引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 17次   下载 3 本文二维码信息
码上扫一扫!
分享到: 微信 更多
原位探究海水养殖浮漂破碎形成微塑料的特征
刘国顺,赵信国,孙雪梅,朱琳,隋琪,魏曼曼,夏斌
1.青岛科技大学生物工程学院 山东 青岛 266061;2.海水养殖生物育种与可持续产出全国重点实验室(中国水产科学研究院黄海水产研究所) 山东 青岛 266071;3.青岛海洋科技中心海洋生态与环境科学功能实验室 山东 青岛 266237;4.青岛海洋科技中心海洋生态与环境科学功能实验室 山东 青岛 266238;5.青岛海洋科技中心海洋生态与环境科学功能实验室 山东 青岛 266239;6.青岛海洋科技中心海洋生态与环境科学功能实验室 山东 青岛 266240
摘要:
随着塑料制品在各个领域广泛应用,废弃塑料所形成的微塑料污染已成为全球性环境问题。在海洋环境中,微塑料污染尤为突出,特别是在海水养殖区。塑料海水养殖设施长期暴露在紫外线照射、波浪冲击、微生物侵蚀等因素下,逐渐破碎形成微塑料。尽管已有大量研究关注微塑料对海洋生物和生态系统的影响,但针对自然环境下塑料海水养殖设施破碎形成微塑料的规律研究较少。本研究通过自制的塑料破碎原位收集装置,监测并分析了海水养殖浮漂在自然环境下的破碎情况。结果显示,在37 d内,无浮漂组装置中微塑料丰度为(307.09±16.37)个/kg,浮漂组装置中微塑料丰度为(392.72±27.22)个/kg;收集的微塑料尺寸以小于0.5 mm为主,形状以纤维状为主,颜色以透明色为主。海水养殖浮漂在此过程中生成约(136.41±10.59)个微塑料,浮漂生成的微塑料形状以薄膜状为主,颜色以黑色为主。其中,有薄膜状微塑料(85.75±6.06)个,颗粒状(46.74±3.32)个,泡沫状(2.77±0.21)个,纤维状(1.16±0.96)个;黑色(95.42±6.87)个,透明色(40.10±3.46)个,其他颜色最少,有(0.90±0.22)个。该装置对海水养殖浮漂破碎形成的微塑料具有良好的收集效果。研究结果为评估和预测养殖浮漂对微塑料的生成、迁移及其生态风险提供基础数据和理论支持。
关键词:  微塑料  海水养殖浮漂  原位研究  微塑料形成
DOI:10.19663/j.issn2095-9869.20240923002
分类号:
基金项目:山东省重点研发计划(2022CXPT013)、海水养殖生物育种与可持续产出全国重点实验室开放课题(BRESG202309)、国家自然科学基金(U2106213)、山东省泰山学者专项(tsqn202211267)和中国水产科学研究院黄海所基本业务费(20603022024014)共同资助
In situ exploration of the characteristics of microplastics formed by the fragmentation of floating floats in seawater aquaculture
LIU Guoshun1,2, ZHAO Xinguo2,3, SUN Xuemei4,5, ZHU Lin6,7, SUI Qi8,5, WEI Manman1, XIA Bin2,3
1.College of Bioengineering, Qingdao University of Science and Technology, Qingdao 266061, China;2.State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;3.Marine Ecology and Environmental Science Laboratory, Qingdao Marine Science and Technology Center, Qingdao 266237, China;4.State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China;5.Marine Ecology and Environmental Science Laboratory, Qingdao Marine Science and T翿뀘䭃翿Ce䞈䬼翿耀횀赂õ뀘䭃翿;6.State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266073, China;7.Marine Ecology and Environmental Science Laboratory, Qingdao Marine Science and Tnology Center, Qingdao 266237, China ꐝõ;8.State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266074, China
Abstract:
With the widespread application of plastic products in various fields, microplastic pollution caused by waste plastics has become a global environmental problem. Microplastic pollution is notably prevalent in marine environments, particularly in aquaculture areas. Marine aquaculture plastic facilities are subject to prolonged exposure to ultraviolet radiation, wave impact, and microbial erosion, gradually breaking down and forming microplastics. Although extensive studies have been conducted on the impact of microplastics on marine organisms and ecosystems, studies on the laws of microplastic formation from float debris in marine aquaculture in natural environments are limited. This study used a self-made plastic crushing in-situ collection device to monitor and analyze the fragmentation of seawater aquaculture float in natural environments. The results showed that after 37 days, the abundance of microplastics in the no float group device was (307.09±16.37) items/kg, whereas the abundance of microplastics in the float group device was (392.72±27.22) items/kg. The collected microplastics were predominantly fibrous and measured ˂ 0.5 mm, with most being transparent in color. During seawater aquaculture, approximately (136.41±10.59) ind. microplastics were generated by float, primarily in the form of thin films with predominantly black color. There were (85.75±6.06) ind. film-shaped microplastics, (46.74±3.32) ind. granular microplastics, (2.77±0.21) ind. foam-shaped microplastics, and (1.16±0.96) ind. fibrous microplastics. Additionally, there were (95.42±6.87) ind. black colored microplastics, and (40.10±3.46) ind. transparent microplastics, with other colors being the least prevalent at (0.90±0.22) ind.. This device effectively collects microplastics generated by the fragmentation of float in marine aquaculture. The study results provide basic data and theoretical support for evaluating and predicting the generation, migration, and ecological risks of microplastics caused by aquaculture floats.
Key words:  Microplastics  Marine aquaculture float  In situ research  Microplastics formation