二超, 陈立侨, 等. 养殖密度对俄罗斯鲟幼鱼的生长、生理和免疫指标的影响. 水生生物学报, 2014, 38(5): 968-974]
CHEN W Q, LIU Z M, WU L, et al. The influences of light color on growth, haematological and biochemical indices of juvenile Plectropomus leopardus. Chinese Journal of Ecology, 2016, 35(7): 1889-1895 [陈婉情, 刘志明, 吴亮, 等. 光色对豹纹鳃棘鲈(Plectropomus leopardus)幼鱼生长及血液生化指标的影响. 生态学杂志, 2016, 35(7): 1889-1895]
CHENG J J, LI J F, WEN H S, et al. Effect of stocking density on growth, muscle composition and blood parameters of hybrid sturgeon juveniles. Journal of Fishery Sciences of China, 2015, 22(3): 433-441 [程佳佳, 李吉方, 温海深, 等. 养殖密度对杂交鲟幼鱼生长、肌肉组分和血液生理生化指标的影响. 中国水产科学, 2015, 22(3): 433-441]
CHOI Y J, YANG S G, JUNG M M, et al. Effects of waterborne selenium on toxic and physiological stress response in goldfish, Carassius auratus. Molecular and Cellular Toxicology, 2015, 11: 35-46 DOI:10.1007/s13273-015-0005-7
CRAIG P M, HAIDER A T, BERNIER N J, et al. Differential increase in forebrain and caudal neurosecretory system corticotropin-releasing factor and urotensin gene expression associated with seawater transfer in rainbow trout. Endocrinology, 2005, 146(9): 3851-3860 DOI:10.1210/en.2005-0004
CUTTS C J, METCALFE N B, TAYLOR A C, et al. Aggression and growth de-pression in juvenile Atlantic salmon: The consequences of individual variation in standard metabolic rate. Journal of Fish Biology, 1998, 52(5): 1026-1037 DOI:10.1111/j.1095-8649.1998.tb00601.x
GABRIELE G, KATIUCIA M C, ROSANE S D S, et al. The role of CRH in behavioral responses to acute restraint stress in zebrafish. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 36(1): 176-182 DOI:10.1016/j.pnpbp.2011.08.016
GISBERT E, GIMENEZ G, FERNANDEZ I, et al. Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture, 2009, 287(3): 381-387
GUO H Y, DONG X Y, ZHANG X M, et al. Survival, growth and physiological responses of juvenile Japanese flounder (Paralichthys olivaceus, Temminck & Schlegel, 1846) exposed to different dissolved oxygen concentrations and stocking densities. Journal of Applied Ichthyology, 2017, 33(4): 731-739 DOI:10.1111/jai.13369
HOU Z S, WEN H S, LI J F, et al. Effects of long-term crowding stress on neuro-endocrine-immune network of rainbow trout (Oncorhynchus mykiss). Fish and Shellfish Immunology, 2019, 95: 180-189 DOI:10.1016/j.fsi.2019.10.011
HU J C. Aquaculture of hybrid grouper (Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂) in recirculating aquacultures system. Master′s Thesis of Tianjin Agricultural University, 2017 [胡金城. 珍珠龙胆工厂化循环水养殖技术研究. 天津农学院硕士研究生学位论文, 2017]
HUANG N Y, XIA L J, YAO Z L, et al. The influences of stocking density and water temperature on growth of juvenile Pseudobagrus vachelli Richardson raising in greenhouse. Journal of Zhejiang Ocean University (Natural Science), 2005, 24(3): 208-212 [黄宁宇, 夏连军, 么宗利, 等. 养殖密度和温度对瓦氏黄颡鱼幼鱼生长影响实验研究. 浙江海洋学院学报(自然科学版), 2005, 24(3): 208-212]
JIA R, LIU B L, HAN C, et al. Effects of ammonia exposure on stress and immune response in juvenile turbot (Scophthalmus maximus). Aquaculture Research, 2016, 48(6): 3149-3162
JIANG R D. Effect of stocking density on growth of rainbow trout juvenile. Chinese Journal of Fisheries, 2009, 22(4): 31-33 [江仁党. 放养密度对虹鳟稚鱼生长的影响. 水产学杂志, 2009, 22(4): 31-33]
