渔业科学进展  2025, Vol. 46 Issue (3): 202-211  DOI: 10.19663/j.issn2095-9869.20240510001
0

引用本文 

张国桃, 于馨, 潘鲁青. 复合益生菌发酵饲料工艺优化与饲喂对虾效果的研究[J]. 渔业科学进展, 2025, 46(3): 202-211. DOI: 10.19663/j.issn2095-9869.20240510001.
ZHANG Guotao, YU Xin, PAN Luqing. Optimization Process of Compound Probiotic Fermented Feed and Feeding Effect on Shrimp[J]. Progress in Fishery Sciences, 2025, 46(3): 202-211. DOI: 10.19663/j.issn2095-9869.20240510001.

基金项目

广东省重点领域研发计划(2020B0202010009)资助

作者简介

张国桃,Email: z1943931216@163.com

通讯作者

潘鲁青,教授,E-mail: panlq@ouc.edu.cn

文章历史

收稿日期:2024-05-10
收修改稿日期:2024-06-04
复合益生菌发酵饲料工艺优化与饲喂对虾效果的研究
张国桃 , 于馨 , 潘鲁青     
中国海洋大学海水养殖教育部重点实验室 山东 青岛 266003
摘要:本研究选用从凡纳对虾(Penaeus vannamei)肠道中筛选出的3株高效益生菌:枯草芽孢杆菌(Bacillus subtilis)、屎肠球菌(Enterococcus faecium)和酿酒酵母(Saccharomyces cerevisiae)作为发酵菌株,利用正交实验优化复合菌株发酵饲料的工艺条件,并探究了发酵饲料对凡纳对虾生长性能和消化、免疫功能的影响,旨在提升配合饲料的营养性能,建立对虾饲料发酵技术。3株益生菌按1%∶1%∶1%接种,通过正交实验优化复合益生菌发酵饲料的发酵温度、料水比、发酵时间,获得3个高效发酵饲料(pH最低组、酸溶蛋白最高组、酸性多糖最高组)的工艺条件。3个高效发酵饲料组经28 d饲喂实验,结果显示,凡纳对虾的存活率、增重率和特定生长率均明显升高。pH最低组和酸溶蛋白最高组的饲料转化率显著下降(P < 0.05),低pH组和酸溶蛋白组的肝胰腺指数明显升高,且各发酵饲料组对虾粗脂肪含量无明显差异;与对照组相比,酸性多糖组肝胰腺和肠道蛋白酶、淀粉酶活性显著升高(P < 0.05);各发酵饲料组血细胞数量、吞噬率从大到小为酸性多糖组、低pH组、酸溶蛋白组,Pen3Crustin基因表达明显升高,而肠道Pen3CrustinALF基因表达均显著高于对照组(P < 0.05),各发酵饲料组炎症因子变化不显著。由此可见,通过优化3株益生菌的发酵工艺获得的pH最低组、酸溶蛋白最高组、酸性多糖最高组3种高效的发酵饲料能明显提高凡纳对虾的生长性能和免疫防御水平,经综合评估酸性多糖组可作为凡纳对虾最佳的高效发酵饲料。
关键词凡纳对虾    复合益生菌    发酵饲料    工艺优化    生长性能    生理功效    
Optimization Process of Compound Probiotic Fermented Feed and Feeding Effect on Shrimp
ZHANG Guotao , YU Xin , PAN Luqing     
Key Laboratory of Marine Aquaculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
Abstract: In this study, three efficient probiotic strains, Bacillus subtilis, Enterococcus faecium, and Saccharomyces cerevisiae, isolated from the intestine of Penaeus vannamei, were selected as fermentation strains. This study focused on optimizing the process conditions of compound probiotic fermented feed by orthogonal experiments and investigating the effects on growth performance, digestion, and immunity function of P. vannamei fed with fermented feeds, with the aim of improving the nutritional performance of the compound feed and establishing a fermentation technology for shrimp feed. The results showed that with an inoculation ratio of the three strains of 1%: 1%: 1%, the process conditions of three efficient fermented feeds (the lowest pH group, the highest acid-soluble protein group, and the highest acid polysaccharide group) were obtained by optimizing the fermentation temperature, water ratio, and fermentation time through orthogonal experiments. During the 28-day feeding experiment, shrimp fed the three fermented feed groups exhibited an increase in survival rate, weight gain rate, and specific growth rate. The lowest pH and highest acid-soluble protein groups had significantly lower feed conversion rates (P < 0.05). The hepatopancreatic index of shrimp in the lowest pH group and the highest acid-soluble protein group increased significantly, whereas there was no significant difference in the crude lipid content among the three fermented feed groups. In addition, the protease and amylase activities of the hepatopancreas and intestine in the highest acidic polysaccharide group increased significantly (P < 0.05). Compared with the control group, the total hemocyte count and phagocytosis rate were the highest in the highest acidic polysaccharide group, followed by the lowest pH and highest acid-soluble protein groups. The gene expression of Pen3 and Crustin in hemocytes increased significantly, whereas the expression of Pen3, Crustin, and ALF increased significantly in the intestine (P < 0.05). However, the expression levels of inflammatory factors did not differ significantly among the three fermented feed groups. In conclusion, the three fermented feed groups, obtained by optimizing the fermentation process of the three probiotic strains, significantly improved the growth performance and immune defense level of P. vannamei. After comprehensive evaluation, the acidic polysaccharide group was found to be the most efficient fermentation feed for P. vannamei.
Key words: Penaeus vannamei    Probiotic complex    Fermented feed    Process optimization    Growth performance    Physiological efficacy    

