渔业科学进展  2025, Vol. 46 Issue (3): 66-76  DOI: 10.19663/j.issn2095-9869.20240321002
0

引用本文 

和怡婧, 刘绵宇, 栾生, 孔杰, 李旭鹏, 曹宝祥, 罗坤, 谭建, 曹家旺, 代平, 强光峰, 王照欣, 隋娟, 孟宪红. 基于55K液相芯片的凡纳对虾生长和抗WSSV性状遗传参数估计[J]. 渔业科学进展, 2025, 46(3): 66-76. DOI: 10.19663/j.issn2095-9869.20240321002.
HE Yijing, LIU Mianyu, LUAN Sheng, KONG Jie, LI Xupeng, CAO Baoxiang, LUO Kun, TAN Jian, CAO Jiawang, DAI Ping, QIANG Guangfeng, WANG Zhaoxin, SUI Juan, MENG Xianhong. Penaeus vannamei Genetic Evaluation for Growth and Survival Traits During White Spot Syndrome Virus Infection Based on 55K SNP Chip[J]. Progress in Fishery Sciences, 2025, 46(3): 66-76. DOI: 10.19663/j.issn2095-9869.20240321002.

基金项目

国家自然科学基金(32172960)、国家虾蟹产业技术体系(CARS-48)和中国水产科学研究院科技创新团队项目(2020TD26)共同资助

作者简介

和怡婧, Email: 984865581@qq.com

通讯作者

隋娟,副研究员,Email: suijuan@ysfri.ac.cn
孟宪红,研究员,Email: mengxianhong@ysfri.ac.cn

文章历史

收稿日期:2024-03-21
收修改稿日期:2024-04-24
基于55K液相芯片的凡纳对虾生长和抗WSSV性状遗传参数估计
和怡婧 1,3, 刘绵宇 1, 栾生 1,2, 孔杰 1,2, 李旭鹏 1,2, 曹宝祥 1, 罗坤 1, 谭建 1, 曹家旺 1, 代平 1,2, 强光峰 1, 王照欣 4, 隋娟 1,2, 孟宪红 1,2     
1. 海水养殖生物育种与可持续产出全国重点实验室 中国水产科学研究院黄海水产研究所 山东 青岛 266071;
2. 青岛海洋科技中心海洋渔业科学与食物产出过程功能实验室 山东 青岛 266237;
3. 上海海洋大学 水产科学国家级实验教学示范中心 上海 201306;
4. 邦普种业科技有限公司 山东 潍坊 261312
摘要:本研究基于55K SNP液相芯片“黄海芯1号”分型信息估计了凡纳对虾(Penaeus vannamei)生长和白斑综合征病毒(WSSV)抗性的遗传参数,以期为育种芯片在凡纳对虾多性状复合新品种选育中的应用提供数据。对凡纳对虾59个家系,共计1 770尾个体进行WSSV感染测试;根据家系内个体抗WSSV存活时间均匀选取590尾个体,利用55K SNP液相芯片进行分型,复合系谱和基因型信息构建H矩阵及个体动物模型和父母本模型,基于H矩阵估计凡纳对虾感染WSSV后体长、个体抗WSSV存活时间和家系WSSV半致死存活率的遗传力和遗传相关。结果显示,凡纳对虾体长和个体抗WSSV存活时间遗传力分别为0.21±0.06和0.22±0.06,为中等遗传力水平,家系WSSV半致死存活率为0.16±0.06,为低等遗传力水平。经五折交叉验证,基于H矩阵的体长遗传力预测准确性较A矩阵提高18.12%,预测偏差无明显差别;抗WSSV存活时间遗传力预测准确性较A矩阵无明显差别,预测偏差较大;家系半致死存活率遗传力预测准确性较A矩阵降低29.07%,预测偏差较大。基于两性状动物模型,估计凡纳对虾体长与个体抗WSSV存活时间、家系WSSV半致死存活率遗传相关分别为0.13±0.20和0.30±0.22,与0无显著差异(P > 0.05);个体抗WSSV存活时间与家系WSSV半致死存活率的遗传相关为0.95±0.03,与1无显著差异(P > 0.05)。研究显示,利用芯片开展凡纳对虾生长的遗传评估可有效提高评估的准确性;WSSV抗性性状的评估可能受分型个体选择等因素影响,预测准确性无明显提升;个体抗WSSV存活时间在准确性和预测偏差等方面均优于家系抗WSSV半致死存活率的评估结果。在抗WSSV存活时间和家系半致死存活率高度相关的情况下,可考虑将抗WSSV存活时间作为基因组选择的目标性状。
关键词凡纳对虾    遗传评估    ssGBLUP    WSSV抗性    生长    
Penaeus vannamei Genetic Evaluation for Growth and Survival Traits During White Spot Syndrome Virus Infection Based on 55K SNP Chip
HE Yijing 1,3, LIU Mianyu 1, LUAN Sheng 1,2, KONG Jie 1,2, LI Xupeng 1,2, CAO Baoxiang 1, LUO Kun 1, TAN Jian 1, CAO Jiawang 1, DAI Ping 1,2, QIANG Guangfeng 1, WANG Zhaoxin 4, SUI Juan 1,2, MENG Xianhong 1,2     
1. State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
2. Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China;
3. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China;
4. BLUP Aquabreed Co, Ltd. Weifang 261312, China
Abstract: White shrimp (Penaeus vannamei), are native to the Pacific coastal waters of South America. With rapid growth rates and environmental adaptability, P. vannamei was introduced to China in 1988 and has since been promoted extensively for aquaculture. In 2022, its domestic production reached 2.09 million tons, accounting for one-third of the global annual aquaculture production of shrimp. P. vannamei has become a mainstay aquaculture industry of China, playing a crucial role in the economic development of coastal areas, increasing the income of fishermen, and maintaining the stable development of the rural fisheries economy.Growth traits present the most important economic trait of P. vannamei; however, with the continuous expansion of the scale culture and the deterioration of the culture environment, viral diseases are among the main causes of economic loss. Among them, white spot syndrome virus (WSSV) outbreaks have impacted many global regions since its first appearance in 1992. Infected shrimp have reduced intake, enlarged hepatopancreas, and white spots on the body. Currently, there is no effective method to prevent and control the spread of the virus, and the breeding of new varieties with both growth and WSSV resistance is urgently required. Obtaining precise genetic parameters for economic traits is the basis for developing breeding programs, and in particular, the precise assessment of heritability and genetic correlations, is an important guide in the development of selection indices, retention, and mating programs.Genetic parameter estimation mainly uses Pedigree-based Best Linear Unbiased Prediction (pBLUP). This method estimates breeding values by constructing an A matrix and correcting for different effectors and is widely used in genetic evaluation of economic traits in aquatic animals. However, pBLUP uses the A-matrix for resistance traits that are difficult to measure directly using siblings can only use 50% of the genetic variation, thus the assessment is not accurate. The use of individual typing information to construct a genomic matrix can accurately measure the true relationship between individuals, and the calculation of breeding values is performed considering the Mendelian sampling effect, which is conducive to improving the accuracy of the assessment. This assessment plays an important role in livestock and poultry breeding such as dairy cattle; however, shrimp single-tail value is low and is costly to perform at the population level. The single step genomic best linear unbiased prediction (ssGBLUP) types only some of the individuals, and composite genealogical and genotypic information is used for the breeding value assessment, which reduces the cost of individual typing. Accordingly, this method has been widely used in aquatic animals. Genomic breeding microarrays have also become an important genotyping tool in crop and livestock breeding due to their advantages of reproducibility, high accuracy, maneuverability, and low price.To assess the prospects for the application of breeding microarrays in the selection of new composite varieties for growth and WSSV resistance in the P. vannamei, this study used 59 lines of P. vannamei, totaling 1, 770 individuals, and tested for WSSV infection using an independently bred high resistance line of P. vannamei. Based on the survival time of individual resistance to WSSV within the family line, 590 individuals were uniformly selected and typed using 55K SNP liquid-phase microarrays to obtain genotypic data for certain individuals. An ssGBLUP model was established by combining phenotypic values, genealogical and genotypic data, and the heritability and genetic correlation were estimated for the length of the body, the survival time of individual and half-lethal survival rate (SS50) after infection with WSSV.The heritabilities of body length and survival time in individual P. vannamei were 0.21±0.06 and 0.22±0.16, respectively, indicating medium heritability levels. The heritability of SS50 after infection with WSSV was 0.16±0.06, indicating a low heritability level. The prediction accuracy of heritability of body length based on the H-matrix was increased by 18.12% compared with the A-matrix after five-fold cross validation, and the prediction bias was not significantly different. The heritability prediction accuracy of survival time against WSSV was not significantly different from the A matrix, and the prediction bias was large in H-matrix. Furthermore, the heritability prediction accuracy of SS50 was reduced by 29.07% from the A matrix, and the prediction bias was large in the H-matrix. Based on the two-trait animal model, the estimated genetic correlation between the body length of P. vannamei and survival time of individuals against WSSV and SS50 were 0.13±0.20 and 0.30±0.22, respectively, which were not significantly different from 0 (P > 0.05). The genetic correlation between the survival time of individuals against WSSV and SS50 was 0.95±0.03, which was not significantly different from 1 (P > 0.05).The study showed that the genetic assessment of the growth of P. vannamei by microarray can effectively improve the accuracy of the assessment, the evaluation of WSSV survival time traits may be affected by the selection of individuals and other factors, and the prediction accuracy was not significantly improved. Finally, the survival time traits of individual anti-WSSV was better than the SS50 trait of family anti-WSSV in terms of accuracy and prediction bias. In the case that anti-WSSV survival time is highly correlated with the SS50 trait, anti-WSSV survival time can be considered as a target trait for genomic selection.In this study, we estimated the genetic parameters of growth and WSSV resistance in P. vannamei based on the typing information of 55K SNP liquid microarray "Yellow Sea Chip No.1, " which provides a reference for the application of breeding microarrays in selecting new multi-trait composite varieties of P. vannamei.
Key words: Penaeus vannamei    Genetic evaluation    ssGBLUP    WSSV resistance    Growth    

