渔业科学进展  2025, Vol. 46 Issue (3): 194-201  DOI: 10.19663/j.issn2095-9869.20240313001
0

引用本文 

高雅彤, 王致鹏, 高晔, 朱明, 李杰. 传染性造血器官坏死病毒–杀鲑气单胞菌载体疫苗的构建及免疫保护效果分析[J]. 渔业科学进展, 2025, 46(3): 194-201. DOI: 10.19663/j.issn2095-9869.20240313001.
GAO Yatong, WANG Zhipeng, GAO Ye, ZHU Ming, LI Jie. Development of Aeromonas salmonicida Vaccine Carrier Expressing G Protein of Infectious Hematopoietic Necrosis Virus[J]. Progress in Fishery Sciences, 2025, 46(3): 194-201. DOI: 10.19663/j.issn2095-9869.20240313001.

基金项目

国家重点研发计划(2023YFC2812105)、中国水产科学研究院基本科研业务费(2024XT0505)和连云港市科技成果转化项目(CA202202)共同资助

作者简介

高雅彤,Email: 2773282450@qq.com

通讯作者

李杰,副研究员,Email: lijie@ysfri.ac.cn

文章历史

收稿日期:2024-03-13
收修改稿日期:2024-03-18
传染性造血器官坏死病毒–杀鲑气单胞菌载体疫苗的构建及免疫保护效果分析
高雅彤 1,2, 王致鹏 3, 高晔 2, 朱明 1, 李杰 2     
1. 江苏海洋大学 江苏 连云港 222006;
2. 海水养殖生物育种与可持续产出全国重点实验室(中国水产科学研究院黄海水产研究所)山东 青岛 266071;
3. 青岛农业大学海洋科学与工程学院 山东 青岛 266237
摘要:传染性造血器官坏死病毒(infectious hematopoietic necrosis virus,IHNV)和杀鲑气单胞菌(Aeromonas salmonicida)都是鲑鳟类养殖过程中的重要病原。为开发这2种病原的疫苗,本研究将IHNV表面抗原糖蛋白G基因片段克隆至表达载体pGEX-4T-1,构建IHNV糖蛋白重组表达质粒pGEX-4T-1-G。以杀鲑气单胞菌SC18032201为载体,通过电击转化,构建IHNV糖蛋白表达载体SC18032201-G。利用IPTG诱导IHNV糖蛋白在SC18032201-G中进行表达,并对IPTG浓度、诱导温度和诱导时间进行了优化,Western Blotting结果显示,经IPTG诱导后G蛋白可以在SC18032201-G中表达,重组蛋白的最佳诱导条件为0.2 mmol/L IPTG、28 ℃诱导表达8 h。以优化后的条件对SC18032201-G进行培养、诱导、灭活和乳化,腹腔注射免疫虹鳟(Oncorhynchus mykiss)。免疫45 d后,测定虹鳟血清IHNV中和抗体水平,并进行杀鲑气单胞菌攻毒,评价疫苗载体的免疫保护效果。实验结果显示,在免疫第45天后虹鳟血清IHNV中和抗体效价为54.95±6.76,显著高于对照组;免疫45 d后虹鳟对杀鲑气单胞菌的相对免疫保护率为100%。综上所述,本研究以杀鲑气单胞菌作为载体疫苗,构建IHNV糖蛋白的二价疫苗可诱导虹鳟产生针对杀鲑气单胞菌和IHNV的特异性免疫,为虹鳟养殖过程中的病害防控提供了有效手段。
关键词传染性造血器官坏死病毒    杀鲑气单胞菌    疫苗    中和抗体    
Development of Aeromonas salmonicida Vaccine Carrier Expressing G Protein of Infectious Hematopoietic Necrosis Virus
GAO Yatong 1,2, WANG Zhipeng 3, GAO Ye 2, ZHU Ming 1, LI Jie 2     
1. Jiangsu Ocean University, Lianyungang 222006, China;
2. State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
3. School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China
Abstract: Rainbow trout is an important cold-water fish farmed worldwide, and it is cultured on a large scale in Gansu, Qinghai, and Xinjiang Province in China. With the development of rainbow trout farming and increase in production recently, diseases have gradually become an important limiting factor for rainbow trout development, causing huge economic losses, threatening the health of rainbow trout, and sustainable aquaculture industry development in China. The major rainbow trout pathogens are infectious hematopoietic necrosis virus (IHNV) and Aeromonas salmonicida. IHNV is the causative agent of IHN and causes necrosis of the kidneys, spleens, and hematopoietic tissues of fish, with a mortality greater than 90%, causing great economic losses to the rainbow trout farming industry worldwide. The IHNV genome encodes five structural and one non-structural proteins. Among them, the glycoprotein, also known as the G protein, is the only surface protein and main antigen of the virus. G protein stimulates neutralizing antibodies in the host, inducing cellular immunity, and playing an important role in viral pathogenicity and immune responses. Currently, most studies have focused on DNA vaccines targeting the IHNV G protein. A. salmonicida causes furunculosis and ulcers in various fish species, including rainbow trout. Currently, internationally commercialized vaccines against A. salmonicida are widely used, however China still mainly depends on antibiotics for disease control. Therefore, in China, developing a vaccine against A. salmonicida is necessary. Herein, the IHNV-G protein gene was amplified by PCR and ligated into the pGEX-4T-1 plasmid to obtain the G protein expression vector, pGEX-4T-1-G. The