随着集约化水产养殖业的快速发展,对水产饲料需求量日益增大。由于追求快速生长和高产量,高蛋白、高脂肪饲料应用现象尤为突出(Wang et al, 2022ab);同时,随着全球鱼粉资源供应减少,水产饲料成本不断上涨,植物性蛋白(如豆粕、菜籽粕等)已成为鱼粉的主要替代蛋白源,因其含有大量抗营养因子不利于水产动物的消化吸收,严重影响水产饲料的效能(Perry et al, 2020; Infante-Villamil et al, 2021; 赵贵萍, 2008)。益生菌发酵不仅能有效降低植物性蛋白源中的抗营养因子,将不易消化吸收的大分子蛋白变成小分子蛋白、肽和氨基酸等,还能生成诸多活性因子如酸性多糖等,具有抗氧化、免疫活性(Jridi et al, 2018; Peasura et al, 2016)和保护肠道的功能(崔广鑫等, 2022)。目前,发酵饲料多采用商品菌株,而有关从水产动物肠道筛选出的土著微生物发酵饲料的研究较少(Li et al, 2020; Rahimnejad et al, 2021),且多菌协同发酵优于单菌发酵(Wang et al, 2019; Hao et al, 2014)。

本研究选用从凡纳对虾(Penaeus vannamei)肠道中筛选的高效益生菌:枯草芽孢杆菌(Bacillus subtilis)、屎肠球菌(Enterococcus faecium)和酿酒酵母(Saccharomyces cerevisiae)作为发酵菌株,其中,枯草芽孢杆菌和酿酒酵母均具有高产多种消化酶的特性,屎肠球菌能够分泌乳酸、乙酸等酸性物质,降低pH且抑菌能力强(汪仕爽等, 2023)。通过正交实验优化发酵对虾成品饲料的工艺条件,获得3个高效发酵饲料(pH最低组、酸溶蛋白最高组和酸性多糖最高组)的组合,探究发酵饲料对凡纳对虾生长性能和生理功效的作用,以期为对虾复合益生菌发酵饲料技术开发与应用提供技术支撑。

1 材料与方法 1.1 实验材料

从凡纳对虾肠道中筛选得到高效益生菌株:枯草芽孢杆菌(SDVGB98)、屎肠球菌(SRVGX7)和酿酒酵母(SLVGY7),均保存于中国海洋大学水产动物环境生理学研究室菌种库,3株发酵菌株均不具有溶血性,其中,SDVGB98和SLVGY7高产蛋白酶、淀粉酶和脂肪酶,SRVGX7能够分泌乳酸等代谢产物降低pH,并能抑制哈维氏弧菌(Vibrio harveyi)、溶藻弧菌(V. alginolyticus)、副溶血弧菌(V. parahaemolyticus)等病原菌。

实验用凡纳对虾购自山东省莱州市对虾养殖场,对虾体色正常、健康活泼,平均体重为(1.01±0.05) g,体长为(3.75±0.25) cm,实验前暂养7 d。养殖期间,水温为(23±0.5) ℃,盐度28,pH为8.1,连续充气,日换水量为1/3~1/2,日投饵3次,日投喂量为对虾体重的5%,根据摄食情况适当增减,以30 min内全部吃完为准。将暂养后的凡纳对虾随机分配到12个70 cm×55 cm×30 cm的养殖箱中,有效水体85 L,每个水箱养殖60尾对虾,实验养殖周期为28 d,养殖条件与暂养条件相同。