JING D, ZHAO Y Y, YU Y H, et al. Effect of stocking density on growth performance, digestive enzyme activities, and nonspecific immune parameters of Palaemonetes sinensis. Fish and Shellfish Immunology, 2018, 73: 37-41 DOI:10.1016/j.fsi.2017.12.006
KONG Y F, ZHANG X D, ZHOU B, et al. Effects of density stress on growth and digestive enzyme activity in juvenile Pampus argenteus. Hebei Fisheries, 2023(1): 8–14, 18 [孔煜夫, 张晓东, 周彬, 等. 拥挤胁迫对银鲳幼鱼生长及消化酶活性的影响. 河北渔业, 2023(1): 8–14, 18]
LI D P, ZHUANG P, YAN A S, et al. The influences of illumination, water current and stocking density on feeding, behavior and growth in juveniles Acipenser schrenckii. Journal of Fisheries of China, 2004, 28(1): 54-61 [李大鹏, 庄平, 严安生, 等. 光照、水流和养殖密度对史氏鲟稚鱼摄食、行为和生长的影响. 水产学报, 2004, 28(1): 54-61]
LI W H, LI D P, YANG Q S, et al. Long-term crowding stress induces chronic inflammatory response and declines the immunity of grass carp (Ctenopharyngodon idella). Aquaculture, 2023, 577: 739976 DOI:10.1016/j.aquaculture.2023.739976
LIN L, SUN X L, XING K Z, et al. Effects of stocking density on growth and blood biochemical parameters in Plectropomus leopardus. Fisheries Science, 2017, 36(1): 83-87 [林琳, 孙学亮, 邢克智, 等. 养殖密度对豹纹鳃棘鲈生长和血液生化指标的影响. 水产科学, 2017, 36(1): 83-87]
LU K, ZHANG Y P, LIANG X F, et al. The influence of stocking density on the growth, blood biochemistry, and antioxidant capacity indicators of Chinese perch (siniperca chuatsi). Acta Hydrobiologica Sinica, 2023, 47(3): 473-478 [陆可, 张焱鹏, 梁旭方, 等. 不同养殖密度对翘嘴鳜生长、血液生化和抗氧化能力指标的影响. 水生生物学报, 2023, 47(3): 473-478]
LU S W, LIU Z P, YU Y. Effects of density stress on growth and metabolism of juvenile Epinephelus malabaricus. Journal of Fishery Sciences of China, 2011, 18(2): 322-328 [逯尚尉, 刘兆普, 余燕. 密度胁迫对点带石斑鱼幼鱼生长、代谢的影响. 中国水产科学, 2011, 18(2): 322-328]
LUO Y J, LIU C G, LU M, et al. Polymorphism and bioinformatics analysis of NR3C2 gene in Mule duck. Heilongjiang Animal Science and Veterinary Medicine, 2017, 23(12): 39–42, 289 [罗应杰, 柳诚刚, 陆曼, 等. 半番鸭NR3C2基因多态性及生物信息学分析. 黑龙江畜牧兽医, 2017, 23(12): 39–42, 289]
MADISON B N, WOO P, BERNIER N J, et al. Duress without stress: Cryptobia infection results in HPI axis dysfunction in rainbow trout. Endocrinol, 2013, 218(3): 287-297 DOI:10.1530/JOE-13-0155
MCCORD J M, FRIDOVICH I. Superoxide dismutase, an enzymatic function for erythrocuprein. Journal of Biological Chemistry, 1969, 244(22): 6049-6055 DOI:10.1016/S0021-9258(18)63504-5
MENEZES C, RUIZ-JARABO I, MARTOS-SITCHA J A, et al. The influence of stocking density and food deprivation in silver catfish (Rhamdia quelen): A metabolic and endocrine approach. Aquaculture, 2015, 435: 257-264 DOI:10.1016/j.aquaculture.2014.09.044
POTTER E, BEHAN D P, FISCHER W H, et al. Cloning and characterization of the cDNAs for human and rat corticotrophin releasing factor-binding proteins. Nature, 1991, 349: 423-426 DOI:10.1038/349423a0
QIAO W, SONG X F, GAO C R, et al. Effects of stocking density on the growth and physiology of adult turbot and changes in water quality. Progress in Fishery Sciences, 2014, 35(5): 76-82 [乔玮, 宋协法, 高淳仁, 等. 养殖密度对循环水系统中大菱鲆(Scophthalmus maximus)生长的影响. 渔业科学进展, 2014, 35(5): 76-82]
RUDNEVA I I. Blood antioxidant system of Black Sea elasmobranch and teleosts. Comparative Biochemistry and Physiology, Part C: Pharmacology, Toxicology and Endocrinology, 1997, 118: 255-260 DOI:10.1016/S0742-8413(97)00111-4
