2. 上海海洋大学 水产种质资源发掘与利用教育部重点实验室 上海 201306;
3. 上海海洋大学 农业农村部鱼类营养与环境生态研究中心 上海 201306
2. Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
3. Center for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
Sirtuins(SIRT)是一类烟酰胺腺嘌呤二核苷酸(NAD+)依赖性组蛋白去乙酰化酶(HDACs)家族,以首次在酿酒酵母(Saccharomyces cerevisiae)中被发现的Sir2p (一种组蛋白去乙酰化酶)命名(Braunstein et al, 1993; Ivy et al, 1985; Klar et al, 1979)。SIRT参与修饰组蛋白或非组蛋白,除具有去乙酰化酶外,有些成员还具有ADP-核糖基化酶等活性,在调节能量代谢、抵抗氧化应激等方面发挥着重要作用(Imai et al, 2000; Landry et al, 2000; Zhao et al, 2004)。SIRT家族广泛存在于原核生物和真核生物中,主要分为5类,SIRT1~SIRT3为Ⅰ类,SIRT4为Ⅱ类,SIRT5为Ⅲ类,SIRT6和SIRT7为Ⅳ类,U类只存在于古细菌到细菌的SIRT基因家族(Frye, 2000; Greiss et al, 2009)。不同生物的SIRT基因数和分布不尽相同,例如酿酒酵母中有4个家族成员,家蚕(Bombyx mori)有5个家族成员,西方蜜蜂(Apis mellifera)有6个家族成员,哺乳动物中有7个家族成员(Frye, 2000; Greiss et al, 2009; 宋文菲等, 2023)。而在硬骨鱼类中SIRT有8个家族成员(Pereira et al, 2011; Opazo et al, 2023),除SIRT1~SIRT7外,还包括SIRT3.2。
McBurney等(2003)研究发现,Sir2α在小鼠(Mus musculus)生殖器官中高度表达,并且首次利用Sir2α敲除小鼠模型发现其不育的生殖缺陷表型,自此,SIRT在繁殖方面的作用受到广泛关注。目前,SIRT家族各成员均已被证明在哺乳动物卵巢中表达,广泛参与调控卵巢发育,涉及减数分裂调控、能量代谢、线粒体质量控制、维持氧化还原稳态以及激素分泌等多个方面(Ma et al, 2018; Cinco et al, 2016; Xu et al, 2019a、b; Zhang et al, 2016)。SIRT家族成员在雌性小鼠产后23 d内卵泡中的表达具有显著性差异,其中,SIRT1、SIRT4和SIRT6表达量随产后天数增加显著降低,SIRT5表达量先显著升高后显著降低,其他成员无显著变化(Kong et al, 2020)。SIRT家族已被发现在斑马鱼(Danio rerio)卵巢组织中高度表达(Pereira et al, 2011),但有关其在卵泡生长发育中较为系统的研究尚未报道。
本研究运用生物信息学方法分析斑马鱼SIRT基因家族8个成员的染色体定位、基因结构、氨基酸序列、二级和三级结构以及系统进化特征,并利用实时荧光定量PCR技术研究斑马鱼SIRT基因家族在卵泡发育不同时期的表达规律,旨在为SIRT基因家族在斑马鱼卵泡发育过程中的功能研究提供参考。
1 材料与方法 1.1 斑马鱼SIRT基因家族染色体定位及结构分析根据Pereira等(2011)的研究结果,对斑马鱼8个SIRT基因进行生物信息学分析。从NCBI (https://www.ncbi.nlm.nih.gov/)数据库中下载斑马鱼基因组序列和注释文件(GCF_000002035.6),使用TBtools (Chen et al, 2020)可视化SIRT基因家族在染色体上的位置、基因结构和保守结构域,蛋白基序使用MEME(http://meme-suite.org/index.html)预测。使用Jalview(Waterhouse et al, 2009)对斑马鱼SIRT蛋白家族氨基酸序列进行多重序列比对。使用SOPMA (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa%20_sopma.html)分析蛋白二级结构,三级结构使用SWISS-MODEL (https://swissmodel.expasy.org/)预测。
1.2 斑马鱼SIRT基因家族理化性质分析及亚细胞定位预测使用ExPASy (http://web.expasy.org/protparam/)预测斑马鱼SIRT家族蛋白的理化性质,通过Cell-PLoc 2.0 (http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/)预测SIRT基因的亚细胞定位。
1.3 SIRT基因家族系统发育分析挑选18个物种的SIRT蛋白氨基酸序列用于构建系统发育树,氨基酸序列来自于NCBI数据库(表 1)。使用MEGA 11.0(Tamura et al, 2021)软件中的邻接法(Saitou et al, 1987)构建系统发育树。采用iTOL (https://itol.embl.de/)在线工具对系统发育树进行美化。
![]() |
表 1 系统发育树构建中使用的SIRT氨基酸序列 Tab.1 SIRT amino acid sequences used in phylogenetic tree construction |