1.2 复合菌株发酵饲料接种比例的确定

实验所用对虾成品基础饲料为海壹水产饲料有限公司生产。将SDVGB98、SRVGX7、SLVGY7分别按1% (V/V)接种于2216E肉汤培养基、MRS液体培养基、YPDA液体培养基中活化制备种子液,将3株菌株的初始菌悬液分别用浊度计调整浓度为1×108 CFU/mL。通过3因素(3种菌株)、3水平(菌株接种量1%、2%、3%,即将浓度均为1×108 CFU/mL的3株菌株按体积比1%、2%、3%组合成复合菌配伍组合)正交实验进行复合菌发酵饲料菌株配伍的优化,并将上述9组复合菌配伍按料水比为1∶0.6分别加入到100 g基础饲料中,每组设置3个重复,在35 ℃下发酵24 h,以酸溶蛋白、酸性多糖含量为指标,确定发酵饲料最佳菌种接种量比例。

1.3 复合菌株发酵饲料工艺条件的优化

在上述实验的基础上,通过3因素(发酵温度、料水比、发酵时间) 4水平正交实验,其中,发酵温度(15 ℃、25 ℃、35 ℃、45 ℃)、料水比(1∶0.4、1∶0.6、1∶0.8、1∶1)、发酵时间(24 h、36 h、48 h、60 h),分别进行复合菌发酵饲料工艺条件的优化,并以pH值和酸溶蛋白、酸性多糖含量为指标,筛选出复合菌发酵饲料的最佳条件。饲料pH值的测定参考Wang等(2020)的方法,酸溶蛋白和酸性多糖含量的测定分别参考Zhang等(2020)和Bitter等(1962)的方法,具体操作如下:

酸溶蛋白含量测定:首先称量样品2.00 g,加入已有25 mL 15%三氯乙酸溶液的50 mL离心管中,混合均匀后静置30 min,以4 000 r/min离心10 min后,吸取上清液10 mL于装有5 g催化剂(K2SO4∶GuSO4=9∶1)和10 mL浓硫酸的消化管中,经消化炉消化后,经凯氏定氮法(Kjeltec 8400型凯氏定氮仪)测定。结果以质量分数(%)表示,具体为酸溶蛋白占发酵饲料中总蛋白的比例。

酸性多糖含量的测定:首先制作标准曲线,吸取100 µg/mL糖醛酸溶液0、0.2、0.4、0.6、0.8和1.0 mL于10 mL玻璃比色管中,各管加水至1 mL。在冰浴中预冷后逐滴加入0.012 5 mol/L四硼酸钠硫酸溶液2.5 mL,振摇混合。随后在沸水浴中煮沸10 min。用冰浴冷却至室温,分别加入0.125%咔唑无水乙醇溶液0.1 mL。摇匀后,在沸水浴中煮沸15 min。冷却摇匀后在530 nm处测定吸光度。以糖醛酸浓度为横坐标,吸光度为纵坐标绘制标准曲线,y=0.590 6x+0.012 3,R2=0.995 9。样品测定时首先称量样品2.00 g溶于25 mL的水中,40~45 ℃水浴5~10 min,12 000 r/min离心15 min,上清液即为提取液。随后移取1.00 mL提取液于10 mL玻璃比色管中,以下操作步骤同标准曲线制作。结果以每毫升反应介质中所含的酸性多糖质量(µg/mL)表示。

1.4 发酵饲料制备与实验分组

选择pH最低、酸溶蛋白含量最高、酸性多糖含量最高组的发酵饲料,放入烘箱(45 ℃)中烘干24 h,使其水分低于10%。烘干样品过60目筛网后封袋,于–20 ℃冰箱中保存待用;发酵饲料每隔2周制备1次。对照组投喂基础饲料,记为C;3个实验组分别饲喂pH最低、酸溶蛋白最高和酸性多糖最高的发酵饲料,记为F1、F2和F3;对照组和实验组均设置3个平行。

1.5 样品制备

每个样品包括3个平行,每个平行组随机取15尾对虾,用含有抗凝剂的无菌注射器从其第三腹肢血窦抽取血淋巴共5 mL,混合后一部分用于血细胞数量和吞噬率的测定,剩余部分样品于4 ℃下800 g离心,取沉淀加入2 mL Trizol试剂,再于4 ℃下12 000 g离心,取上清液用于免疫防御关键基因表达的测定;每个平行组取完血的对虾进一步解剖其肝胰腺和肠道,即分别将15尾对虾的肝胰腺和肠道的混合样作为一个平行,经液氮研磨后于–80 ℃下保存,用于消化酶活性的测定。