recombinant plasmid pGEX-4T-1-G was transformed into A. salmonicida subsp. salmonicida SC18032201 by electronic transformation, to obtain the A. salmonicida vaccine carrier SC18032201-G, which expressed the G protein of IHNV as a polyvalent vaccine. The SC18032201 with pGEX-4T-1 plasmid (SC18032201-pGEX) and wild-type strain SC18032201 were used as negative controls. Isopropyl-β-D-thiogalactopyranoside (IPTG) was used to induce G protein in SC18032201-G cells. The G protein expressed by A. salmonicida SC18032201-G was detected by western blotting using mouse anti-His protein serum as the primary antibody and goat anti-mouse serum with HRP as the secondary antibody. The results demonstrated that after IPTG induction, specific reaction bands were detected by the recombinant vaccine carrier SC18032201-G carrying the pGEX-4T-1-G plasmid, but not by SC18032201-pGEX and wild-type A. salmonicida SC18032201, which indicated that the G protein was expressed in A. salmonicida SC18032201-G. The expression of G protein was optimized by adjusting the induction time, IPTG concentration, and culture temperature. Western blotting showed that the best induction condition for recombinant G protein expression by SC18032201-G was 0.2 mmol/L IPTG at 28 ℃ for 8 h. The optimized conditions were used for the incubation and induction of SC18032201-G, and the bacteria were inactivated with formaldehyde. Then the inactivated bacteria were emulsified with Montanide™ ISA 763A VG as adjuvant to prepare an oil-based vaccine. A PBS control was prepared using the same method. Rainbow trout were immunized by intraperitoneal injection with a vaccine or phosphate buffered saline (PBS) control. Forty-five days post-vaccination, 10 rainbow trout from each group were randomly selected for blood sampling from the caudal vertebrae. Blood was stored at 4 ℃ overnight and centrifuged to obtain the serum for antibody detection. The serum was diluted two-fold (1:2−1:256) and incubated at a 1:1 ratio with IHNV viral culture medium [100× TCID50(50% tissue culture infective dose)]. The mixture was added to a monolayer of carp epithelial tumor cells (EPC) with eight replicates per gradient. The cells were incubated at 15 ℃ and observed for 7 d. The cytopathic effect (CPE) of the culture was recorded, and the highest serum dilution that inhibited 50% of the CPE was recorded as the neutralizing antibody level. The results showed that the neutralizing antibody titer was 54.95±6.76 in the vaccinated group, and no neutralizing antibody potency was detected in the control group. The difference between the neutralizing antibody titers of the immunized and control groups was highly significant (P < 0.01). Forty-five days after immunization, rainbow trout were infected with 1×106 CFU/mL A. salmonicida SC18032201 by immersion and observed continuously for 30 d. The mortality of rainbow trout was recorded for 30 d, and the relative survival percentage was calculated. The results showed that the relative survival percentage of rainbow trout vaccinated against A. salmonicida was 100% after 45 d of immunization, which was significantly different from that of the control group. In conclusion, we constructed an A. salmonicida vaccine carrier that expresses the G protein of IHNV, which provides effective protection against A. salmonicida and induces the specific neutralizing antibody of IHNV in rainbow trout. The vaccine carrier can be used as a polyvalent vaccine for major rainbow trout pathogens and as an effective route for disease control in rainbow trout farming in the future.
Key words: Infectious hematopoietic necrosis virus    Aeromonas salmonicida    Vaccine    Neutralizing antibody    