凡纳对虾(Penaeus vannamei),又称南美白对虾,原产于南美太平洋沿岸海域。自1988年引入我国后,因其生长速度快、环境适应性强,得到大规模推广养殖(张伟权, 1990)。2022年,国内年产量达209万t (农业农村部渔业渔政管理局等, 2023),占凡纳对虾世界年养殖产量的三分之一(FAO, 2023),已成为我国水产养殖的支柱产业,对沿海地区经济发展、渔民增收、维持农村渔业经济的稳定发展等方面具有举足轻重的作用。生长性状是凡纳对虾最受关注的经济性状,然而,随着凡纳对虾养殖规模的不断扩大以及养殖环境的恶化,养殖过程中疾病频发,其中,白斑综合征病毒(white spot syndrome virus, WSSV)传播能力强,感染病毒的对虾摄食量减少,肝胰腺肿大,身体出现白色斑点(张吕平等, 2000),3~13 d内死亡率可达100% (Syed Musthaq et al, 2006),给对虾产业造成了巨大的经济损失。目前,尚无防控病毒传播的有效方法,培育兼具生长速度和WSSV抗性的新品种是市场的迫切需求(Gitterle et al, 2005a; 王全超, 2017)。

获得经济性状的精准遗传参数是制定育种方案的基础,尤其是遗传力及遗传相关的精确评估在制定选择指数、留种及配种方案等方面具有重要的指导意义(孟思远等, 2010)。传统的遗传参数估计主要使用基于系谱的最佳线性无偏预测法(pedigree-based best linear unbiased prediction, pBLUP)。该方法通过构建A矩阵,矫正不同效应因子来估计育种值(董林松, 2012),在水产动物经济性状的遗传评估中广泛应用(Gjedrem et al, 2009; Henderson, 1984)。然而,抗性性状无法直接在候选个体上测试,通常采用家系同胞个体进行测试,利用A矩阵的pBLUP法仅能利用50%的遗传变异,评估的准确性有限(宋海亮等, 2022)。