1.6 实验指标的测定 1.6.1 生长性能指标测定方法

实验开始和结束时分别计数对虾数量和初始、终末体重及肝胰腺重量,同时记录每组每天的投喂量和虹吸收集的残饵量。对虾的存活率(survival rate, SR, %)、增重率(weight gain rate, WGR, %)、特定生长率(specific growth rate, SGR, %/d)、饲料转换率(feed conversion rate, FCR)、肝胰腺指数(hepatopancreas index, HSI, %)、摄食率(feeding rate, FR, %/d)等指标计算公式如下:

$ \mathrm{SR}=N_t /N_0 \times 100 ;$
$ \mathrm{WGR} =(W_{t}–W_{0})/W_{0}×100\text{;} $
$ \mathrm{SGR} = [(lnW_{t}–lnW_{0})/T]×100; $
$ \mathrm{FCR} =W_{i}/(W_{t}–W_{0})\text{;} $
$ \mathrm{HSI} =W_{v}/W_{t}×100\text{;} $
$ \mathrm{FR}=W_{i}/[(W_{0}+W_{t})/2]/T×100 $

式中,NtN0分别为终末存活尾数、初始尾数;WtW0分别为平均终末体质量(g)、平均初始体质量(g);T表示饲养时间(d);Wi表示摄食量(g);Wv为肝胰腺质量(g)。

1.6.2 对虾体成分测定方法

水分含量的测定采用105 ℃烘箱恒重干燥法;粗蛋白含量的测定采用凯氏定氮法;粗脂肪含量的测定采用索式提取法(乙醚为溶剂);粗灰分含量的测定采用马弗炉恒重灼烧法(550 ℃, 12 h)。

1.6.3 消化酶活性的测定方法

采用Zhang等(2020)的方法测定肝胰腺和肠道蛋白酶、淀粉酶和脂肪酶活性,蛋白含量测定采用考马斯亮蓝法,酶的活性以比活力表示,即活力单位/mg prot。

1.6.4 免疫指标的测定

总血细胞数量测定采用血球板计数,血细胞吞噬率的测定参照Yue等(2010)的方法。

使用Trizol试剂提取血细胞和肠道总RNA,经琼脂糖凝胶电泳和NanoDrop 2000检测RNA完整性、纯度和浓度。利用EvoM-MLV反转录预混试剂盒合成cDNA模板后,使用2×SYBR Green qPCR Mix进行实时定量PCR。基因的引物序列见表 1,由生工生物科技有限公司(上海)合成,以β-actin为内参基因,通过2–ΔΔCT法计算基因相对表达量。所测定的对虾免疫防御关键基因:抗菌肽(Pen3CrustinALF)、溶菌酶(LSZ)和炎症因子包括白细胞介素-16 (IL-16)、肿瘤坏死因子α (TNF-α)的基因表达。

表 1 凡纳对虾免疫基因与内参基因β-actin引物序列 Tab.1 Primer sequences of immune genes and internal reference genes β-actin of P. vannamei
1.7 数据处理与统计分析

所有实验数据均以3个平行组数据的平均值±标准差(Mean±SD)表示,发酵饲料菌种接种比例和工艺优化采用多因素方差分析(multi-way ANOVA),对虾饲养实验所有指标应用单因素方差分析(one-way ANOVA);多重比较均采用Duncan检验法进行统计分析,显著性水平设定为P < 0.05。实验数据的分析均采用SPSS 25.0软件进行。

2 结果 2.1 复合菌株发酵饲料接种比例与发酵工艺优化结果

表 2所示,在发酵温度为35 ℃、料水比为1∶0.6、发酵时间24 h的条件下,3株益生菌株初始浓度均为1×108 CFU/mL,按1%∶1%∶1%接种比例时,发酵饲料的酸溶蛋白和酸性多糖含量均最高。同时复合菌株按上述接种比例,在发酵温度35 ℃、料水比1∶1、发酵时间60 h时,发酵饲料pH值最低(P < 0.05);在发酵温度35 ℃,在料水比1∶0.4,发酵时间为36 h,发酵饲料的酸溶蛋白含量最高(P < 0.05);在发酵温度45 ℃、料水比1∶1、发酵时间24 h时,发酵饲料的酸性多糖含量最高(P < 0.05)(表 3)。

表 2 复合菌株发酵饲料接种比例正交优化结果 Tab.2 Results of orthogonal experiment for optimization of inoculation amount of compound probiotic fermented feed
表 3 复合菌株发酵饲料工艺正交优化结果 Tab.3 Results of orthogonal experiment for optimization of fermentation process of compound probiotic fermented feed
2.2 发酵饲料对凡纳对虾生长性能和体成分的影响