虹鳟(Oncorhynchus mykiss)是世界重要的养殖冷水鱼,在我国甘肃、青海和新疆等地区也有大范围养殖。近年来,随着虹鳟养殖规模的扩大和产量的提升,病害问题也逐步成为产业发展的重要限制因素,严重影响了我国虹鳟养殖业的健康发展。其中,传染性造血器官坏死病毒(infectious hematopoietic necrosis virus, IHNV)和杀鲑气单胞菌(Aeromonas salmonicida)是虹鳟的2种重要病原(所兴, 2014)。

IHNV主要引起鲑鳟类传染性造血器官坏死病(infectious hematopoietic necrosis, IHN),导致鱼类的肾脏、脾脏和造血组织坏死,死亡率在90%以上(LaPatra, 1996, Dixon et al, 2016),给全球的鲑鳟养殖业造成了巨大的经济损失。IHNV基因组编码了5种结构蛋白和1种非结构蛋白NV (McAllister et al, 1975; Kurath et al, 1985)。其中,糖蛋白又称G蛋白,是该病毒仅有的表面蛋白,也是主要的抗原决定簇,能刺激机体产生中和抗体,诱导产生细胞免疫,在病毒致病性和免疫应答等方面发挥重要作用,目前针对IHNV基因工程疫苗的研究多以G蛋白为主(Dancho et al, 2009)。

杀鲑气单胞菌隶属于气单胞菌属(Aeromonas),是一种兼性厌氧型革兰氏阴性短杆菌(Colwell et al, 1986),可导致多种鱼类发生疖疮病或溃疡病(Valderrama et al, 2019)。目前,国际上商业化的鲑鳟类杀鲑气单胞菌油乳化灭活疫苗技术已非常成熟,而我国尽管多次发现杀鲑气单胞菌感染(晋怀远等, 2023; 刘静静等, 2023),但仍缺乏可用的疫苗产品。

因此,为解决上述2种主要病原对虹鳟养殖业的威胁,本研究以杀鲑气单胞菌作为载体,表达IHNV G蛋白,构建针对IHNV和杀鲑气单胞菌2种病原的多联疫苗,并对其免疫保护效果进行分析,以期为我国虹鳟健康养殖提供技术支持。

1 材料与方法 1.1 菌株、质粒和实验用鱼

杀鲑气单胞菌杀鲑亚种菌株SC18032201由本实验室鉴定和保存(Lin et al, 2020),大肠杆菌(Escherichia coli) DH5α和蛋白表达质粒pGEX-4T-1为本实验室保存,IHNV购买自深圳海关,单层胖头上皮细胞(epithelioma papulosum cyprinid,EPC)由中国水产科学研究院长江水产研究所赠送。健康虹鳟购买自山东潍坊临朐一虹鳟养殖场,体重为(53±6.84) g,养殖于1 t水体的循环水系统中,每日循环量20次,水温为14~16 ℃,溶氧为8~10 mg/L,投喂率为1.2%,实验前随机取40尾鱼,进行细菌分离和IHNV检测,确保实验鱼未感染病原。

1.2 方法 1.2.1 引物设计与合成

根据J型IHNV G蛋白基因序列(序列号:MT242597),以杀鲑气单胞菌基因组密码子偏好性进行密码子优化并合成[生工生物工程(上海)股份有限公司]。利用Primer 5.0设计优化后的IHNV-G蛋白基因片段的引物序列,上游引物IHNV-of-pGEX-4T-1-for:5′-CGCGTGGATCCCCGG CAGACCGTCCCGCCGGATAC-3′,下游引物IHNV-of-pGEX-4T-1-rev:5′-GTCGACCCGGGAATT TTATCAAGATGATGGTGGTGATGATGCAAGC-3´由派森诺公司合成。

