渔业科学进展  2019, Vol. 40 Issue (4): 11-20  DOI: 10.19663/j.issn2095-9869.20180611003
0

引用本文 

郝甜甜, 王际英, 李宝山, 宋志东, 黄炳山, 孙永智, 王雅平, 王晓艳. 复合动植物蛋白部分替代鱼粉对大菱鲆幼鱼生长、体成分及生理生化指标的影响[J]. 渔业科学进展, 2019, 40(4): 11-20. DOI: 10.19663/j.issn2095-9869.20180611003.
HAO Tiantian, WANG Jiying, LI Baoshan, SONG Zhidong, HUANG Bingshan, SUN Yongzhi, WANG Yaping, WANG Xiaoyan. Effects of Replacement of Fish Meal With an Animal and Plant Protein Mixture on Growth, Body Composition, and Physiological and Biological Indices of Juvenile Turbot (Scophthalmus maximus L.)[J]. Progress in Fishery Sciences, 2019, 40(4): 11-20. DOI: 10.19663/j.issn2095-9869.20180611003.

基金项目

山东省重点研发计划(2016GSF115005)和烟台市科技计划(2017ZH066)共同资助

作者简介

郝甜甜,E-mail: haotiantian0805@163.com

通讯作者

王际英,研究员,E-mail: ytwjy@126.com

文章历史

收稿日期:2018-06-11
收修改稿日期:2018-06-29
复合动植物蛋白部分替代鱼粉对大菱鲆幼鱼生长、体成分及生理生化指标的影响
郝甜甜 1, 王际英 1, 李宝山 1, 宋志东 1, 黄炳山 1, 孙永智 1, 王雅平 1,2, 王晓艳 1     
1. 山东省海洋资源与环境研究院 山东省海洋生态修复重点实验室 烟台 264006;
2. 上海海洋大学 水产科学国家级实验教学示范中心 农业农村部鱼类营养与环境生态研究中心 水产动物遗传育种中心上海市协同创新中心 上海 201306
摘要:本研究设计5组等氮等能(粗蛋白为53%,能量为25KJ/g)的实验饲料,以60%的鱼粉饲料组作为对照(D1),豆粕:花生粕:鱼溶浆粉:鸡肉粉(2:1:3:2)的复合蛋白替代40% (D2)、50% (D3)、60% (D4)和70% (D5)的鱼粉,养殖大菱鲆幼鱼(Scophthalmus maximus L.)初始体重(53.0±0.2) g,养殖周期84 d,每天定时(08:00,16:30)投喂2次,投喂量为体重的1.5%~2%。实验结果显示,各处理组之间幼鱼存活率、饲料系数和摄食率均无显著性差异(P>0.05);与对照组相比,D4和D5组增重率显著降低(P < 0.05);肥满度在D2组达到最高值,显著高于D3、D4和D5组(P < 0.05);脏体比(VSI)、肝体比(HSI)和肠体比(ISI)均在D2组达到最低值,均显著低于D5组(P < 0.05);复合动植物蛋白替代鱼粉对大菱鲆幼鱼全鱼水分和粗蛋白含量均无显著影响(P>0.05);各替代组全鱼粗脂肪含量显著高于对照组(P < 0.05);全鱼灰分含量在D5组显著低于对照组(P < 0.05);各组间背肌水分、粗蛋白、粗脂肪和灰分含量均无显著性差异(P>0.05);复合动植物蛋白替代鱼粉对鱼体肌肉非必需氨基酸和必需氨基酸总量无显著影响(P>0.05);各替代组均显著提高了血清谷草转氨酶和谷丙转氨酶活性(P < 0.05);总蛋白浓度在D2组显著高于D4和D5组(P < 0.05);血糖浓度在D2和D3组显著低于其他3组(P < 0.05);D3、D4和D5组甘油三酯浓度和高密度脂蛋白浓度均显著低于对照组和D2组(P < 0.05);各替代组胆固醇和低密度脂蛋白浓度均显著低于对照组(P < 0.05);各组之间碱性磷酸酶浓度无显著差异(P>0.05)。研究结果表明,复合动植物蛋白可有效替代50%鱼粉而不影响大菱鲆幼鱼生长性能和部分生理生化指标。
关键词大菱鲆    复合动植物蛋白    鱼粉    生长    生理生化指标    
Effects of Replacement of Fish Meal With an Animal and Plant Protein Mixture on Growth, Body Composition, and Physiological and Biological Indices of Juvenile Turbot (Scophthalmus maximus L.)
HAO Tiantian 1, WANG Jiying 1, LI Baoshan 1, SONG Zhidong 1, HUANG Bingshan 1, SUN Yongzhi 1, WANG Yaping 1,2, WANG Xiaoyan 1     
1. Key Laboratory of Marine Ecological Restoration, Shandong Marine Resources and Envionment Research Institute, Yantai 264006;
2. Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Centre for Research on Environmental Ecology and Fish Nutrion (CREEFN) of the Ministry of Agriculture and Rural affairs, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306
Abstract: A 12-week feeding trial was conducted to evaluate the effects of replacement of fish meal with alternative proteins on growth performance, body composition, and physiological and biological indices of juvenile turbot (Scophthalmus maximus L.). Five isonitrogenous and isolipidic practical diets were formulated to contain graded levels (100%, 60%, 50%, 40%, and 30%) of fish meal (D1~D5); the D1 group was used as the control. A protein blend of four ingredients (soybean meal, peanut meal, stickwater meal, poultry by-product meal = 2:1:3:2) were used to replace the fish meal; subsequently, amino acids were supplemented in the low fish meal diet to obtain similar amino acid profiles to the high fish meal diet. Each diet was randomly assigned to triplicate groups of 30 fish [(initial weight, (53.0±0.2) g)] per aquarium. The results of the survival rate, feed conversion ratio, feed intake, whole body moisture and crude protein, dorsal muscle moisture, crude protein, crude lipid, and ash content did not show any significant differences between any of the groups (P>0.05), whereas the diets with low fish meal content (D4/D5) significantly reduced the weight gain rate of fish compared with the control diet (P < 0.05). The condition factor was significantly enhanced in the D2 treatment compared with the D3, D4, and D5 groups (P < 0.05). However, the viscerosomatic and hepatosomatic indices were significantly reduced in the D2 treatment compared with the D5 (P < 0.05). The dietary inclusion of the animal and plant protein mixture significantly elevated the whole-body crude lipid content (P < 0.05). The whole-body ash content in the D5 treatment was significantly lower than the control diet (P < 0.05). The essential amino acid compositions of the muscle were not significantly affected by the replacement of dietary fish meal with animal and plant protein mixtures (P>0.05). The dietary inclusion of animal and plant protein mixture significantly elevated serum aspartate aminotransferase and alanine transaminase activities (P < 0.05). All the substituted protein diets caused significantly reduced serum cholesterol and low-density lipoprotein cholesterol (P < 0.05), but only D3~D5 diets caused a significantly decreased serum high-density lipoprotein cholesterol (P < 0.05). The dietary inclusion of animal and plant protein mixture had no strong effects on the total protein content and the alkaline phosphatase content (P>0.05). The replacement of up to 50% of dietary fish meal with an animal and plant protein mixture did not impair growth or reduce the feed efficiency of juvenile turbot.
Key words: Scophthalmus maximus L.    Animal and plant protein mixture    Fish meal    Growth    Physiological and biological index    