利用个体基因型信息构建基因组亲缘关系矩阵能够更准确地衡量个体间的真实关系(张哲等, 2011),且进行育种值计算时,考虑了孟德尔抽样效应,有利于提高估计的准确性,在奶牛等物种的育种中发挥了重要作用(贺巾锋等, 2024)。然而,对虾单尾价值低,在群体水平开展测序耗资巨大。单步基因组最佳线性无偏预测方法(single step genomic BLUP, ssGBLUP) (Legarra et al, 2014)允许仅对部分个体进行基因分型,复合系谱和基因型信息进行育种值预测,降低了成本(Andersson, 2012),该方法已在水产动物中广泛应用。基因组育种芯片由于具有可重复性、准确性高、操作性强、价格低等优势(Robledo et al, 2018),已成为作物和家畜育种中重要的基因分型工具(Rasheed et al, 2020)。在罗非鱼(Oreochromis mossambicus)(Yáñez et al, 2019)、大西洋鲑(Salmo salar) (Houston et al, 2014)、鲤(Cyprinus carpio)(Xu et al, 2014)、凡纳对虾(Jones et al, 2017)等多个水产养殖品种中开发了不同SNP密度的基因芯片并对重要性状展开评估。Garcia等(2021)应用50K SNP基因分型信息评估凡纳对虾种群的遗传多样性和连锁不平衡;Campos-Montes等(2023)应用50K SNP芯片对凡纳对虾WSSV抗性进行遗传多样性、种群结构、连锁不平衡和全基因组关联分析(GWAS)研究,取得了良好的效果。本研究团队利用自主研发的凡纳对虾40 K SNP芯片分型信息估计了低温波动条件下幼虾体重性状的遗传参数(刘东亚, 2022);此后,该芯片进一步升级为55K SNP液相芯片“黄海芯1号”,含有53 128个背景SNP位点,以及急性肝胰腺坏死病(AHPND)抗性、WSSV抗性、饲料转化效率、生长性状等重要经济性状相关的3 086个功能SNP位点,可以对大量凡纳对虾育种个体的基因和遗传信息进行快速精准的检测和分析。刘杨等(2023)利用该芯片对凡纳对虾AHPND抗性进行遗传评估,基于芯片分型获得的基因组信息可进一步提升育种值的预测准确性。

为评估育种芯片在凡纳对虾生长和WSSV抗性复合新品种选育中的应用前景,本研究以自主培育的凡纳对虾高抗品系为研究对象,进行单尾精准WSSV毒饵投喂感染,利用自主研发的55K SNP芯片“黄海芯1号”获得部分个体的基因型数据,结合表型值、系谱和基因型数据建立ssGBLUP模型,评估生长和WSSV抗性的遗传力及遗传相关,以期为利用芯片开展凡纳对虾WSSV抗性评估及多性状复合新品种培育提供基础数据。

1 材料与方法 1.1 实验材料

实验材料来自邦普种业科技有限公司(山东,潍坊昌邑) 2022年4月构建的凡纳对虾G5代高抗核心育种群体。同年7月,选取59个全同胞家系(含5个半同胞家系),随机抽样检测,确保其不携带WSSV、EHP、VpAHPND、IHHNV和DIV1等病原。每个家系随机选取40尾个体,共计2 360尾运至性状测试基地。

1.2 生长和WSSV抗性测试

测试地点:中国水产科学研究院黄海水产研究所鳌山基地。测试过程详见和怡婧等(2023),简述如下:

实验前暂养及准备:每家系的个体单独养殖在一个200 L塑料桶中,常规养殖条件下暂养7 d。同时制备106拷贝/mg的毒饵(孟宪红等, 2013)。

生长及WSSV抗性测试:测试前1 d停止喂料。实验组:每个家系随机取30尾个体,每尾虾投喂10 mg毒饵(孟宪红等, 2013),毒饵中加入了红色可食用色素,对虾摄食后肠道出现红色,可以确保每尾对虾都摄入毒饵,共计感染1 770尾测试个体。投喂结束后,每个家系个体平均分成3组,每组个体养殖于70 cm×40 cm×40 cm的亚克力盒子内。每天定时投喂饲料、换水,保证测试个体养殖条件一致。对照组:每个家系另取5尾正常饲喂个体,观察其存活状态。实验组投喂毒饵后,每2 h观察一次,捞出死亡幼虾,记录个体家系号、个体死亡时间及死亡时体长(眼柄末端至尾节末端长度)。连续3 d没有死亡个体时,停止实验。

样品保存:死亡个体取肌肉组织迅速置于液氮速冻,随后转入–80 ℃冰箱保存。

1.3 基因分型

根据凡纳对虾个体存活时间,每个家系均匀取10尾个体,共计590尾。在石家庄博瑞迪生物技术有限公司构建55K SNP液相芯片的靶向测序文库并进行高通量分型。通过PLINK软件对分型信息进行质控,以SNP检出率 > 0.10、次等位基因频率(MAF) > 0.05、个体基因型检出率 > 0.20为质控标准,最终保留576尾个体,50 785个SNP位点。

1.4 统计分析 1.4.1 表型分析

利用Excel 2010软件对测试及分型个体信息进行整理汇总,包括个体编号、家系编号、个体感染后存活时间和个体体长,统计测试性状的平均值、标准差、最大值、最小值和变异系数等。

1.4.2 遗传参数估计

利用576尾个体的SNP分型信息,复合物理系谱构建H矩阵。H矩阵定义为:

$ {\text{H}} = \left[ {\begin{array}{*{20}{c}} {{{\text{A}}_{{\text{11}}}}{\text{ + }}{{\text{A}}_{{\text{12}}}}{\text{A}}_{{\text{22}}}^{ - {\text{1}}}{\text{(G}} - {{\text{A}}_{{\text{22}}}}{\text{)A}}_{{\text{22}}}^{ - {\text{1}}}{{\text{A}}_{{\text{21}}}}}&{{{\text{A}}_{{\text{12}}}}{\text{A}}_{{\text{22}}}^{ - {\text{1}}}{\text{G}}} \\ {{\text{GA}}_{{\text{22}}}^{ - {\text{1}}}{{\text{A}}_{{\text{21}}}}}&{\text{G}} \end{array}} \right] $

式中,H为包括系谱和基因型信息的混合亲缘关系矩阵;A表示加性遗传矩阵,A11和A22分别表示无基因型个体和有基因型个体的基于系谱信息的加性遗传矩阵,A12和A21是A的子矩阵。G表示有基因分型信息的个体间基因组关系矩阵。

利用平均信息约束极大似然法(average information restricted maximum likelihood, AIREML),通过ASReml 4.0估计凡纳对虾测试个体生长及WSSV抗性的遗传参数。其中,体长和WSSV感染后存活时间的育种分析模型为两性状个体动物模型:

$ {Y_{1i}} = {\mu _1} + {a_{1i}} + {\text{Ag}}{{\text{e}}_{1i}} + {e_{1i}}_{} $
$ {Y_{2i}} = {\mu _2} + {a_{2i}} + {\text{B}}{{\text{L}}_{2i}} + {e_{2i}} $