通过STRING数据库(https://string-db.org/)分析斑马鱼SIRT家族蛋白相互作用网络(PPI),使用Cytoscape 3.10.1对PPI进行分析和美化(Shannon et al, 2003)。
1.5 样品采集实验斑马鱼在斑马鱼自动循环水养殖系统中养殖,水温为(28.0±0.5) ℃,光照周期为14 h光照∶10 h黑暗循环,每天用鲜活的卤虫投喂2次。取同一繁殖周期健康、性成熟的斑马鱼,置于冰上冷冻麻醉,断头处死后将卵巢移除,置于60% Leibovitz-15培养液(Gibco)中,将8~10条雌鱼的卵泡小心地用眼科镊子分离,解剖显微镜下用目镜测微尺测定卵泡细胞直径。根据不同发育时期卵泡直径,将卵泡分为初级生长期(PG,< 0.15 mm);卵黄发生前期(PV,~0.25 mm);卵黄发生早期(EV,~0.35 mm);卵黄发生中期(MV,~0.45 mm);充分生长未成熟期(FG,~0.65 mm);成熟期(GVBD,> 0.65 mm)(Wang et al, 2004)。采集获得以上6个时期卵泡(n=3,每个生物学重复至少含有50个卵泡)。置于–80 ℃冰箱保存用于RNA提取。
1.6 实时荧光定量PCR使用AG RNAex Pro RNA提取试剂盒(艾科瑞) 提取不同发育时期卵泡总RNA。使用微量分光光度计NanoDrop 1000检测RNA浓度与纯度,并通过琼脂糖凝胶电泳检测RNA质量。取1 µg总RNA为模板,按照Evo M-MLV反转录试剂盒(艾科瑞)说明书进行反转录获得cDNA。使用Primer-blast软件设计引物(表 2),以β-actin为内参基因,参照SYBR Green Premix Pro Taq HS qPCR试剂盒(艾科瑞)说明书,使用ABI 7500 Real Time PCR仪进行实时荧光定量PCR (qPCR)分析,使用2–ΔΔ CT法(Livak et al, 2001)计算斑马鱼不同发育时期卵泡中SIRT基因家族的相对表达量,结果用平均值±标准差(Mean±SD)表示。
![]() |
表 2 用于qPCR的引物序列 Tab.2 Sequence of primers used for qPCR |
使用SPSS 26.0对数据进行单因素方差分析(one- way ANOVA),采用LSD法进行多重比较,P < 0.05表示具有显著性差异。使用GraphPad Prism 9软件绘图。
2 结果与分析 2.1 斑马鱼SIRT基因家族的染色体分布斑马鱼SIRT基因家族8个成员分别位于斑马鱼的2、6、7、13、15、18、20及22号染色体上(图 1)。
![]() |
图 1 SIRT家族基因在斑马鱼染色体的分布 Fig.1 Distribution of SIRT family genes in chromosome of D. rerio |
基因结构分析显示(图 2),SIRT家族成员基因结构差异很大,序列最长的是SIRT6 (140 265 bp),最短的是SIRT4 (7 101 bp)。SIRT2具有最多的外显子数(17个),SIRT4的外显子数最少(5个)。此外,蛋白质编码区最少的是SIRT4 (3个),最多的是SIRT2 (14个)。虽然SIRT2和SIRT6的5′UTR分布在2个外显子上,但长度明显短于3′UTR。
![]() |
图 2 斑马鱼SIRT家族基因结构 Fig.2 Structure of SIRT family genes in D. rerio |
氨基酸序列比对发现,斑马鱼SIRT基因家族的氨基酸序列相似度仅为20.29% (图 3),相似序列集中在特有的保守基序上,例如GAGxSx、xxPxxR、PxxxH、QNxDxL、xxHGxx和GxSxxx。通过预测得到斑马鱼SIRT蛋白最保守的10个基序(图 4),处于同一分支的旁系同源基因存在近乎相同的motif组成,而各分支之间基序的数量存在差异。10个motif中,motif 2、motif 3和motif 5在所有的斑马鱼SIRT氨基酸序列中均出现,表明这些蛋白基序在发育过程中具有很高的保守性。保守结构域分析结果显示,SIRT1-7蛋白均含有Sir2结构域(图 4)。
![]() |
图 3 斑马鱼SIRT蛋白家族氨基酸多序列比对 Fig.3 Multiple alignments of the amino acid sequences of SIRT protein family from D. rerio |
![]() |
图 4 斑马鱼SIRT蛋白家族蛋白基序和保守结构域分析 Fig.4 Protein motifs analysis and conserved domain analysis of SIRT protein family in D. rerio A:保守基序;B:保守结构域;C:保守基序序列 A: Conserved motifs; B: Conserved domain; C: Conserved motif sequence |
对斑马鱼SIRT蛋白理化性质及亚细胞定位预测显示(表 3),SIRT1分子质量最大,编码710个氨基酸,SIRT5分子质量最小,编码305个氨基酸。等电点为4.88~9.60,且均为亲水性蛋白。除SIRT3外,其余为不稳定蛋白。SIRT1、SIRT4、SIRT5和SIRT7定位于细胞质/细胞核,SIRT3.2定位于细胞质,SIRT6定位于细胞核,SIRT2定位于细胞骨架,SIRT3定位于线粒体。
![]() |
表 3 斑马鱼SIRT蛋白理化性质和亚细胞定位 Tab.3 Physicochemical properties and subcellular localization of SIRT protein family in D. rerio |