SALASLEITON E, ANGUIS V, MARTINANTONIO B, et al. Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole (Solea senegalensis): Potential effects on the immune response. Fish and Shellfish Immunology, 2010, 28(2): 296-302
SEASHOLTZ A F, VALVERDE R A, DENVER R J. Corticotropin-releasing hormone-binding protein: Biochemistry and function from fishes to mammals. Journal of Endocrinology, 2002, 175(1): 89-97
SELVARAM E, BABOONSUNDARAM A, ARUMUGAM U, et al. Effect of stocking density on growth performance, digestive enzyme activity, body composition and gene expression of Asian seabass reared in recirculating aquaculture system. Aquaculture Research, 2022, 53(5): 1963-1972
SHARAWY Z Z, ABBAS E M, ABDELKHALEK N K, et al. Effect of organic carbon source and stocking densities on growth indices, water microflora, and immune-related genes expression of Litopenaeus vannamei larvae in intensive culture. Aquaculture, 2022, 546: 737397
SONG Z F. The influence of stocking density on the growth performance, physiological and biochemical indices and nonspecific immunity of juvenile Russian Sturgeon inflowing water cultivation. Master′s Thesis of Ocean University of China, 2015 [宋志飞. 养殖密度对流水养殖系统中俄罗斯鲟幼鱼生长、血液生理生化以及非特异性免疫的影响. 中国海洋大学硕士研究生学位论文, 2015]
SUN P, JIANG Y Z, ZHOU Y D, et al. Effects of stock density on physiological indexes and stress resistance of juvenile Acanthopagrus schlegelii. Marine Fisheries, 2023, 45(6): 710-718 [孙鹏, 姜亚洲, 周永东, 等. 养殖密度对黑鲷幼鱼生理指标和抗应激能力的影响. 海洋渔业, 2023, 45(6): 710-718]
TAO J H. Effects of culture density on growth of juvenile Takifugu rubripes in recirculating aquaculture system. Master′s Thesis of Dalian Ocean University, 2023 [陶俊合. 工厂化循环水模式下养殖密度对红鳍东方鲀幼鱼生长的影响. 大连海洋大学硕士研究生学位论文, 2023]
TRENZADO C E, CARMONA R, MERINO R, et al. Effect of dietary lipid content and stocking density on digestive enzymes profile and intestinal histology of rainbow trout (Oncorhynchus mykiss). Aquaculture, 2018, 497: 10-16
VAUGHAN J, DONALDSON C, BITTENCOURT J, et al. Urocortin, a mammalian neuropeptide related to fish urotensin and to corticotropin-releasing factor. Nature, 1995, 378: 287-292
VIJAYAN M M, BALLANTYNE J S, LEATHERLAND J F. High stocking density alters the energy metabolism of brook charr, Salelinus fontinalis. Aquaculture, 1990, 88(3): 371-381
WANG D, WU F X. China Fishery Statistical Yearbook. Beijing: China Agriculture Press, 2023 [王丹, 吴反修. 2023中国渔业统计年鉴. 北京: 中国农业出版社, 2023]
WANG L, LI L, CHEN J, et al. Long-term crowding stress causes compromised nonspecific immunity and increases apoptosis of spleen in grass carp (Ctenopharyngodon idella). Fish and Shellfish Immunology, 2018, 80: 540-545
WANG X C. Effects of stocking density on metabolism and serum immunity of yellow drum (Nibea albiflora) in closed recirculating aquaculture system. Hebei Fisheries, 2021(5): 9-12 [王兴春. 封闭循环水系统中养殖密度对黄姑鱼代谢和血清免疫的影响. 河北渔业, 2021(5): 9-12]
WANG Y W, ZHU J, GE X P, et al. Effects of stocking density on the growth performance, digestive enzyme activities, antioxidant resistance, and intestinal microflora of blunt snout bream (Megalobrama amblycephala) juveniles. Aquaculture Research, 2019, 50(1): 236-246
