文章摘要
杜玉龙,董登攀,李长剑,王芳,单洪伟.对虾工厂化养殖系统不同浓度氨氮和亚硝氮水体的微生物群落与氮循环功能基因丰度.渔业科学进展,2025,46(3):222-235
对虾工厂化养殖系统不同浓度氨氮和亚硝氮水体的微生物群落与氮循环功能基因丰度
Relationship between concentrations of ammonia and nitrite in water, microbial community structure and abundance of nitrogen cycling function genes
投稿时间:2024-03-31  修订日期:2024-04-26
DOI:10.19663/j.issn2095-9869.20240331001
中文关键词: 凡纳对虾  工厂化养殖  氨氮和亚硝氮  微生物  氮循环基因
英文关键词: Penaeus vannamei  Industrial framing  Ammonia nitrogen and nitrite nitrogen  Microorganisms  Nitrogen cycle genes
基金项目:黄河三角洲产业领军人才计划(DYRC20200213)和国家重点研发计划(2019YFD0900505)共同资助
作者单位
杜玉龙 中国海洋大学 海水养殖教育部重点实验室 山东 青岛 266003 
董登攀 中国海洋大学 海水养殖教育部重点实验室 山东 青岛 266004 
李长剑 中国海洋大学 海水养殖教育部重点实验室 山东 青岛 266005 
王芳 中国海洋大学 海水养殖教育部重点实验室 山东 青岛 266006 
单洪伟 中国海洋大学 海水养殖教育部重点实验室 山东 青岛 266007 
摘要点击次数: 246
全文下载次数: 251
中文摘要:
      凡纳对虾(Penaeus vannamei)工厂化养殖常出现氨氮和亚硝氮积累的现象,对养殖对虾产生负面影响。为了探究微生物在氨氮(NH3-N)和亚硝氮(NO2–-N)积累中的作用,将随机从凡纳对虾工厂化养殖系统采集的水样分为4组,DG组:NH3-N<1.33 mg/L、NO2–-N<0.77 mg/L;DB组:NH3-N> 2.53 mg/L、NO2–-N<0.77 mg/L;DY组:NH3-N<1.33 mg/L、NO2–-N>2.55 mg/L;DR组:NH3-N>2.53 mg/L、NO2–-N>2.55 mg/L。利用16S rRNA测序技术分析各组的微生物群落结构,利用实时荧光定量PCR (RT-qPCR)测定氮循环功能基因绝对丰度,并对微生物丰度、环境因子和氮循环基因丰度进行了Person相关性分析。结果表明,DY组和DR组红杆菌科(Rhodobacteraceae)的相对丰度高于DG组和DB组,葡萄球菌科(Stappiaceae)低于DG组和DB组。DG组norank_o__PeM15的相对丰度显著高于其他3组(P<0.05)。微生物中,蓝藻科(Cyanobiaceae)、腐败螺旋菌科(Saprospiraceae)和冷苔菌科(Cryomorphaceae)与NH3-N浓度呈显著正相关,微杆菌科(Microbacteriaceae)与NO2–-N浓度呈显著正相关(P<0.05)。DR组氮循环功能基因的绝对丰度均为最高,其中,narG、nirS、nirK、amoA和ureC的绝对丰度与其他组具有显著差异(P<0.05)。在功能基因中,amoA与NH3-N浓度、NO2–-N浓度呈显著正相关,nirS与NO2–-N浓度呈显著正相关(P<0.05)。以上结果表明,腐败螺旋菌科、冷苔菌科和微杆菌科的丰度变化可能会影响水体NH3-N和NO2–-N的浓度。NH3-N和NO2–-N浓度高的水体氮循环功能基因的绝对丰度更高。本研究揭示了水体微生物、氮循环基因和含氮化合物之间的关系,为通过调控微生物解决对虾工厂化养殖中有害氮积累的问题提供了理论支持。
英文摘要:
      Ammonia nitrogen and nitrite nitrogen accumulation often occur in industrial whiteleg shrimp (Penaeus vannamei) farming and has a negative impact. To explore the role of microorganisms in ammonia nitrogen and nitrite nitrogen accumulation, water samples from industrial farming systems of P. vannamei were randomly collected and divided into four groups. The four groups were as follows: DG group, ammonia nitrogen<1.33 mg/L and nitrite nitrogen<0.77 mg/L; DB group, ammonia nitrogen>2.53 mg/L and nitrite nitrogen<0.77 mg/L; DY group, ammonia nitrogen<1.33 mg/L and nitrite nitrogen>2.55 mg/L; DR group, ammonia nitrogen>2.53 mg/L and nitrite nitrogen>2.55 mg/L. 16S rRNA sequencing technology was used to analyze the microbial structure of each group, real-time quantitative PCR was used to determine the absolute abundance of nitrogen cycling genes, and Person correlation analysis was conducted for microbial abundance, environmental factors, and nitrogen cycling gene abundance. The relative abundances of Rhodobacteraceae in the DY and DR groups were higher than those in the DG and DB groups, while that of Stappiaceae was lower than that in the DG and DB groups. The relative abundance of norank_o__PeM15 was significantly higher in DG group than that in the other three groups (P<0.05). Among bacteriaceae, Cyanobiaceae, Saprospiraceae, and Cryomorphaceae were significantly positively correlated with ammonia nitrogen, whereas Microbacteriaceae was significantly positively correlated with nitrite nitrogen (P<0.05). The absolute abundances of nitrogen cycling functional genes in DR Group were the highest, and the absolute abundances of narG, nirS, nirK, amoA, and ureC were significantly different from those in other groups (P<0.05). Among functional genes, the abundance of amoA was positively correlated with ammonia nitrogen and nitrite nitrogen, whereas nirS was positively correlated with nitrite nitrogen (P<0.05). These results suggest that the variation of the abundances of Saprospiraceae, Cryomorphaceae, and Microbacteriaceae may affect ammonia nitrogen and nitrite nitrogen concentrations in water. The absolute abundance of nitrogen cycling genes in water with high ammonia nitrogen and nitrite nitrogen concentrations was high. Our study reveals the relationship between water microorganisms, nitrogen cycling genes, and nitrogen-containing compounds, and provides theoretical support for addressing harmful nitrogen accumulation in shrimp industrial farming via microorganism regulation.
附件
查看全文   查看/发表评论  下载PDF阅读器
关闭