利用SOPMA网站对斑马鱼SIRT家族8个蛋白的二级结构进行分析(表 4)。分析结果表明SIRT家族蛋白二级结构相似,α-螺旋和无规则卷曲是蛋白质二级结构的主要组成部分。
![]() |
表 4 斑马鱼SIRT蛋白家族的二级结构预测 Tab.4 Prediction analysis of secondary structure of SIRT protein family in D. rerio |
利用SWISS-MODEL在线网站预测三级结构的结果表明(图 5),SIRT蛋白家族均具有锌指结构和Rossmann折叠结构。拉氏图结果显示,除SIRT1外,其他SIRT家族成员三级结构90%以上的氨基酸位于核心区,说明SWISS-MODEL构建的三级结构模型良好。
![]() |
图 5 斑马鱼SIRT蛋白家族的三级结构预测 Fig.5 Prediction of tertiary structure of SIRT protein family in D. rerio |
系统发育进化树分析发现(图 6),鱼类SIRT家族可以划分为3大分支,第一大分支包含3个小分支,其中,SIRT1和SIRT2分别单独一支,SIRT3和SIRT3.2聚为一支;第二大分支包括SIRT4和SIRT5,二者分别单独聚为一支;第三分支包括SIRT6和SIRT7,二者分别单独为一支。斑马鱼8个SIRT蛋白同源性较低,在进化树上分布较远。与其他物种比较而言,斑马鱼SIRT1与虹鳟(Oncorhynchus mykiss)SIRT1在进化关系上较近,而其他家族成员均与金鱼(Carassius auratus)和电鳗(Electrophorus electricus) SIRT进化关系最近。
![]() |
图 6 SIRT蛋白家族系统发育树 Fig.6 Phylogenetic tree of SIRT protein family |
进一步研究SIRT蛋白家族的进化关系,选择金鱼和青鳉(Oryzias latipes)与斑马鱼进行物种间共线性分析。结果显示,青鳉与斑马鱼之间有4个家族成员(SIRT1、SIRT2、SIRT3.2和SIRT4)具有共线性,而金鱼和斑马鱼之间除SIRT6外,其他家族成员均具有共线性,斑马鱼SIRT4和SIRT5分别与金鱼的2个基因具有共线性(图 7)。
![]() |
图 7 斑马鱼、金鱼和青鳉之间共线性分析 Fig.7 Collinearity analysis between species of D. rerio, C. auratus, and O. latipes |
通过STRING数据库构建SIRT蛋白的PPI网络,表明SIRT蛋白家族内部之间均具有较强的相互作用,SIRT3.2与SIRT1、SIRT4、SIRT5、SIRT6存在明显的相互作用。此外,SIRT蛋白家族与雌激素受体(ESR1)、叉头盒转录因子家族(FOXOs)、热休克蛋白家族(HSPs)、超氧化物歧化酶家族(SODs)、过氧化物增殖酶体(PPARγ)、线粒体相关蛋白(MFN1、MFN2、OPA1、TFAM)、肿瘤抑制因子(P53)等之间均有相互作用关系(图 8)。
![]() |
图 8 SIRT蛋白相互作用网络 Fig.8 The network of protein interacted with SIRT protein |
在斑马鱼卵母细胞发育过程中,SIRT基因家族所有成员在卵泡各发育时期均有表达(图 9)。SIRT1和SIRT2在PG期、PV期和EV期表达量较低,在MV期显著增加(P < 0.05),随后在FG期和GVBD期减少,其中,SIRT1在MV期表达量显著高于其他各时期(P < 0.05)。SIRT3和SIRT4在PG期、PV期、EV期和MV期表达量较低,在FG期显著增加(P < 0.05),随后在GVBD期减少,其中,SIRT3在FG期表达量显著高于其他各时期(P < 0.05)。SIRT3.2、SIRT5、SIRT6和SIRT7呈现出逐渐升高的表达趋势,都在GVBD期表达最高,其中,SIRT3.2在GVBD期显著高于其他时期(P < 0.05);SIRT5在MV期、FG期和GVBD期显著高于PG期和PV期(P < 0.05);EV期、FG期和GVBD期SIRT6的表达量显著高于PG期和PV期(P < 0.05);GVBD期SIRT7的表达量显著高于PG期和FG期(P < 0.05)。
![]() |
图 9 斑马鱼SIRT基因家族在不同卵泡发育时期表达水平 Fig.9 Expression levels of SIRT gene family of zebrafish at different follicle development stages 不同小写字母表示差异显著(P < 0.05)。 Different lowercase letters indicate significant difference (P < 0.05). |