式中,$ {Y_{1i}} $表示收获体长的表型值观测值,$ {Y_{2i}} $表示抗WSSV存活时间表型观测值,$ {\mu _1} $$ {\mu _2} $分别表示两性状的总体均值,$ {a_{1i}} $$ {a_{2i}} $表示第i尾虾的加性遗传效应,Age1i表示日龄(协变量),BL2i为第i尾虾的体长(协变量),$ {e_{1i}} $$ {e_{2i}} $表示第i尾虾两性状的随机残差。

收获体长和WSSV感染后存活时间性状的遗传力计算公式为:

$ {h^2} = \frac{{\sigma _a^2}}{{\sigma _a^2 + \sigma _e^2}} $

式中,$ {h^2} $表示遗传力,$ \sigma _a^2 $表示加性遗传方差,$ \sigma _e^2 $表示残差方差。

家系WSSV半致死存活率(survival rate at half lethal time, SS50)指测试个体死亡数达到测试个体总数一半时每个家系的存活率(家系半致死存活率=该家系存活个体数/该家系个体总数×100%)。估计家系SS50遗传参数时,统计死亡个体数达到总数一半时的个体存活状态,将死亡个体记录为0,存活个体记录为1。采用父母本模型估计凡纳对虾半致死存活率遗传参数,分析模型如下:

$ \Pr ({y_{ijk}} = 1) = \Pr ({l_{ijk}}{\text{ > }}0) = \Phi (\mu + {\text{B}}{{\text{L}}_{ijk}} + {s_i} + {d_j} + {e_{ijk}}) $

式中,$ \Pr $表示个体存活的概率,$ {y_{ijk}} $表示第k尾虾的存活状态(1为存活,0为死亡),$ {l_{ijk}} $表示潜在变量(如果$ {l_{ijk}}{\text{ > }}0 $,那么$ {y_{ijk}} = 1 $;如果$ {l_{ijk}} \leqslant 0 $,那么$ {y_{ijk}} = 0 $),$ \mu $为总体均值,$ {\text{B}}{{\text{L}}_{ijk}} $表示第k尾虾的体长(协变量),$ {s_i} $表示第$ i $个父本的加性遗传效应,$ {d_j} $表示第$ j $个母本的加性遗传效应,$ {e_{ijk}} $表示第k尾虾的随机残差。

家系WSSV半致死存活率的遗传力计算公式为:

$ {h^2} = \frac{{4\sigma _{{\text{sd}}}^2}}{{2\sigma _{{\text{sd}}}^2 + \sigma _e^2}} $

表型方差计算公式为:

$ \sigma _p^2 = 2\sigma _{{\text{sd}}}^2 + \sigma _e^2 $

式中,$ {h^2} $表示遗传力,$ \sigma _{{\text{sd}}}^2 $表示父母本方差均值,$ \sigma _p^2 $表示表型方差,$ \sigma _e^2 $表示残差方差。

建立两性状个体动物模型,采用AIREML法估计体长、抗WSSV存活时间两性状的遗传相关;建立个体动物模型与父母本阈值模型估计体长与家系WSSV半致死存活率、抗WSSV存活时间与家系WSSV半致死存活率的遗传相关。

遗传相关系数计算公式为:

$ {r_g} = \frac{{\text{cov} ({\alpha _1},{\alpha _2})}}{{{\sigma _{\alpha 1}}{\sigma _{\alpha 2}}}} $

式中,$ {r_g} $表示遗传相关系数,$ \text{cov} ({\alpha _1},{\alpha _2}) $表示体长和存活时间的协方差,$ {\sigma _{\alpha 1}} $$ {\sigma _{\alpha 2}} $表示体长和存活时间的加性遗传标准差。

Z-score检验各个性状遗传力、遗传相关参数估计值是否显著。

1.4.3 预测准确性

使用五折交叉验证分析ssGBLUP方法预测育种值/基因组育种值(EBV/GEBV)的准确性和偏差。P1770数据集定义为包含576个基因分型个体的分型数据及1 194个未分型个体的表型数据。P576数据集定义为576个基因分型个体的分型数据及表型数据。在P1770数据集中,将P576数据集内的个体随机分为5组,随机抽取1组,将其表型数据掩盖,作为验证集,剩下4组以及未分型个体的表型作为训练集,来预测验证群体的估计育种值。进行10次重复的交叉验证,预测准确性为验证集的表型值和EBV/GEBV的皮尔逊相关系数的平均值,预测偏差为表型值对EBV(GEBV)的回归系数,回归系数为1表示理论上EBV/GEBV与真实育种值(BV)的估计没有偏差,回归系数小于或大于1表示EBV/GEBV被高估或低估。

2 结果 2.1 体长、抗WSSV存活时间和WSSV半致死存活率的描述性统计

凡纳对虾1 770尾测试个体及576尾分型个体的描述性统计见表 1。家系内变异系数过大将导致ssGBLUP法遗传评估准确性下降,故在凡纳对虾个体、家系水平分别进行统计检测。

表 1 凡纳对虾测试个体体长、抗WSSV存活时间、家系WSSV半致死存活率性状的平均值、最小值、最大值、标准差和变异系数 Tab.1 The mean, minimum, maximum, standard deviation and coefficient of variation of body length, survival time and SS50 for the base population in Pacific white shrimp P. vannamei

1 770尾测试个体:个体水平上,体长均值为4.35 cm,最小值为2.20 cm,最大值为7.00 cm;抗WSSV存活时间均值为113.37 h,最小值为5 h,最大值为424 h;家系水平上,各家系体长均值范围为3.40~ 4.86 cm,抗WSSV存活时间均值范围为53.00~181.69 h,家系WSSV半致死存活率范围为21.43%~80.77%。

576尾分型个体:个体水平上,体长均值为4.33 cm,最小值为2.20 cm,最大值为7.00 cm;抗WSSV存活时间均值为113.11 h,最小值为18 h,最大值为424 h;家系水平上,各家系体长均值范围为3.52~4.81 cm,抗WSSV存活时间均值范围为83.40~219.43 h,家系WSSV半致死存活率范围为20.00%~90.00%。

2.2 亲缘关系热图

图 1图 2为基于A矩阵和H矩阵绘制的亲缘关系热图。可以看出,根据A矩阵,1 770尾测试个体间亲缘关系较远;在系谱中加入576尾个体的分型信息后构建H矩阵,显示个体间的亲缘关系有一定程度加强。计算A矩阵和H矩阵的对角线元素均值分别为1.00和0.99,非对角线元素均值均为0.02;A矩阵和H矩阵对角线元素的相关系数为0.08,非对角线元素的相关系数为0.69。