表 4显示,各发酵饲料组凡纳对虾SR、WGR、SGR指标均明显高于对照组,其中,低pH组为最高;各发酵饲料组对虾的FCR较对照组均明显下降;低pH组、酸溶蛋白组肝胰腺指数与对照组具有显著性差异(P < 0.05),而酸性多糖组与对照组无明显差异;低pH组摄食率与对照组具有显著性差异(P < 0.05)。与对照组相比,发酵组中对虾水分含量均显著升高(P < 0.05),但粗脂肪含量无明显差异。

表 4 发酵饲料对凡纳对虾生长性能和体成分的影响 Tab.4 Effects of fermented feed on growth performance and body composition of P. vannamei
2.3 发酵饲料对凡纳对虾消化酶活性的影响

图 1可见,各发酵饲料组凡纳对虾肝胰腺和肠道消化酶活性与对照组相比具有明显差异,其中肝胰腺蛋白酶活性仅在酸性多糖组显著升高(P < 0.05),而肠道蛋白酶活性均显著高于对照组(P < 0.05),且低pH组为最大;除酸性多糖组外,低pH组和酸溶蛋白组肝胰腺、肠道淀粉酶活性均显著高于对照组(P < 0.05),以低pH组为最高;低pH组和酸性多糖组肝胰腺、酸溶蛋白组肠道脂肪酶活性均显著高于对照组(P < 0.05),其他发酵组与对照组差异不显著。

图 1 发酵饲料对凡纳对虾肝胰腺和肠道消化酶活性的影响 Fig.1 Effects of fermented feed on hepatopancreatic and intestinal digestive enzyme activity of P. vannamei A:肝胰腺消化酶活性;B:肠道消化酶活性。 A: Digestive enzyme activity of hepatopancreas; B: Digestive enzyme activity of intestine.
2.4 发酵饲料对凡纳对虾免疫防御指标的影响

图 2可知,各发酵饲料组凡纳对虾血细胞数量、吞噬率和抗菌肽基因表达与对照组具有明显差异,而肿瘤坏死因子-α (Tumor necrosis factor-α, TNF-α)、白细胞介素-6 (Interleukin-6, IL-6)基因表达与对照组差异不显著。其中,各发酵组血细胞数量、吞噬率从大到小为酸性多糖组、低pH组、酸溶蛋白组,血细胞抗菌肽Penaeidin 3 (Pen3)、Crustin基因表达有上升趋势,抗脂多糖因子(anti-lipopolysaccharride factor, ALF)、溶菌酶(lysozyme, LSZ)基因表达与对照组无差异,而肠道抗菌肽基因中除LSZ基因外,其他抗菌肽基因表达均显著高于对照组(P < 0.05),以酸性多糖组Penaeidin 3为最高。

图 2 发酵饲料对凡纳对虾血细胞和肠道免疫防御指标的影响 Fig.2 Effects of fermented feed on hemocytes and intestinal immune defense indices of P. vannamei A:总血细胞数量;B:血细胞吞噬率;C:血细胞和肠道中抗菌肽和炎症因子关键基因表达(AP:抗菌肽;IF:炎症因子)。 A: Total haemocytes count; B: Phagocytosis rate of haemocytes; C: Expression of key genes of antimicrobial peptides and inflammatory factors (AP: Antimicrobial peptides; IF: Inflammatory factors).
3 讨论 3.1 复合菌株发酵条件的优化

芽孢杆菌、乳酸菌和酵母菌是我国允许使用的饲料用益生菌,常被用来作为复合菌发酵饲料。据Wang等(2014)报道,在温度为40 ℃时,由嗜热链球菌(Streptococcus thermophilus)、枯草芽孢杆菌MA139和酿酒酵母组成的复合益生菌发酵初始水分含量为60%的豆粕,可以生产出高质量的发酵豆粕;Polak-Bereck等(2014)研究显示,兰氏乳杆菌(Lactobacillus rhamnosus)在温度为37 ℃时,胞外多糖产量可高达210.28 mg/L。通过正交实验优化SDVGB98、SRVGX7、SLVGY7复合益生菌发酵饲料的发酵温度、料水比、发酵时间,获得3个高效发酵对虾饲料(pH最低组、酸溶蛋白最高组、酸性多糖最高组)的发酵温度、料水比、发酵时间,这与上述研究略有不同,主要与发酵菌种、发酵基质和发酵饲料判定指标等有关。

发酵饲料的高酸溶蛋白含量、低pH、抑菌功效等是发酵优化过程中常见的评估指标,已有研究表明,酸性多糖可增强免疫功效(Xie et al, 2007; Shin et al, 2002; Zhang et al, 2018),但获取酸性多糖的方法多局限于提取(Lee et al, 2013)、简易发酵后提取(Ai et al, 2020)或使用酸化剂改良(Nataraj et al, 2023)等,尚未见将酸性多糖作为评估指标应用于土著益生菌发酵优化的相关报道。因此,本研究选择pH、酸溶蛋白和酸性多糖含量作为指标,初步探讨发酵优化后的酸性多糖在对虾养殖中的应用效果。