1.2.2 IHNV-G蛋白表达载体构建

以密码子优化后的基因作为PCR模板。选择引物IHNV-of-pGEX-4T-1-for、IHNV-of-pGEX-4T-1-rev扩增IHNV-G蛋白基因,扩增程序:98 ℃预变性1 min;98 ℃变性10 s;58 ℃退火5 s,72 ℃延伸15 s,35个循环;72 ℃充分延伸7 min。扩增产物经1.0%琼脂糖凝胶电泳检测、回收并连接到pGEX-4T-1载体和测序验证,得到IHNV G蛋白表达质粒pGEX-4T-1-G。用电转化法将重组质粒pGEX-4T-1-G转入感受态细胞SC18032201,得到转化成功的阳性转化子SC18032201-G。

1.2.3 重组蛋白的诱导表达及Western Blotting分析

以含有空载体pGEX-4T-1质粒的SC18032201-pGEX和野生菌株SC18032201作为阴性对照,进行蛋白诱导表达检测。将诱导表达后的包涵体用8 mol/L尿素溶解,将处理后的蛋白上清液和包涵体进行12% SDS-PAGE凝胶电泳。电泳后转移至PVDF膜上,以小鼠抗6×His单克隆抗体作为一抗,HRP标记的山羊抗小鼠IgG作为二抗,对重组蛋白进行Western Blotting检测。采用单因素法探究诱导温度、诱导时间和诱导剂浓度对蛋白质表达量的影响并进行优化,每次只设1个变量。以终浓度为0.1 mmol/L的IPTG分别于20、24、28、32 ℃诱导培养12 h,取样进行Western Blotting检测优化诱导温度;以终浓度为0.1 mmol/L的IPTG,28 ℃,分别诱导4、8、12、16、20 h,取样进行Western Blotting检测优化诱导时间;以终浓度为0.05、0.1、0.2、0.4、0.8 mmol/L的IPTG,28 ℃诱导8 h,取样进行Western Blotting检测优化IPTG浓度。

1.2.4 疫苗免疫和效果评价

在最佳诱导表达条件下诱导SC18032201-G表达重组蛋白,使用5‰的甲醛灭活24 h,进行平板涂布检测灭活情况。完全灭活的菌液用PBS稀释至终浓度约1×109 cell/mL,以Montanide™ ISA 763A VG为佐剂,制备油乳化疫苗,按照同样的方法制备PBS对照组。将100尾健康虹鳟随机分为2组,免疫组50尾,腹腔注射SC18032201-G二联疫苗;对照组50尾,腹腔注射等剂量的PBS。在免疫后45 d,从各组中随机挑选10尾虹鳟进行尾静脉采血收集血清。剩余免疫组和对照组虹鳟随机分为2组,每组20尾。浸泡感染1×106 CFU/mL杀鲑气单胞菌SC18032201,连续观察30 d,统计累积死亡数,并计算相对免疫保护率(relative percent survival, RPS)。RPS=[1–(接种疫苗鱼的死亡率/未接种疫苗鱼的死亡率)]×100%。

1.2.5 血清中和抗体效价测定

将IHNV原液用细胞维持液(MEM培养基+2%胎牛血清+1%双抗)连续稀释并分别接种到单层EPC。15 ℃ CO2恒温培养箱内孵育1 h后弃去含有病毒的培养液,每孔更换为100 μL细胞维持液,于15 ℃静置培养,每天观察所有孔病毒的细胞病变效应(cytopathic effect, CPE)情况并连续7 d记录结果,使用Reed-Muench法计算TCID50 (50% tissue culture infective dose)结果(Lapatra et al, 1993)。将1.2.4中的血清样品用细胞维持液进行连续2倍系列稀释(1∶2~1∶256)后,与100 TCID50的IHNV液以1∶1的比例混合,置于15 ℃ CO2培养箱中孵育1 h,接种于96孔板单层EPC细胞,于15 ℃ CO2培养箱孵育1 h后弃去细胞培养液,更换为每孔100 μL的细胞维持液。将96孔板置于15 ℃静置培养,连续观察7 d,记录病变及未病变孔数,以抑制50%细胞病变的血清最高稀释度作为血清中和效价,按Reed-Muench法计算血清中和抗体效价。