图 1 个体间A矩阵亲缘关系热图 Fig.1 Heat map of the genetic relationship for A-matrix ID:WSSV测试个体编号 ID: Individual number under WSSV test
图 2 H矩阵亲缘关系热图 Fig.2 Heat map of the genetic relationship for H-matrix ID:WSSV测试个体编号 ID: Individual number under WSSV test
2.3 凡纳对虾生长和抗WSSV性状的遗传参数估计 2.3.1 遗传力估计

基于H矩阵估计得凡纳对虾生长、抗WSSV性状遗传方差及遗传力见表 2。体长遗传力估计值为0.21±0.06,抗WSSV存活时间遗传力估计值为0.22±0.06,为中等遗传力,WSSV半致死存活率遗传力估计值为0.16±0.06,为低等遗传力水平。

表 2 基于H矩阵估计凡纳对虾体长、抗WSSV存活时间与家系WSSV半致死存活率SS50方差组分与遗传力 Tab.2 Variance components, heritabilities of body length, survival time and SS50 for the base population in Pacific white shrimp P. vannamei for H-matrix
2.3.2 遗传相关估计

基于H矩阵估计凡纳对虾体长、抗WSSV存活时间与家系WSSV半致死存活率性状间相关分析结果如表 3所示。体长与抗WSSV存活时间的遗传相关为0.13±0.20,体长与家系WSSV半致死存活率遗传相关为0.30±0.22,体长与WSSV抗性性状遗传相关均为低度正相关,且与0无显著差异(P > 0.05);体长与抗WSSV存活时间、家系WSSV半致死存活率性状间表型相关分别为0.23±0.03和0.17±0.03,均为中低度正相关。抗WSSV存活时间与家系WSSV半致死存活率遗传相关为0.95±0.03,与1差异不显著(P > 0.05),表型相关为0.85±0.01,与1差异极显著(P < 0.01),均为高度正相关。

表 3 基于H矩阵估计凡纳对虾体长、抗WSSV存活时间、家系WSSV半致死存活率性状表型相关和遗传相关 Tab.3 Correlation analysis based on phenotypic and genetic for body length, survival time and SS50 in Pacific white shrimp P. vannamei for H-matrix
2.4 交叉验证

利用ssGBLUP获得的凡纳对虾生长及WSSV抗性GEBV的准确性、偏差与pBLUP(和怡婧等, 2023)的比较见表 4。对体长性状,pBLUP的预测准确性和预测偏差分别为0.149和0.694,ssGBLUP的预测准确性和预测偏差分别为0.176和0.698,ssGBLUP预测准确性提高了18.12%,预测偏差无明显差异;对抗WSSV存活时间遗传力性状,pBLUP的预测准确性和预测偏差分别为0.143和0.621,ssGBLUP的预测准确性和预测偏差分别为0.142和0.559,两种方法预测准确性基本一致,ssGBLUP预测偏差较大;对WSSV半致死存活率性状,pBLUP的预测准确性和预测偏差分别为0.086和0.592,ssGBLUP的预测准确性和预测偏差分别为0.061和0.431,ssGBLUP预测准确性降低了29.07%,ssGBLUP预测偏差较大。

表 4 不同方法估计凡纳对虾体长、抗WSSV存活时间、家系WSSV半致死存活率遗传力的预测准确性和预测偏差 Tab.4 Prediction accuracy and bias for different traits of P. vannamei under genetic relationship for A-matrix and H-matrix
3 讨论

目前,基因组选择育种已广泛应用于水产动物育种中,如罗氏沼虾(Macrobrachium rosenbergii)生长性状(Liu et al, 2020)、凡纳对虾AHPND抗性(刘绵宇等, 2023)、虹鳟(Oncorhynchus mykiss)传染性胰坏死病毒(IPNV)抗性(Yoshida et al, 2019)、中国对虾饲料利用率(Dai et al, 2017)等。关于凡纳对虾生长及抗WSSV性状的遗传参数也已开展大量研究,但多是基于物理系谱进行评估(Campos-Montes et al, 2013; Gitterle et al, 2005a),利用ssGBLUP法结合芯片开展生长和抗WSSV性状遗传力和遗传相关的评估,至今在凡纳对虾中鲜有报道。

3.1 基于ssGBLUP法估计凡纳对虾生长性状遗传力及准确性分析

生长性状,如体长、体重等,是凡纳对虾选育过程中重点关注的经济性状。SNP芯片是动植物育种中最重要的基因分型工具之一,具有重复性好、准确性高、操作性强等优势(Robledo et al, 2018)。本研究利用自主研发的55K SNP育种芯片估计凡纳对虾感染WSSV后体长遗传力为0.21±0.06,属中等遗传力水平。孙坤(2021)结合6个微卫星位点估计凡纳对虾WSSV感染后体长遗传力为0.258,体重遗传力为0.195;Gitterle等(2005b)基于pBLUP估计凡纳对虾在WSSV感染后体重遗传力为0.20~0.21;Trang等(2019)基于pBLUP估计凡纳对虾在WSSV感染后体重遗传力为0.16±0.06,体长遗传力为0.21±0.15;Campos-Montes等(2013)基于pBLUP估计60日龄和130日龄凡纳对虾WSSV感染后体重遗传力分别为0.13±0.03和0.21±0.04。本研究结果与以上研究范围一致。此外,本研究利用ssGBLUP估计的体长遗传力比pBLUP法(和怡婧等, 2023)估计的相同群体体长遗传力估计值提高23.53%。Liu等(2020)利用ssGBLUP估计的罗氏沼虾体重遗传力比pBLUP法提高127.27%,导致该结果的原因可能是ssGBLUP法在构建H矩阵时加入了基因组信息,更准确地界定了个体和家系间的亲缘关系(Bangera et al, 2017; Yang et al, 2010),H矩阵将基因组信息传递给未分型个体,相对于A矩阵,获得了更多的家系间遗传变异,实现了加性遗传方差与残差的准确剖分。

本研究中,ssGBLUP法估计凡纳对虾体长遗传力预测准确性较pPLUP提高了18.12%,预测偏差无明显变化。ssGBLUP法在生长性状评估中表现出比传统pBLUP法更高的预测准确性。Sae-Lim等(2017)利用ssGBLUP对大西洋鲑体重的均一性进行遗传评估,预测准确性比pBLUP提高1.3%~13.9%;Liu等(2020)利用ssGBLUP对罗氏沼虾收获体重进行遗传评估,预测准确性比pBLUP提高43%;陈美佳等(2021)利用4种模型估计凡纳对虾体重遗传力时发现,ssGBLUP预测准确性比pBLUP增加7.25%~10.53%,分型个体预测偏差降低了7.56%。相比于pBLUP,ssGBLUP利用基因组信息可更好地估计个体间亲缘关系,捕获全同胞个体间孟德尔抽样的变异,从而提高了对个体表型的预测准确性(张哲等, 2011; 王明珠等, 2018)。