3.2 复合菌株发酵饲料对凡纳对虾的生长性能与免疫防御功效

饲喂益生菌发酵饲料,养殖动物消化酶活性和生长性能均有明显升高,He等(2021)采用米曲霉(Aspergillus oryzae)发酵米糠投喂杂交石斑鱼(Epinephelus fuscoguttatus♀ × E. lanceolatus♂)幼鱼,发现发酵饲料组消化酶活性明显高于鱼粉对照组,且不会影响机体营养成分;崔广鑫等(2022)研究指出,投喂含有蜡样芽胞杆菌(B. cereus) YB1的饲料可以提高大菱鲆(Scophthalmus maximus)幼鱼WGR、SGR等生长指标,提高肠道消化酶活性,促进机体对营养物质的消化吸收。本研究表明,发酵饲料组凡纳对虾肝胰腺和肠道蛋白酶、脂肪酶、淀粉酶活性明显升高,生长性能明显升高,饲料转化率显著下降,且机体粗脂肪含量无明显差异,这与上述研究结果基本一致。研究表明,由于发酵饲料中含有诸如甘氨酸、丙氨酸等多种风味物质和酯类(Shan et al, 2023)能促进动物摄食,提高消化酶分泌量,同时益生菌发酵生成短链脂肪酸、乳酸等多种有益代谢产物(Stewart et al, 2009)随饲料进入肠道内,弥补了内源消化酶的不足,明显增强了对虾的生长性能,同时要综合评判发酵饲料增强动物的生长性能,尤其是饲料转化率和肝胰腺指数是重要的判别标准,依据本研究结果酸性多糖组为生长性能最佳发酵饲料组。

应用益生菌发酵饲料可以提升养殖动物的免疫功效,Lee等(2013)研究发现,枯草芽孢杆菌发酵柑橘副产物组可显著增强牙鲆(Paralichthys olivaceus)幼鱼的先天免疫力;于道德等(2023)指出,饲料中添加107 CFU/g的侧孢短芽孢杆菌(Brevibacillus laterosporu) FAS05可以提高凡纳对虾血清和肝胰腺中的免疫相关酶活性,机体非特异性免疫力有效提高;王成强等(2019)研究发现,当饲料中添加0.5%或1.0%的枯草芽孢杆菌和0.5%的酵母培养物时,石斑鱼幼鱼血清中部分免疫指标活性提升,抗氧化能力增强。发酵可以增加酸性多糖的含量(Ai et al, 2020),具有明显的抗炎功效,Liu等(2022)从黑枣中分离得到酸性多糖,体外实验证明其可以下调细菌脂多糖(Lipopolysaccharide, LPS)诱导的小鼠单核巨噬细胞RAW264.7炎症因子(NO、IL-6、IL-1β、TNF-α、iNOS和COX-2)的过度分泌。本研究显示,各发酵饲料组凡纳对虾血细胞数量、吞噬率从大到小为酸性多糖组、低pH组、酸溶蛋白组,且肠道抗菌肽基因(除了LSZ)表达显著高于对照组,表明复合益生菌细胞壁中含有大量的免疫多糖,能明显激活对虾的免疫系统,提高免疫防御水平,其中以酸性多糖发酵饲料组为最佳。但本研究中所有发酵饲料组炎症因子功效不明显,这可能与发酵饲料菌种、饲养周期和发酵饲料活性物质如酸性多糖种类等有关,在发酵饲料增强免疫机制方面还有待于深入研究。

4 结论

本研究利用凡纳对虾肠道中筛选出的3株高效益生菌:枯草芽孢杆菌、屎肠球菌、酿酒酵母为发酵菌株,通过正交实验优化获得3个高效发酵饲料(pH最低组、酸溶蛋白最高组、酸性多糖最高组)的工艺条件;经饲喂发酵饲料,凡纳对虾生长性能和免疫防御水平明显提高,经综合评估酸性多糖组可作为凡纳对虾最佳的高效发酵饲料,为渔用发酵饲料开发和应用提供了科学依据。