SIRT基因家族广泛存在于几乎所有物种中(Frye, 2000、1999),但在不同物种中其家族成员数目具有差异。例如原核生物的枯草芽孢杆菌(Bacillus subtilis)中仅有1种,酿酒酵母中有4种,人类中有7种(Frye, 1999)。在硬骨鱼类中,花斑裸鲤(Gymnocypris eckloni) (倪伟琳等, 2024)和金头鲷(Sparus aurata) (Simó- Mirabet et al, 2017)被发现有7种,而在斑马鱼(Pereira et al, 2011)和象鲨(Callorhinchus milii) (Opazo et al, 2023)中均发现还有SIRT3.2。染色体定位发现,斑马鱼SIRT基因家族成员均位于不同的染色体上。哺乳动物中,SIRT基因家族在系统进化树中分为4个分支,SIRT1、SIRT2和SIRT3为ClassⅠ,SIRT4为ClassⅡ,SIRT5为ClassⅢ,SIRT6和SIRT7为ClassⅣ(Sharma et al, 2013)。与哺乳动物略有不同,斑马鱼SIRT4、SIRT6和SIRT7为同一支,SIRT5单独为一支,这一结果与花斑裸鲤SIRT基因家族进化模式相同(倪伟琳等, 2024)。此外,与象鲨SIRT3.2 (Opazo et al, 2023)相同的是,斑马鱼SIRT3.2与SIRT3也属于同一分支,因此也属于ClassⅠ。系统发育分析结果发现,斑马鱼SIRT基因家族与金鱼距离最近,与另一种模式生物青鳉距离较远,进而选择斑马鱼、金鱼和青鳉进行物种间共线性分析,发现斑马鱼与金鱼相较于青鳉具有更多的共线性基因对,进一步证明斑马鱼SIRT基因家族与金鱼的同源性更高。此外,共线性分析还发现斑马鱼SIRT4和SIRT5分别与金鱼2个基因具有共线性,说明在进化过程中SIRT4和SIRT5可能发生复制或融合事件。值得注意的是,Kabiljo等(2019)在弗氏假鳃鳉(Nothobranchius furzeri)中发现,SIRT5具有2个旁系同源基因(SIRT5a和SIRT5b)。以上结果表明,SIRT基因家族具有高度同源性,在进化过程可能伴随着复制或融合事件,提示其家族成员在生物体发育过程中发挥着不同的重要功能,并且SIRT基因家族成员在硬骨鱼类中的数量仍然值得进一步探究。
3.2 斑马鱼SIRT基因家族结构和功能特征在哺乳动物中,SIRT1的基因结构通常是最长的,最短的是SIRT4或者SIRT5(Moniot et al, 2012)。硬骨鱼类中,金头鲷SIRT6基因最短(Simó-Mirabet et al, 2017)。在本研究中,斑马鱼SIRT4基因最短,而SIRT6基因长达140 265 bp,其内含子序列较长。与其他物种相似,斑马鱼SIRT1氨基酸序列最长,SIRT5最短。氨基酸序列比对分析结果表明,斑马鱼SIRT与花斑裸鲤(倪伟琳等, 2024)、西方蜜蜂(宋文菲等, 2023)、家蚕(陈聪等, 2014)的保守结构域十分相似,都具有SIRT家族的Sir2或Sir2超家族保守结构域。Sir2结构域的催化核心由2个大小不同的结构域组成,大的结构域由Rossmann折叠组成,是许多NAD和NADP结合酶的特征结构域;小的结构域包含1个螺旋构件和1个锌指结构,大小2个结构域之间形成的裂缝为NAD+的结合位点(Finnin et al, 2001; Michishita et al, 2005; Bruzzone et al, 2013)。本研究中,斑马鱼SIRT蛋白家族结构均具有明显的2个结构域,因此,具有NAD+依赖性催化酶活性。以上分析结果说明,斑马鱼SIRT家族各成员序列具有其家族最基本的结构域,但家族成员之间序列结构具有明显差异性,推测它们能够结合不同的底物发挥不同的酶活性,进而行使不同的生物学功能。
哺乳动物中,SIRT蛋白主要定位于细胞核、细胞质和线粒体(Jin et al, 2007, Guan et al, 2011; 李杰等, 2022)。斑马鱼SIRT蛋白家族亚细胞定位预测结果与花斑裸鲤(倪伟琳等, 2024)基本相同,SIRT1、SIRT4、SIRT5和SIRT7定位于细胞质/细胞核,SIRT6定位于细胞核,SIRT3.2定位于细胞质,SIRT2可能定位于细胞骨架,SIRT3可能定位于线粒体。不同的亚细胞定位结果预示着SIRT在不同细胞器中扮演着不同的角色。PPI分析显示,斑马鱼SIRT蛋白可能与ESR1、FOXOs、HSPs、SODs、PPARγ、P53以及线粒体相关蛋白(MFN1、MFN2、OPA1和TFAM)有相互作用,也说明SIRT可能参与调节雌激素分泌、氧化还原稳态以及线粒体动力学。
3.3 斑马鱼SIRT基因家族在卵泡不同发育时期的表达分析有研究表明,在体外培养时,添加SIRT的抑制剂烟酰胺,会导致小鼠(Riepsamen et al, 2015)和猪(Zhang et al, 2015)的卵母细胞减数分裂异常。而在体外成熟时,添加SIRT激活剂白藜芦醇能显著提高小鼠(Liu et al, 2013)、牛(Khan et al, 2017)和猪(Li et al, 2016)的卵母细胞质量,说明SIRT对雌性动物卵母细胞发育具有调控作用。本研究对斑马鱼卵泡不同发育时期的SIRT基因表达量进行分析,发现其家族成员的表达模式具有差异性。其中,SIRT1和SIR2在MV期表达量最高,推测其可能参与卵黄发生过程;SIRT3和SIRT4在FG期表达量最高,推测其可能参与调控卵母细胞成熟;而SIRT3.2、SIRT5、SIRT6和SIRT7均在GVBD期表达作用最高,推测其可能在成熟期发挥重要作用。研究发现,适量浓度的白藜芦醇通过增强小鼠卵巢颗粒细胞SIRT1的表达,提高了促黄体生成素受体(LHCGR)、类固醇合成急性调节蛋白(StAR)和芳香化酶的mRNA水平,促进了孕激素(P4)的分泌(Morita et al, 2012)。敲除SIRT2(Zhang et al, 2014)、SIRT6(Han et al, 2017)和SIRT7(Vazquez et al, 2019)均会导致α-微管蛋白(α-tubulin)和组蛋白的乙酰化水平升高,进而使得卵母细胞减数分裂异常、卵泡发育受阻。此外,SIRT家族还能通过调节卵巢储备以及卵泡能量代谢、氧化还原稳态、线粒体动力学、自噬等过程调控卵泡发育(房晓欢等, 2019; 徐德军等, 2022)。以上研究结果均表明,SIRT家族基因在调控卵泡发育过程中发挥着重要的生物学功能,而其在硬骨鱼类中的具体功能还有待进一步的探究。