3.2 基于ssGBLUP法估计凡纳对虾WSSV抗性遗传力及准确性分析

凡纳对虾的WSSV抗性通常以个体感染后存活时间和家系WSSV半致死存活率表示。55K SNP育种芯片已证明可有效提高凡纳对虾VpAHPND侵染后存活时间性状评估的准确性(刘杨等, 2023),而对严重危害凡纳对虾养殖的病原WSSV适用性尚不明确。本研究利用该芯片对部分测试个体开展分型,基于ssGBLUP法计算凡纳对虾个体抗WSSV存活时间遗传力估计值为0.22±0.06,为中等遗传力,WSSV半致死存活率遗传力估计值为0.16±0.06,为低等遗传力水平。Trang等(2019)估计凡纳对虾抗WSSV遗传力值为0.19~0.27;Lillehammer等(2020)估计凡纳对虾感染WSSV后存活性状遗传力为0.22~0.34,存活时间性状遗传力0.39~0.55,与本研究结果范围一致。而Campos-Montes等(2023)的研究中,基于ssGBLUP法计算凡纳对虾抗WSSV性状存活时间、存活率的遗传力为0.085和0.105,为低遗传力水平。在遗传参数的估计过程中,测试群体的遗传背景、测试年龄、病毒含量、测试方法以及评估模型的差异都会造成评估结果的差异。本研究利用ssGBLUP估计存活时间和家系WSSV半致死存活率的遗传力分别比pBLUP法(和怡婧等, 2023)提高22.22%和14.29%。刘绵宇等(2023)用ssGBLUPMF模型获得凡纳对虾VpAHPND侵染后存活状态的遗传力估计值为0.24±0.07,高于使用pBLUPGG模型获得的估计值(0.20±0.06);在大西洋鲑抗病性的遗传力研究中,加入基因组信息估计的抗病性状遗传力增加(Bangera et al, 2017),导致该结果的原因可能与生长性状类似,即在系谱中没有直接亲缘关系或者远亲关系的个体,在加入部分个体的分型信息后,个体间的亲缘关系有一定程度加强,有助于剖分家系间更多的遗传变异,导致遗传力估计值升高。

交叉验证结果显示,ssGBLUP法评估抗WSSV存活时间性状与pBLUP法在预测准确性上无明显差异,ssGBLUP法预测准偏差较大。阈值性状通常需要通过非线性模型来处理,评估模型对于数据质量要求更高,遗传效应更复杂。如果基因组信息未能充分捕捉这些复杂的遗传效应,可能会降低预测的准确性。如基因分型个体的选择方式、参考群体大小、性状的遗传力大小都可能对基因组选择模型的预测能力产生一定影响。首先,相对于随机选择分型个体,选择极端表型个体(极大与极小表型)可能获得更高的预测准确性(Boligon et al, 2012),分型个体家系内的变异情况大于家系间的变异情况,可能会导致加入分子标记进行评估无法提高准确性。本研究虽已对分型信息进行质控,但可能由于分型个体数量较少,导致阈值性状模型的预测准确性降低。其次,参考群体大小可能影响预测准确性(Liu et al, 2020)。Vallejo等(2016)对虹鳟的细菌冷水病抗性研究中,利用583尾分型个体构建基因组预测参考群体,加入基因型信息预测准确性降低,后其构建虹鳟基因组预测参考群体1 473尾,候选群体930尾,结果显示,ssGBLUP的预测准确性比pBLUP提高83.3%~85.3% (Vallejo et al, 2017)。本研究选取590个个体进行基因分型,参考群体较少,且家系较多(59个),每个家系能提供的预测信息较少,可能影响ssGBLUP预测家系WSSV半致死存活率性状的准确性。第三,性状遗传力越高,GBLUP和ssGBLUP容易获得更高的准确性(Gowane et al, 2019)。本研究中,家系WSSV半致死存活率性状较存活时间的遗传力属低遗传力水平。以上可能是导致ssGBLUP法估计家系WSSV半致死存活率性状的预测准确性下降的重要原因。

3.3 凡纳对虾生长与抗WSSV性状相关性分析

本研究基于ssGBLUP法估计的凡纳对虾体长与抗WSSV存活时间的遗传相关为0.13±0.20,与家系WSSV半致死存活率的遗传相关为0.25±0.22,均显示生长与WSSV抗性间无明显相关。培育兼顾生长和WSSV抗性的新品种,须将2个性状同时纳入选择指数进行复合选育。标准误较大,可能与家系内个体数量较少有关,在条件允许的范围内应进一步增加家系内测试个体数以提高评估结果的精确度。Campos-Montes等(2013)使用多变量动物模型估计了28日龄和130日龄凡纳对虾体重和存活性状的遗传相关,分别为–0.49±0.11和0.56±0.10,在生长早期呈负相关;Gitterle等(2005a)估计161日龄凡纳对虾体重的预测育种值与98~161日龄存活率之间的相关性,范围为0.40~0.42。日龄、群体、模型等多种原因均会影响相关性的评估结果。抗WSSV存活时间性状与家系WSSV半致死存活率性状属高度正相关,然而基于ssGBLUP开展遗传评估,个体抗WSSV存活时间在准确性和预测偏差等方面均优于家系抗WSSV半致死存活率的评估结果,家系抗WSSV半致死存活率性状的评估准确性由于可能受到的个体抽样策略、参考群体大小等原因,预测准确性明显下降。建议实施基于芯片的基因组选择育种时,增加参考群体的数量,以提高预测准确性,在凡纳对虾基因组选择育种中,将抗WSSV存活时间作为抗性目标性状,可能取得更好的选育效果。

4 结论

本研究证实了利用55K SNP液相芯片进行“黄海芯1号”凡纳对虾生长和WSSV抗性遗传参数估计的有效性。凡纳对虾体长、个体抗WSSV存活时间以及家系WSSV半致死存活率都具有中等遗传力水平。在基于H矩阵进行遗传力预测时,相比于A矩阵,体长遗传力预测准确性提高了18.12%,预测偏差无明显差别;抗WSSV存活时间遗传力预测准确性无明显差别;而家系半致死存活率的预测准确性则降低了29.07%。此外,个体抗WSSV存活时间与家系WSSV半致死存活率之间存在高度相关性。建议在基因组选择中将抗WSSV存活时间作为目标性状,以提高选育效率。