参考文献
AI Z Y, YOU Y, LI W C, et al. Enhanced uronic acid content, antioxidant and anti-inflammatory activities of polysaccharides from ginseng fermented by Saccharomyces cerevisiae GIW-1. Journal of Food Processing and Preservation, 2020, 44(11): e14885
BITTER T, MUIR H M. A modified uronic acid carbazole reaction. Analytical Biochemistry, 1962, 4: 330-334 DOI:10.1016/0003-2697(62)90095-7
CUI G X, SUN N, WANG T T, et al. Effects of Bacillus cereus YB1 on growth performance, intestinal digestive enzymes, liver antioxidant enzymes, and intestinal tissue structure of juvenile turbot (Scophthalmus maximus). Progress in Fishery Sciences, 2022, 43(1): 97-105 [崔广鑫, 孙娜, 王腾腾, 等. 蜡样芽孢杆菌YB1对大菱鲆幼鱼生长性能、肠道消化酶、肝脏抗氧化酶及肠道组织结构的影响. 渔业科学进展, 2022, 43(1): 97-105]
HAO K, LIU J, LING F, et al. Effects of dietary administration of Shewanella haliotis D4, Bacillus cereus D7 and Aeromonas bivalvium D15, single or combined, on the growth, innate immunity and disease resistance of shrimp, Litopenaeus vannamei. Aquaculture, 2014, 428: 141-149
HE Y F, GUO X W, TAN B P, et al. Replacing fish meal with fermented rice protein in diets for hybrid groupers (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂): Effects on growth, digestive and absorption capacities, inflammatory-related gene expression, and intestinal microbiota. Aquaculture Reports, 2021, 52: 2110-2120
INFANTE-VILLAMIL S, HUERLIMANN, JERRY D R. Microbiome diversity and dysbiosis in aquaculture. Reviews in Aquaculture, 2021, 13(2): 1077-1096 DOI:10.1111/raq.12513
JRIDI M, NASRI R, MARZOUGUI Z, et al. Characterization and assessment of antioxidant and antibacterial activities of sulfated polysaccharides extracted from cuttlefish skin and muscle. International Journal of Biological Macromolecules, 2018, 123: 1221-1228
LEE B J, KIM S S, SONG J W, et al. Effects of dietary supplementation of citrus by-products fermented with a probiotic microbe on growth performance, innate immunity and disease resistance against Edwardsiella tarda in juvenile olive flounder, Paralichthys olivaceus (Temminck & Schlegel). Journal of Fish Diseases, 2013, 36(7): 617-628 DOI:10.1111/jfd.12035
LI L, LI W F, LIU S Z, et al. Probiotic fermented feed improved the production, health and nutrient utilisation of yellow-feathered broilers reared in high altitude in Tibet. British Poultry Science, 2020, 27
LIU C, WANG F Z, ZHANG R T. An acidic polysaccharide with anti-inflammatory effects from Blackened jujube: Conformation and Rheological Properties. Foods, 2022, 11(16): 2488 DOI:10.3390/foods11162488
NATARAJ A, GOVINDAN S, RAJENDRAN A, et al. Effects of carboxymethyl modification on the acidic polysaccharides from Calocybe indica: Physicochemical properties, antioxidant, antitumor and anticoagulant activities. Antioxidants, 2023, 12(1): 105
PERRY W B, LINDSAY E, PAYNE C J, et al. The role of the gut microbiome in sustainable teleost aquaculture. Proceedings of the Royal Society B: Biological Sciences, 2020, 287(1926): 20200184 DOI:10.1098/rspb.2020.0184
PEASURA N, LAOHAKUNJIT N, KERDCHOECHUEN O, et al. Assessment of biochemical and immunomodulatory activity of sulphated polysaccharides from Ulva intestinalis. International Journal of Biological Macromolecules, 2016, 91: 269-277 DOI:10.1016/j.ijbiomac.2016.05.062
POLAK-BERECK A M, WASKO A, KUBIK-KOMAR A. Optimization of culture conditions for exopolysaccharide production by a probiotic strain of Lactobacillus rhamnosus E/N. Polish Journal of Microbiology, 2014, 63(2): 253 DOI:10.33073/pjm-2014-034
RAHIMNEJAD S, ZHANG J J, WANG L, et al. Evaluation of Bacillus pumillus SE5 fermented soybean meal as a fish meal replacer in spotted seabass (Lateolabrax maculatus) feed. Aquaculture, 2021, 531: 735975 DOI:10.1016/j.aquaculture.2020.735975
SHAN K, YAO Y Y, WANG J Y, et al. Effect of probiotic Bacillus cereus DM423 on the flavor formation of fermented sausage. Food Research International, 2023, 172: 113210 DOI:10.1016/j.foodres.2023.113210