2 结果 2.1 疫苗载体SC18032201-G的构建

用引物IHNV-of-pGEX-4T-1-for、IHNV-of-pGEX-4T-1-rev扩增IHNV糖蛋白基因,得到1 341 bp糖蛋白基因目的片段(图 1),与酶切后pGEX-4T-1质粒用无缝克隆试剂盒连接,转化DH5α感受态细胞后进行PCR和测序鉴定(图 2),表明pGEX-4T-1-G重组质粒构建成功。将重组质粒pGEX-4T-1-G电击转化至杀鲑气单胞菌SC18032201感受态细胞中,PCR扩增并测序验证,确定SC18032201-G载体构建成功(图 3)。

图 1 HNV-G蛋白基因PCR扩增产物 Fig.1 PCR products of IHNV G protein gene M:DNA分子量标准DL2000,下同;1:阴性对照;2~4:G基因PCR扩增产物。 M: DNA marker DL2000, the same below; 1: Negative control; 2−4: PCR product of G gene.
图 2 重组质粒菌液PCR鉴定 Fig.2 PCR identification of recombinant plasmid 1~4:重组质粒pGEX-4T-1-G PCR扩增产物。 1−4: PCR Product of recombinant plasmid pGEX-4T-1-G.
图 3 重组质粒pGEX-4T-1-G电转化杀鲑气单胞菌的鉴定结果 Fig.3 Identification of the recombinant plasmid pGEX-4T-1-G in A. salmonicida 1~4:杀鲑气单胞菌SC18032201-G PCR扩增产物。 1−4: PCR product of SC18032201-G.
2.2 重组蛋白的诱导表达及Western Blotting分析 2.2.1 重组蛋白的Western Blotting分析

将重组菌SC18032201-G于28 ℃ IPTG诱导12 h后,取菌体细胞破碎、Western Blotting分析,并以含有pGEX-4T-1质粒的杀鲑气单胞菌SC18032201-pGEX和野生型株菌SC18032201作为对照。结果显示,SC18032201-G细胞破碎液中出现了特异性的结合条带(78 kDa),而含有pGEX-4T-1质粒的SC18032201-pGEX和野生型株菌SC18032201细胞破碎产物并未出现特异性条带(图 4)。Western Blotting结果表明,IHNV G蛋白在SC18032201-G中成功表达。

图 4 重组蛋白的Western Blotting鉴定 Fig.4 Western Blotting of recombinant proteins M:彩虹130广谱蛋白分子量标准(15~130 kDa),下同;1~3:SC18032201-G、SC18032201-pGEX、野生株SC18032201诱导后上清液;4~6:SC18032201-G、SC18032201-pGEX野生株SC18032201诱导后沉淀。 M: Rainbow 130 broad-spectrum protein marker (15~130 kDa), the same below; 1–3: Supernatant of induced SC18032201-G, SC18032201-pGEX and wild strain SC18032201; 4–6: Precipitation of induced SC18032201-G, SC18032201-PGEX, wild strain SC18032201.
2.2.2 诱导条件的优化

将重组菌SC18032201-G于20、24、28、32 ℃诱导12 h后的Western Blotting结果显示,20 ℃未能诱导目的蛋白成功表达,24 ℃能诱导目的蛋白少量表达,28 ℃和32 ℃都能诱导蛋白大量表达,但32 ℃超出杀鲑气单胞菌的最适生长温度(图 5)。故选择28 ℃为蛋白诱导表达的最适温度。进一步对诱导时间进行优化,重组菌SC18032201-G诱导4、8、12、16、20 h后的Western Blotting结果显示,目的蛋白诱导4 h时表达量最低,8 h时表达量最高,8 h时后随着时间的延长,表达量几乎不变(图 6)。故选取8 h作为蛋白诱导表达的最适时间。重组菌SC18032201-G分别用终浓度0.05、0.1、0.2、0.4、0.8mmol/L的IPTG于28 ℃诱导8 h后的Western Blotting结果显示,目的蛋白诱导经0.2 mmol/L IPTG诱导时表达量最高,其余浓度IPTG诱导,表达量几乎一致(图 7)。故选取作0.2 mmol/L为蛋白诱导表达的最适IPTG浓度。因此,重组菌SC18032201-G的最佳蛋白诱导条件为0.2 mmol/L IPTG、28 ℃诱导表达8 h。