4 结论综上所述,本研究首次运用生物信息学方法对斑马鱼SIRT基因家族进行了染色体定位、基因结构分析、氨基酸序列分析、理化性质分析、亚细胞定位预测、系统进化分析、PPI网络预测以及卵泡不同发育时期的表达分析。结果表明,斑马鱼8个SIRT家族成员的基因结构和氨基酸序列均存在差异,但都具有Sir2保守结构域,蛋白结构相似。系统进化分析提示,不同物种之间SIRT基因家族成员可能存在复制或融合事件。SIRT在斑马鱼卵泡不同发育时期均有表达,并且呈现不同的表达规律,推测其在调节卵泡发育过程中发挥重要作用。本研究可为进一步的功能研究及鱼类卵泡发育复杂的分子调控网络研究提供参考。
(编辑冯小花)
BRAUNSTEIN M, ROSE A B, HOLMES S G, et al. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes & Development, 1993, 7(4): 592-604 |
BRUZZONE S, PARENTI M D, GROZIO A, et al. Rejuvenating sirtuins: The rise of a new family of cancer drug targets. Current Pharmaceutical Design, 2013, 19(4): 614-623 DOI:10.2174/138161213804581954 |
CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202 DOI:10.1016/j.molp.2020.06.009 |
CHEN C, SONG J B, MENG G, et al. Identification, phylogenetic and tissue expression microarray analyses of the sirtuin gene family in silkworm (Bombyx mori). Scientia Agricultura Sinica, 2014, 47(13): 2659-2670 [陈聪, 宋江波, 孟刚, 等. 家蚕sirtuin家族基因的鉴定及系统发生与表达芯片分析. 中国农业科学, 2014, 47(13): 2659-2670 DOI:10.3864/j.issn.0578-1752.2014.13.018] |
CINCO R, DIGMAN M A, GRATTON E, et al. Spatial characterization of bioenergetics and metabolism of primordial to preovulatory follicles in whole ex vivo murine ovary. Biology of Reproduction, 2016, 95(6): 129 DOI:10.1095/biolreprod.116.142141 |
FANG X H, DU M, LI S, et al. Research progress on the effects of sirtuins on female animal reproduction. Acta Veterinaria et Zootechnica Sinica, 2019, 50(12): 2379-2386 [房晓欢, 杜明, 李飒, 等. Sirtuins对雌性动物生殖的影响研究进展. 畜牧兽医学报, 2019, 50(12): 2379-2386 DOI:10.11843/j.issn.0366-6964.2019.12.002] |
FINNIN M S, DONIGIAN J R, PAVLETICH N P. Structure of the histone deacetylase SIRT2. Nature Structural Biology, 2001, 8(7): 621-625 DOI:10.1038/89668 |
FRYE R A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP- ribosyltransferase activity. Biochemical and Biophysical Research Communications, 1999, 260(1): 273-279 DOI:10.1006/bbrc.1999.0897 |
FRYE R A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochemical and Biophysical Research Communications, 2000, 273(2): 793-798 DOI:10.1006/bbrc.2000.3000 |
GREISS S, GARTNER A. Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Molecules and Cells, 2009, 28(5): 407-415 DOI:10.1007/s10059-009-0169-x |
GUAN K L, XIONG Y. Regulation of intermediary metabolism by protein acetylation. Trends in Biochemical Sciences, 2011, 36(2): 108-116 DOI:10.1016/j.tibs.2010.09.003 |