参考文献
ANDERSSON L. How selective sweeps in domestic animals provide new insight into biological mechanisms. Journal of Internal Medicine, 2012, 271(1): 1-14 DOI:10.1111/j.1365-2796.2011.02450.x
BANGERA R, CORREA K, LHORENTE J P, et al. Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar). BMC Genomics, 2017, 18(1): 121 DOI:10.1186/s12864-017-3487-y
BOLIGON A A, LONG N, ALBUQUERQUE L G, et al. Comparison of selective genotyping strategies for prediction of breeding values in a population undergoing selection. Journal of Animal Science, 2012, 90(13): 4716-4722 DOI:10.2527/jas.2012-4857
Bureau of Fisheries, Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. China fishery statistical yearbook. Beijing: China Agriculture Press, 2023 [农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2023中国渔业统计年鉴. 北京: 中国农业出版社, 2023]
CAMPOS-MONTES G R, GARCIA B F, MEDRANO-MENDOZA T, et al. Genetic and genomic evaluation for resistance to white spot syndrome virus in post-larvae of Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 2023, 575: 739745 DOI:10.1016/j.aquaculture.2023.739745
CAMPOS-MONTES G R, MONTALDO H H, MARTÍNEZ-ORTEGA A, et al. Genetic parameters for growth and survival traits in Pacific white shrimp Penaeus (Litopenaeus) vannamei from a nucleus population undergoing a two-stage selection program. Aquaculture International, 2013, 21(2): 299-310 DOI:10.1007/s10499-012-9553-1
CHEN M J, KONG J, TAN J, et al. Unknown parental group effects on harvest body weight in the base population of Litopenaeus vannamei. Journal of Fishery Sciences of China, 2021, 28(7): 863-870 [陈美佳, 孔杰, 谭建, 等. 凡纳滨对虾育种基础群体收获体重的未知亲本组效应分析. 中国水产科学, 2021, 28(7): 863-870]
DAI P, LUAN S, LU X, et al. Genetic evaluation of feed efficiency in the breeding population of Fenneropenaeus chinensis "Huanghai No. 2" using phenotypic, pedigree and genomic information. Aquaculture International, 2017, 25(6): 2189-2200
DONG L S. Genomic selection by pre-selection of markers. Master´s Thesis of Shandong Agricultural University, 2012 [董林松. 通过预选标记法进行基因组选择. 山东农业大学硕士研究生学位论文, 2012]
FAO (2023). FishStat database. Available at: www.fao.org/fishery/statistics/software/fishstatj/en
GARCIA B F, BONAGURO Á, ARAYA C, et al. Application of a novel 50K SNP genotyping array to assess the genetic diversity and linkage disequilibrium in a farmed Pacific white shrimp (Litopenaeus vannamei) population. Aquaculture Reports, 2021, 20: 100691 DOI:10.1016/j.aqrep.2021.100691
GITTERLE T, RYE M, SALTE R, et al. Genetic (co)variation in harvest body weight and survival in Penaeus (Litopenaeus) vannamei under standard commercial conditions. Aquaculture, 2005, a, 243(1/2/3/4): 83-92
GITTERLE T, SALTE R, GJERDE B, et al. Genetic (co)variation in resistance to White Spot Syndrome Virus (WSSV) and harvest weight in Penaeus (Litopenaeus) vannamei. Aquaculture, 2005, b, 246(1/2/3/4): 139-149
GJEDREM T, BARANSKI M. Selective breeding in aquaculture: An introduction. Dordrecht: Springer, 2020
GOWANE G R, LEE S H, CLARK S, et al. Effect of selection and selective genotyping for creation of reference on bias and accuracy of genomic prediction. Journal of Animal Breeding and Genetics, 2019, 136(5): 390-407 DOI:10.1111/jbg.12420
HE J F, ZHANG Q, ZHENG W J, et al. Study on genotypic accuracy and filling effect of self-developed 85K liquid chip for dairy cows. Chinese Journal of Animal Science, 2024, 60(3): 107-111 [贺巾锋, 张琪, 郑伟杰, 等. 自主研发奶牛85K液相芯片基因型准确性及填充效果研究. 中国畜牧杂志, 2024, 60(3): 107-111]
HE Y J, LI X P, LUAN S, et al. Evaluation of genetic parameters for growth and survival traits of Penaeus vannamei during white spot syndrome virus infection. Progress in Fishery Sciences, 2024, 45(5): 155-164 [和怡婧, 李旭鹏, 栾生, 等. 凡纳对虾核心育种群生长和抗WSSV性状的遗传参数估计. 渔业科学进展, 2024, 45(5): 155-164 DOI:10.19663/j.issn2095-9869.20230602001]
HENDERSON C R. Applications of linear models in animal breeding. University of Guelph, Guelph, Canada, 1984
HOUSTON R D, TAGGART J B, CÉZARD T, et al. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genomics, 2014, 15: 90 DOI:10.1186/1471-2164-15-90
JONES D B, JERRY D R, KHATKAR M S, et al. A comparative integrated gene-based linkage and locus ordering by linkage disequilibrium map for the Pacific white shrimp, Litopenaeus vannamei. Scientific Reports, 2017, 7(1): 10360 DOI:10.1038/s41598-017-10515-7
LEGARRA A, CHRISTENSEN O F, AGUILAR I, et al. Single Step, a general approach for genomic selection. Livestock Science, 2014, 166: 54-65 DOI:10.1016/j.livsci.2014.04.029
LILLEHAMMER M, BANGERA R, SALAZAR M, et al. Genomic selection for white spot syndrome virus resistance in whiteleg shrimp boosts survival under an experimental challenge test. Scientific Reports, 2020, 10(1): 20571 DOI:10.1038/s41598-020-77580-3
LIU D Y, SUI J, KONG J, et al. Genetic parameters of larval weight traits of Litopenaeus vannamei under low temperature fluctuation. Journal of Fishery Sciences of China, 2022, 29(6): 834-842 [刘东亚, 隋娟, 孔杰, 等. 凡纳滨对虾幼虾体重性状在低温波动环境下的遗传参数分析. 中国水产科学, 2022, 29(6): 834-842]
LIU J Y, YANG G L, KONG J, et al. Using single-step genomic best linear unbiased prediction to improve the efficiency of genetic evaluation on body weight in Macrobrachium rosenbergii. Aquaculture, 2020, 528: 735577 DOI:10.1016/j.aquaculture.2020.735577