图 5 重组菌在不同温度下蛋白表达 Fig.5 Protein expression in recombinant strains at different temperatures 1~4:20、24、28、32 ℃诱导后上清液;5~8:20、24、28、32 ℃诱导后沉淀。 1–4: Supernatant induced at 20, 24, 28, and 32 ℃; 5–8: Precipitate induced at 20, 24, 28, and 32 ℃.
图 6 重组菌在不同时间下蛋白表达 Fig.6 Protein expression in recombinant strains at different times 1、2、3、4、5:诱导4、8、12、16、20 h后上清液;6、7、8、9、10:诱导4、8、12、16、20 h后沉淀。 1, 2, 3, 4, 5: Supernatant induced after 4, 8, 12, 16, 20 h; 6, 7, 8, 9, 10: Precipitation induced after 4, 8, 12, 16, 20 h.
图 7 重组菌在不同IPTG浓度下蛋白表达 Fig.7 Protein expression of recombinant strains at different concentration of IPTG 1~5:0.05、0.1、0.2、0.4、0.8 mmol/L IPTG诱导后上清液;6~10:0.05、0.1、0.2、0.4、0.8 mmol/L IPTG诱导后沉淀。 1–5: Supernatant induced by IPTG of 0.05, 0.1, 0.2, 0.4, and 0.8 mmol/L; 6–10: Precipitates induced by IPTG of 0.05, 0.1, 0.2, 0.4, and 0.8 mmol/L.
2.3 载体疫苗免疫保护效果的评价 2.3.1 IHNV中和抗体效价的检测

将IHNV液以不同的稀释倍数在EPC细胞中培养7 d后观察CPE变化情况,根据Read-Muench方法计算,IHNV的滴度为10–5.79 TCID50/mL。测定免疫组和对照组各10尾虹鳟血清IHNV中和抗体效价,其中免疫组中和抗体效价为54.95±6.76,对照组未检出IHNV中和抗体,免疫组中和抗体效价与对照组间差异极显著(P < 0.01)。

2.3.2 疫苗对杀鲑气单胞菌的免疫保护效果

疫苗腹腔注射免疫虹鳟45 d后,分别对免疫组和对照组进行浸泡攻毒,每天记录死亡数量,对照组的死亡率分别为35%和40%,免疫组未发生死亡情况,疫苗对杀鲑气单胞菌感染的相对免疫保护率为100% (表 1)。

表 1 载体疫苗的免疫保护力 Tab.1 Immune protection of recombinant vaccine
3 讨论

疫苗是预防虹鳟疾病的最有效手段,在国际上针对虹鳟疾病的各种商业疫苗已广泛使用,如IHNV的DNA疫苗(Alonso et al, 2013)、IPNV的亚单位疫苗(Dadar et al, 2015)、传染性鲑鱼贫血病毒(infectious salmon anaemia virus, ISAV)的重组疫苗(Adams, 2013)和杀鲑气单胞菌的油佐剂疫苗(Villumsen et al, 2015)等。由于鲑鳟类面临多种病原的威胁,以植物油或矿物油为佐剂的多联疫苗是其商业疫苗的主要类型(Villumsen et al, 2015)。而目前IHNV仅有一款DNA疫苗上市,以水剂的形式肌肉注射免疫(Alonso et al, 2013),无法作为抗原之一加入多联疫苗,从而给IHNV疫苗的应用带来很大困难。

目前已报道的IHNV疫苗类型包括DNA疫苗、灭活疫苗和亚单位疫苗等。如Ballesteros等(2015)将IHNV和VHSV的G基因分别连接到pcDNA 3上,成功构建了2株DNA疫苗,免疫保护率达到96%和94%。Wu等(2023)以CpG序列为佐剂,构建了IHNV G基因的DNA疫苗,在感染初期Mx-1和IFN-γ的表达量显著上调,刺激鱼体产生特异性IgM抗体和中和抗体。Lin等(2022)以Montanide GEL 02 PR为胶体佐剂,制备了IHNV灭活疫苗,免疫保护周期可达285 d以上,具有广泛的应用潜力。在重组蛋白疫苗方面,IHNV的蛋白疫苗主要以表面糖蛋白为主。Sun等(2022)利用虹鳟鱼CK 6趋化因子蛋白和IHNV截短型G蛋白构建分泌型重组干酪乳杆菌口服疫苗,相对免疫保护率为66.67%。王艳雪(2019)对IHNV-G蛋白基因片段进行截短重组表达制备了重组亚单位疫苗,相对保护率为60%。本研究也利用IHNV表面G蛋白作为抗原,首次利用致病性的杀鲑气单胞菌作为表达载体进行重组表达。实验结果显示,IHNV G蛋白可以在重组菌SC18032201-G中获得表达,优化表达后的疫苗载体不但可以抵抗杀鲑气单胞菌的感染,也产生了IHNV的特异性中和抗体。