HAN L S, WANG H C, LI L, et al. Melatonin protects against maternal obesity-associated oxidative stress and meiotic defects in oocytes via the SIRT3-SOD2-dependent pathway. Journal of Pineal Research, 2017, 63(3): e12431 DOI:10.1111/jpi.12431 |
IMAI S, ARMSTRONG C M, KAEBERLEIN M, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 2000, 403(6771): 795-800 DOI:10.1038/35001622 |
IVY J M, HICKS J B, KLAR A J. Map positions of yeast genes SIR1, SIR3 and SIR4. Genetics, 1985, 111(4): 735-744 DOI:10.1093/genetics/111.4.735 |
JIN Q H, YAN T T, GE X J, et al. Cytoplasm-localized SIRT1 enhances apoptosis. Journal of Cellular Physiology, 2007, 213(1): 88-97 DOI:10.1002/jcp.21091 |
KABILJO J, MURKO C, PUSCH O, et al. Spatio-temporal expression profile of sirtuins during aging of the annual fish Nothobranchius furzeri. Gene Expression Patterns, 2019, 33: 11-19 DOI:10.1016/j.gep.2019.05.001 |
KHAN I, KIM S W, LEE K L, et al. Polydatin improves the developmental competence of bovine embryos in vitro via induction of sirtuin 1 (Sirt1). Reproduction, Fertility, and Development, 2017, 29(10): 2011-2020 DOI:10.1071/RD16302 |
KLAR A J, FOGEL S, MACLEOD K. MAR1-a regulator of the HMa and HMalpha loci in Saccharomyces cerevisiae. Genetics, 1979, 93(1): 37-50 DOI:10.1093/genetics/93.1.37 |
KONG D Q, YAO G D, BAI Y C, et al. Expression of sirtuins in ovarian follicles of postnatal mice. Molecular Reproduction and Development, 2020, 87(10): 1097-1108 DOI:10.1002/mrd.23418 |
LANDRY J, SUTTON A, TAFROV S T, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(11): 5807-5811 |
LI J, MO X Z, WU D, et al. Roles of SIRT2 in cell differentiation. Chemistry of Life, 2022, 42(10): 1913-1919 [李杰, 莫逊泽, 吴达, 等. SIRT2在细胞分化中的作用. 生命的化学, 2022, 42(10): 1913-1919] |
LI Y, WANG J, ZHANG Z Z, et al. Resveratrol compares with melatonin in improving in vitro porcine oocyte maturation under heat stress. Journal of Animal Science and Biotechnology, 2016, 7: 33-43 DOI:10.1186/s40104-016-0093-9 |
LIU M Y, YIN Y, YE X Y, et al. Resveratrol protects against age-associated infertility in mice. Human Reproduction, 2013, 28(3): 707-717 DOI:10.1093/humrep/des437 |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25(4): 402-408 DOI:10.1006/meth.2001.1262 |
MCBURNEY M W, YANG X F, JARDINE K, et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Molecular and Cellular Biology, 2003, 23(1): 38-54 DOI:10.1128/MCB.23.1.38-54.2003 |