STEWART M L, SAVARINO V, SLAVIN J L. Assessment of dietary fiber fermentation: Effect of Lactobacillus reuteri and reproducibility of short-chain fatty acid concentrations. Molecular Nutrition & Food Research, 2009, 53(1): 114
WANG A, MENG D, HAO Q, et al. Effect of supplementation of solid-state fermentation product of Bacillus subtilis HGcc-1 to high-fat diet on growth, hepatic lipid metabolism, epidermal mucus, gut and liver health and gut microbiota of zebrafish. Aquaculture, 2022a, 560: 738542 DOI:10.1016/j.aquaculture.2022.738542
WANG C Q, LI B S, WANG J Y, et al. Effects of dietary Bacillus subtilis and yeast culture on growth, serum biochemical indices and antioxidant capacity of juvenile hybrid grouper (Epinephelus fuscoguttatus♀×E. lanceolatus♂). Progress in Fishery Sciences, 2019, 40(4): 47-56 [王成强, 李宝山, 王际英, 等. 饲料中添加枯草芽孢杆菌和酵母培养物对珍珠龙胆石斑鱼幼鱼生长、血清生化指标及抗氧化能力的影响. 渔业科学进展, 2019, 40(4): 47-56]
WANG J G, RAHIMNEJAD S, LIU Y C, et al. Dietary L-carnitine supplementation affects flesh quality through modifying the nutritional value and myofibers morphological characteristics in largemouth bass (Micropterus salmoides). Animal Feed Science and Technology, 2022b, 292: 115432 DOI:10.1016/j.anifeedsci.2022.115432
WANG S S, LUO K, WANG M Y, et al. Effect of Enterococcus faecium on growth performance, non-specific immunity and disease resistance of Litopenaeus vannamei. Periodical of Ocean University of China, 2023, 53(1): 42-52 [汪仕爽, 罗凯, 王明阳, 等. 屎肠球菌对凡纳滨对虾生长、非特异免疫及抗病力的影响. 中国海洋大学学报(自然科学版), 2023, 53(1): 42-52]
WANG W W, WANG Y, HAO X, et al. Dietary fermented soybean meal replacement alleviates diarrhea in weaned piglets challenged with enterotoxigenic Escherichia coli K88 by modulating inflammatory cytokine levels and cecal microbiota composition. BMC Veterinary Research, 2020, 16: 245 DOI:10.1186/s12917-020-02466-5
WANG Y C, HU S Y, CHIU C S, et al. Multiple-strain probiotics appear to be more effective in improving the growth performance and health status of white shrimp, Litopenaeus vannamei, than single probiotic strains. Fish & Shellfish Immunology, 2019, 84: 1050-1058
WANG Y, LIU X T, WANG H L, et al. Optimization of processing conditions for solid-state fermented soybean meal and its effects on growth performance and nutrient digestibility of weanling pigs. Livestock Science, 2014, 170: 91-99
XIE G, SCHEPETKIN I A, QUINN M T. Immunomodulatory activity of acidic polysaccharides isolated from Tanacetum vulgare L. International Immunopharmacology, 2007, 7(13): 1639-1650
SHIN J Y, SONG J Y, YUN Y S, et al. Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function. Immunopharmacology and Immunotoxicology, 2002, 24(3): 469-482
YU D D, LIU K K, SONG J J, et al. Effects of adding Brevibacillus laterosporu FAS05 to feed on the growth, disease resistance, and immunity of Litopenaeus vannamei. Progress in Fishery Sciences, 2023, 44(3): 144-153 [于道德, 刘凯凯, 宋静静, 等. 饲料中添加侧孢短芽孢杆菌FAS05对凡纳滨对虾生长、抗病及免疫力的影响. 渔业科学进展, 2023, 44(3): 144-153]
YUE F, PAN L Q, XIE P, et al. Immune responses and expression of immune-related genes in swimming crab Portunus trituberculatus exposed to elevated ambient ammonia-N stress. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2010, 157(3): 246-251
ZHANG M Z, PAN L Q, FAN D P, et al. Study of fermented feed by mixed strains and their effects on the survival, growth, digestive enzyme activity and intestinal flora of Penaeus vannamei. Aquaculture, 2020, 530(5): 735703
ZHANG Z H, FAN S T, HUANG D F, et al. Effect of Lactobacillus plantarum NCU116 fermentation on Asparagus officinalis polysaccharide: Characterization, antioxidative, and immunoregulatory activities. Journal of Agricultural and Food Chemistry, 2018, 66(41): 10703-10711
ZHAO G P. Effects of yeast culture® supplemented to the diets containing different levels of soybean meal on growth performance, histological structure and microbiology of turbot (Scophthatmus maximus). Master′s Thesis of Ocean University of China, 2008 [赵贵萍. 不同豆粕水平的饲料中添加一种酵母培养物(益康XP)对大菱鲆生长、组织学结构以及肠道菌群的影响. 中国海洋大学硕士研究生学位论文, 2008]