XIANG Z W, JIANG K J, ZHU H Y, et al. Effects of salinity on growth performance, digestive enzymes, and nonspecific immunity in juvenile hybrid grouper (Epinephelus fuscoguttatus♀× Epinephelus lanceolatus♂). Progress in Fishery Sciences, 2023, 44(3): 64-73 [相智巍, 姜柯君, 褚洪永, 等. 不同盐度对珍珠龙胆石斑鱼幼鱼生长、消化酶活性和非特异性免疫的影响. 渔业科学进展, 2023, 44(3): 64-73]
XUE B G, LOU B, XU D D, et al. Impact of density stress on growth, metabolism and non-specific immune functions of juvenile Nibea albiflora. Progress in Fishery Sciences, 2013, 34(2): 45-51 [薛宝贵, 楼宝, 徐冬冬, 等. 密度胁迫对黄姑鱼幼鱼生长、代谢及非特异性免疫的影响. 渔业科学进展, 2013, 34(2): 45-51]
YU Y B, HUANG W Y, CUI M C. Effects of stocking densities on growth performance, nutrient composition, serum biochemical, digestive and metabolic enzymes activities of large yellow croaker (Larimichthys crocea). Fishery Modernization, 2023, 50(3): 64-71 [余友斌, 黄温赟, 崔铭超. 养殖密度对大黄鱼生长、血清生化、营养成分、消化酶和代谢酶活力的影响. 渔业现代化, 2023, 50(3): 64-71]
YVETTE S W, STEEF E, SILKE H, et al. Chronic and acute stress responses in Senegalese sole (Solea senegalensis): The involvement of cortisol, CRH and CRH-BP. Journal of General and Comparative Endocrinology, 2011, 171(2): 203-210
ZAKHARTSEV M, JOHANSEN T, PöRTNER H O, et al. Effects of temperature acclimation on lactate dehydrogenase of cod (Gadus morhua): Genetic, kinetic and thermodynamic aspects. Journal of Experimental Biology, 2004, 207(1): 95-112
ZHANG M Z, LI M, WANG R X, et al. Effects of acute ammonia toxicity on oxidative stress, immune response and apoptosis of juvenile yellow catfish Pelteobagrus fulvidraco and the mitigation of exogenous taurine. Fish and Shellfish Immunology, 2018, 79: 313-320
ZHANG W, WANG Y J, LI M W, et al. Effects of transportation density and salinity on cortisol, glycogen and lactate of large yellow croaker (Larimichthys crocea) juveniles. Journal of Fisheries of China, 2014, 38(7): 973-980 [张伟, 王有基, 李伟明, 等. 运输密度和盐度对大黄鱼幼鱼皮质醇、糖元及乳酸含量的影响. 水产学报, 2014, 38(7): 973-980]
ZHANG X Y, WU Y, HE Q J, et al. The effects of stocking density on growth and physiological indices of grouper Epinephelus awoara in recirculating aquaculture. Journal of Dalian Ocean University, 2012, 27(6): 518-522 [张曦文, 吴垠, 贺茹靖, 等. 循环水养殖模式下养殖密度对青石斑鱼生长及生理指标的影响. 大连海洋大学学报, 2012, 27(6): 518-522]
ZHANG X Z, ZHU P F. The regulatory effect and related mechanism of high dose of glucocorticoid on the synthesis of corticotrophin-releasing hormone in PVN. Doctoral Dissertation of Third Military Medical University, 2005 [张岫竹, 朱佩芳. 大剂量GC对PVN神经元合成CRH的调节及机制研究. 第三军医大学博士研究生学位论文, 2005]
ZHAO D X, CHENG C, XIAO M, et al. Effects of stocking density on growth, antioxidant enzyme activity and related gene expression of juvenile Siberian hybrid sturgeon Acipenser baerii♀×A. schrenckii ♂. Journal of Fisheries of China, 2022, 46(9): 1582-1592 [赵大显, 程超, 肖敏, 等. 养殖密度对西伯利亚杂交鲟幼鱼生长、抗氧化酶活性和相关基因表达的影响. 水产学报, 2022, 46(9): 1582-1592]
ZHENG J L, ZHANG H T, GAO L, et al. Combined effects of crowding stress and low salinity on GH/IGF axis, antioxidant response, and HPI axis in largemouth bass (Micropterus salmoides) larvae. Aquaculture, 2024, 578: 740036
ZHENG L Y, YANG Q H, HUANG Z T, et al. Effect of the breeding density and ammonia-nitrogen on growth and immunity of Epinephelus coioides in recirculating system. Journal of Shanghai Ocean University, 2013, 22(5): 706-712 [郑乐云, 杨求华, 黄种特, 等. 循环水养殖密度和氨氮对斜带石斑鱼生长和免疫力的影响. 上海海洋大学学报, 2013, 22(5): 706-712]