MA R J, LIANG W, SUN Q, et al. Sirt1/Nrf2 pathway is involved in oocyte aging by regulating Cyclin B1. Aging, 2018, 10(10): 2991-3004 DOI:10.18632/aging.101609 |
MICHISHITA E, PARK J Y, BURNESKIS J M, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Molecular Biology of the Cell, 2005, 16(10): 4623-4635 DOI:10.1091/mbc.e05-01-0033 |
MONIOT S, WEYAND M, STEEGBORN C. Structures, substrates, and regulators of Mammalian sirtuins - opportunities and challenges for drug development. Frontiers in Pharmacology, 2012, 3: 16 |
MORITA Y, WADA-HIRAIKE O, YANO T, et al. Resveratrol promotes expression of SIRT1 and StAR in rat ovarian granulosa cells: An implicative role of SIRT1 in the ovary. Reproductive Biology and Endocrinology, 2012, 10: 14-24 DOI:10.1186/1477-7827-10-14 |
NI W L, LIU D, GAO Q, et al. Analysis and expression of SIRT gene family in Gymnocypris eckloni exposed to low-temperature. Fisheries Science, 2024, 43(1): 10-21 [倪伟琳, 刘丹, 高强, 等. 花斑裸鲤SIRT基因家族分析及低温适应性表达. 水产科学, 2024, 43(1): 10-21] |
OPAZO J C, VANDEWEGE M W, HOFFMANN F G, et al. How many sirtuin genes are out there? Evolution of sirtuin genes in vertebrates with a description of a new family member. Molecular Biology and Evolution, 2023, 40(2): msad014 DOI:10.1093/molbev/msad014 |
PEREIRA T C B, RICO E P, ROSEMBERG D B, et al. Zebrafish as a model organism to evaluate drugs potentially able to modulate sirtuin expression. Zebrafish, 2011, 8(1): 9-16 DOI:10.1089/zeb.2010.0677 |
RIEPSAMEN A, WU L, LAU L, et al. Nicotinamide impairs entry into and exit from meiosis I in mouse oocytes. PLoS One, 2015, 10(5): e0126194 DOI:10.1371/journal.pone.0126194 |
SAITOU N, NEI M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 1987, 4(4): 406-425 |
SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 2003, 13(11): 2498-2504 DOI:10.1101/gr.1239303 |
SHARMA A, COSTANTINI S, COLONNA G. The protein– protein interaction network of the human Sirtuin family. Biochimica et Biophysica Acta - Proteins and Proteomics, 2013, 1834(10): 1998-2009 DOI:10.1016/j.bbapap.2013.06.012 |
SIMÓ-MIRABET P, BERMEJO-NOGALES A, CALDUCH- GINER J A, et al. Tissue-specific gene expression and fasting regulation of sirtuin family in gilthead sea bream (Sparus aurata). Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 2017, 187(1): 153-163 DOI:10.1007/s00360-016-1014-0 |