中和抗体是评价病毒疫苗免疫保护效果的重要指标之一,Traxler等(1999)研究表明,可通过检测接种虹鳟鱼的血清抗体水平来评估IHNV疫苗的功效。如以腺病毒作为载体构建的IHN-IPN二联疫苗免疫虹鳟后,免疫组中和抗体水平持续升高(Li et al, 20202023)。Zhao等(2017)利用酵母表面展示技术成功地将IHNVG蛋白展示在酿酒酵母表面制成口服疫苗,免疫虹鳟后血清抗IHNV中和抗体效价显著高于对照组。本研究也选择了中和抗体作为IHNV疫苗的评价指标,实验结果显示,免疫组虹鳟血清中IHNV中和抗体效价显著高于对照组,具有对IHNV的中和能力。

综上所述,本研究以杀鲑气单胞菌杀鲑亚种SC18032201菌株为表达载体,异源表达IHNV表面抗原G蛋白,构建的二联载体疫苗不但可以保护虹鳟免受杀鲑气单胞菌的感染,而且能够产生IHNV中和抗体,并可以油乳化疫苗的形式免疫,能够与目前应用最为广泛的鲑鳟类疫苗制成多联疫苗,在鲑鳟类的疾病防控中具有重要的应用价值。

参考文献
ADAMS A. Progress, challenges and opportunities in fish vaccine development. Fish & Shellfish Immunology, 2019, 90: 210-214
ALONSO M, LEONG J A. Licensed DNA vaccines against infectious hematopoietic necrosis virus (IHNV). Recent Patents on DNA & Gene Sequences, 2013, 7(1): 62-65
BALLESTEROS N A, ALONSO M, SAINT-JEAN S R, et al. An oral DNA vaccine against infectious haematopoietic necrosis virus (IHNV) encapsulated in alginate microspheres induces dose-dependent immune responses and significant protection in rainbow trout (Oncorrhynchus mykiss). Fish & Shellfish Immunology, 2015, 45(2): 877-888
COLWELL R R, MACDONELL M T, DE LEY J. Proposal to recognize the family Aeromonadaceae fam. nov. International Journal of Systematic and Evolutionary Microbiology, 1986, 36(3): 473-477
DADAR M, MEMARI H R, VAKHARIA V N, et al. Protective and immunogenic effects of Escherichia coli-expressed infectious pancreatic necrosis virus (IPNV) VP2-VP3 fusion protein in rainbow trout. Fish & Shellfish Immunology, 2015, 47(1): 390-396
DANCHO B, MCKENZIE M O, CONNOR J H, et al. Vesicular stomatitis virus matrix protein mutations that affect association with host membranes and viral nucleocapsids. Journal of Biological Chemistry, 2009, 284(7): 4500-4509 DOI:10.1074/jbc.M808136200
DIXON P, PALEY R, Alegria-Moran R, et al. Epidemiological characteristics of infectious hematopoietic necrosis virus (IHNV): A review. Veterinary Research, 2016, 47(1): 63 DOI:10.1186/s13567-016-0341-1
JIN H Y, LIU Y K, YE G, et al. Isolation and identification of Aeromonas salmonicida from Thamnaconus septentrionalis and Sebastes schlegeli. Progress in Fishery Sciences, 2023, 44(1): 191-200 [晋怀远, 刘耀宽, 高晔, 等. 绿鳍马面鲀与许氏平鲉杀鲑气单胞菌病原的分离和鉴定. 渔业科学进展, 2023, 44(1): 191-200]
KURATH G, LEONG J C. Characterization of infectious hematopoietic necrosis virus mRNA species reveals a nonvirion rhabdovirus protein. Journal of Virology, 1985, 53(2): 462-468 DOI:10.1128/jvi.53.2.462-468.1985
LAPATRA S E, TURNER T, LAUDA K A, et al. Characterization of the humoral response of rainbow trout to infectious hematopoietic necrosis virus. Journal of Aquatic Animal Health, 1993, 5(3): 165-171 DOI:10.1577/1548-8667(1993)005<0165:COTHRO>2.3.CO;2
LAPATRA S E. The use of serological techniques for virus surveillance and certification of finfish. Annual Review of Fish Diseases, 1996, 6(5): 15-28