LIU M Y, LI X P, KONG J, et al. Application of the liquid chip "Yellow Sea Chip No. 1" in genetic evaluation of the base population with resistance to acute hepatopancreatic necrosis disease in Litopenaeus vannamei. Journal of Fisheries of China, 2023, 47(1): 217-226 [刘绵宇, 李旭鹏, 孔杰, 等. 液相芯片"黄海芯1号" 在凡纳滨对虾急性肝胰腺坏死病抗性基础群体遗传评估中的应用. 水产学报, 2023, 47(1): 217-226]
LIU Y, LUAN S, LIU M Y, et al. Genomic prediction accuracy analysis of AHPND resistance genome prediction in Litopenaeus vannamei using SNP panels with different densities. Journal of Fisheries of China, 2023, 47(1): 165-174 [刘杨, 栾生, 刘绵宇, 等. 基于不同密度SNP面板的凡纳滨对虾AHPND抗性基因组预测准确性分析. 水产学报, 2023, 47(1): 165-174]
MENG S Y, CHANG Y Q, LI W D, et al. Heritability of four growth traits in juvenile sea cucumber Apostichopus japonicus. Journal of Dalian Ocean University, 2010, 25(6): 475-479 [孟思远, 常亚青, 李文东, 等. 仿刺参幼参阶段4个生长性状遗传力的估计. 大连海洋大学学报, 2010, 25(6): 475-479]
MENG X H, ZHANG T S, KONG J, et al. Equivalent and quantitative test method of white spot syndrome virus resistance of prawns. ZL201210107377.8. 2013-12-25 [孟宪红, 张天时, 孔杰, 等. 对虾抗白斑综合征病毒能力的等量、定量测试方法. ZL201210107377.8. 2013-12-25]
RASHEED A, HAO Y F, XIA X C, et al. Crop breeding chips and genotyping platforms: Progress, challenges, and perspectives. Molecular Plant, 2017, 10(8): 1047-1064
ROBLEDO D, PALAIOKOSTAS C, BARGELLONI L, et al. Applications of genotyping by sequencing in aquaculture breeding and genetics. Reviews in Aquaculture, 2018, 10(3): 670-682
SAE-LIM P, KAUSE A, LILLEHAMMER M, et al. Estimation of breeding values for uniformity of growth in Atlantic salmon (Salmo salar) using pedigree relationships or single-step genomic evaluation. Genetics, Selection, Evolution, 2017, 49(1): 33
SONG H L, HU H X. Genomic selection and its research progress in breeding of aquaculture species. Journal of Agricultural Biotechnology, 2022, 30(2): 379-392 [宋海亮, 胡红霞. 基因组选择及其在水产动物育种中的研究进展. 农业生物技术学报, 2022, 30(2): 379-392]
SUN K. Genetic parameter evaluation and genome wide association analysis of important economic traits in Litopenaeus vannamei. Master´s Thesis of Shanghai Ocean University, 2021 [孙坤. 凡纳滨对虾重要经济性状的遗传评估及全基因组关联分析. 上海海洋大学硕士研究生学位论文, 2021]
SYED MUSTHAQ S, SUDHAKARAN R, ISHAQ AHMED V P, et al. Variability in the tandem repetitive DNA sequences of white spot syndrome virus (WSSV) genome and suitability of VP28 gene to detect different isolates of WSSV from India. Aquaculture, 2006, 256(1/2/3/4): 34-41
TRANG T T, HUNG N H, NINH N H, et al. Selection for improved white spot syndrome virus resistance increased larval survival and growth rate of Pacific Whiteleg shrimp, Liptopenaeus vannamei. Journal of Invertebrate Pathology, 2019, 166: 107219
VALLEJO R L, LEEDS T D, FRAGOMENI B O, et al. Evaluation of genome-enabled selection for bacterial cold water disease resistance using progeny performance data in rainbow trout: Insights on genotyping methods and genomic prediction models. Frontiers in Genetics, 2016, 7: 96
VALLEJO R L, LEEDS T D, GAO G T, et al. Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture. Genetics, Selection, Evolution, 2017, 49(1): 17
WANG M Z, MENG X H, KONG J, et al. Evaluation of genetic parameters for growth and cold tolerance traits in Fenneropenaeus chinensis under low-temperature stress. Progress in Fishery Sciences, 2018, 39(3): 96-102 [王明珠, 孟宪红, 孔杰, 等. 低温胁迫条件下中国明对虾生长性状和耐低温性状的遗传参数评估. 渔业科学进展, 2018, 39(3): 96-102]
WANG Q C. Genome-wide association study and genomic selection of growth and disease resistance traits in Litopenaeus vannamei. Doctoral Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2017 [王全超. 中国科学院大学(中国科学院海洋研究所)博士研究生学位论文. Doctoral Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2017]
XU J, ZHAO Z X, ZHANG X F, et al. Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio). BMC Genomics, 2014, 15: 307
YÁÑEZ J M, YOSHIDA G, BARRIA A, et al. High-throughput single nucleotide polymorphism (SNP) discovery and validation through whole-genome resequencing in Nile Tilapia (Oreochromis niloticus). Marine Biotechnology, 2020, 22(1): 109-117
YANG J, BENYAMIN B, MCEVOY B P, et al. Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 2010, 42(7): 565-569
YOSHIDA G M, CARVALHEIRO R, RODRÍGUEZ F H, et al. Single-step genomic evaluation improves accuracy of breeding value predictions for resistance to infectious pancreatic necrosis virus in rainbow trout. Genomics, 2019, 111(2): 127-132
ZHANG L, HU C Q, WU Z H. Blood pathological study on Penaeus monodon experimentally infected by WSBV. Tropic Oceanology, 2000, 19(3): 1–7, 97 [张吕平, 胡超群, 吴灶和. 实验感染白斑杆状病毒(WSBV)的斑节对虾血液病理学研究. 热带海洋, 2000, 19(3): 1–7, 97]
ZHANG W Q. A brief introduction to the biology of Penaeus vannamei, an important cultured species in the world. Marine Sciences, 1990, 14(3): 69-73 [张伟权. 世界重要养殖品种——南美白对虾生物学简介. 海洋科学, 1990, 14(3): 69-73]
ZHANG Z, ZHANG Q, DING X D. Advances in genomic selection in domestic animals. Chinese Science Bulletin, 2011, 56(26): 2212-2222 [张哲, 张勤, 丁向东. 畜禽基因组选择研究进展. 科学通报, 2011, 56(26): 2212-2222]