SONG W F, LIU N, MIAO C H, et al. Identification and expression analysis of sirtuin protein family genes in Apis mellifera. Acta Agriculturae Boreali-occidentalis Sinica, 2023, 32(11): 1686-1696 [宋文菲, 刘娜, 苗春辉, 等. 西方蜜蜂Sirtuin蛋白家族基因鉴定及表达分析. 西北农业学报, 2023, 32(11): 1686-1696 DOI:10.7606/j.issn.1004-1389.2023.11.002] |
TAMURA K, STECHER G, KUMAR S. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027 DOI:10.1093/molbev/msab120 |
VAZQUEZ B N, BLENGINI C S, HERNANDEZ Y, et al. SIRT7 promotes chromosome Synapsis during prophase I of female meiosis. Chromosoma, 2019, 128(3): 369-383 DOI:10.1007/s00412-019-00713-9 |
WANG Y J, GE W. Developmental profiles of activin βA, βB, and follistatin expression in the zebrafish ovary: Evidence for their differential roles during sexual maturation and ovulatory Cycle1. Biology of Reproduction, 2004, 71(6): 2056-2064 DOI:10.1095/biolreprod.104.032649 |
WATERHOUSE A M, PROCTER J B, MARTIN D M A, et al. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics, 2009, 25(9): 1189-1191 DOI:10.1093/bioinformatics/btp033 |
XU D J, HE H S, JIANG X H, et al. SIRT2 plays a novel role on progesterone, estradiol and testosterone synthesis via PPARs/LXRα pathways in bovine ovarian granular cells. The Journal of Steroid Biochemistry and Molecular Biology, 2019, a, 185: 27-38 |
XU D J, WU L, JIANG X H, et al. SIRT2 inhibition results in meiotic arrest, mitochondrial dysfunction, and disturbance of redox homeostasis during bovine oocyte maturation. International Journal of Molecular Sciences, 2019, b, 20(6): 1365-1387 |
XU D J, ZHAO Z Q, ZHAO Y J. Molecular mechanism of NAD+/SIRT2 pathway regulating mature quality of aged oocytes. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1657-1667 [徐德军, 赵中权, 赵永聚. NAD+/SIRT2途径调节衰老卵母细胞成熟质量的分子机制. 畜牧兽医学报, 2022, 53(6): 1657-1667] |
ZHANG L, HOU X J, MA R J, et al. Sirt2 functions in spindle organization and chromosome alignment in mouse oocyte meiosis. FASEB Journal, 2014, 28(3): 1435-1445 DOI:10.1096/fj.13-244111 |
ZHANG L, MA R J, HU J, et al. Sirtuin inhibition adversely affects porcine oocyte meiosis. PLoS One, 2015, 10(7): e0132941 DOI:10.1371/journal.pone.0132941 |
ZHANG T, ZHOU Y, LI L, et al. SIRT1, 2, 3 protect mouse oocytes from postovulatory aging. Aging, 2016, 8(4): 685-696 DOI:10.18632/aging.100911 |
ZHAO K H, HARSHAW R, CHAI X M, et al. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+-dependent Sir2 histone/protein deacetylases. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(23): 8563-8568 |