LI S H, HU Y H, LI X R, et al. Development of a live vector vaccine against infectious pancreatic necrosis virus in rainbow trout. Aquaculture, 2020, 524: 735275 DOI:10.1016/j.aquaculture.2020.735275
LI S, LI X, YUAN R, et al. Development of a recombinant adenovirus-vectored vaccine against both infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus in rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology, 2023, 132: 108457
LIN Q, LI J, FU X Z, et al. Hemorrhagic gill disease of Chinese perch caused by Aeromonas salmonicida subsp. salmonicida in China. Aquaculture, 2020, 519: 734775 DOI:10.1016/j.aquaculture.2019.734775
LIN Y, REN G, ZHAO J, et al. Long-term protection elicited by an inactivated vaccine supplemented with a water-based adjuvant against infectious hematopoietic necrosis virus in rainbow trout (Oncorhynchus mykiss). Microbiology Spectrum, 2022, 10(6): e03245-22
LIU J J, LI G Y, JIN H Y, et al. Development of a PCR method to detect the Aeromonas salmonicida subsp. salmonicida and Aeromonas salmonicida subsp. Masoucida. Progress in Fishery Sciences, 2023, 44(4): 223-233 [刘静静, 李贵阳, 晋怀远, 等. 杀鲑气单胞菌杀鲑亚种和杀日本鲑亚种PCR检测方法的建立. 渔业科学进展, 2023, 44(4): 223-233]
MCALLISTER P E, WAGNER R R. Structural proteins of two salmonid rhabdoviruses. Journal of Virology, 1975, 15(4): 733-738 DOI:10.1128/jvi.15.4.733-738.1975
SUN J H, ZHANG M M, ZHAO D D, et al. Immunological effects of recombinant lactobacillus casei expressing IHNV G protein and rainbow trout (Oncorhynchus mykiss) chemokine CK6 as an oral vaccine. Frontiers in Immunology, 2022, 13: 927443 DOI:10.3389/fimmu.2022.927443
SUO X. Disease control and management of rainbow trout. Beijing Agriculture, 2014(6): 127-128 [所兴. 虹鳟鱼病害防治与管理. 北京农业, 2014(6): 127-128]
TRAXLER G S, ANDERSON E, LAPATRA S E, et al. Naked DNA vaccination of Atlantic salmon Salmo salar against IHNV. Diseases of Aquatic Organisms, 1999, 38(3): 183-190
VALDERRAMA K, SOTO-DÁVILA M, SEGOVIA C, et al. Aeromonas salmonicida infects Atlantic salmon (Salmo salar) erythrocytes. Journal of Fish Diseases, 2019, 42(11): 1601-1608 DOI:10.1111/jfd.13077
VILLUMSEN K R, KOPPANG E O, RAIDA M K. Adverse and long-term protective effects following oil-adjuvanted vaccination against Aeromonas salmonicida in rainbow trout. Fish & Shellfish Immunology, 2015, 42(1): 193-203
WANG Y X. Prokaryotic expression of the truncated G gene of infectious hematopoietic necrosis virus and its immunogenicity. Master´s Thesis of Northeast Agricultural University, 2019 [王艳雪. 传染性造血器官坏死病毒G基因截短原核表达及其免疫原性研究. 东北农业大学硕士研究生学位论文, 2019]
WU D, SHAO S, LIU Q, et al. Protection of a CpG-adjuvanted DNA vaccine against infectious hematopoietic necrosis virus (IHNV) nature infection in rainbow trout (Oncorhynchus mykiss). Aquaculture, 2023, 572: 739555
ZHAO J Z, XU L M, LIU M, et al. Preliminary study of an oral vaccine against infectious hematopoietic necrosis virus using improved yeast surface display technology. Molecular Immunology, 2017, 85: 196-204