大菱鲆(Scophthalmus maximus L.)是我国北方重要的海水鱼经济养殖品种,具有较高的经济和社会效益(雷霁霖, 2003)。目前,工厂化养殖大菱鲆多投喂高蛋白商品饲料,鱼粉作为优质蛋白源是大菱鲆商业饲料的首选。然而,随着全球渔业资源的匮乏和鱼粉需求量的不断增大,鱼粉价格不断上涨,因此,开发可利用的廉价新型蛋白源替代鱼粉是水产养殖业盈利的先决条件。目前,大多数的蛋白源替代鱼粉研究多集中在植物蛋白源和动物蛋白源上。对虹鳟(Oncorhynchus mykiss)、欧洲鲈(Dicentrarchus labrax)等研究表明,豆粕等植物蛋白单一替代鱼粉的最高比例可达30%~40%,而不影响鱼体生长(Kaushik et al, 2004; Dias et al, 2005);对牙鲆(Paralichthys olivaceus)、大菱鲆的研究表明,蚕蛹粉、肉骨粉等动物蛋白单一替代鱼粉最高比例可达10%~20%,而不影响幼鱼生长(Lee et al, 2012; 梅琳, 2015)。因此,对于肉食性或偏肉食的杂食性鱼类来说,这些单一蛋白源替代鱼粉比例很难达到或超过50% (李学丽等, 2017; 魏佳丽等, 2016; 李宗升等, 2016)。因此,如何将不同蛋白源组合互补,提高其在海水鱼配合饲料中的利用率,是开发海水鱼配合饲料中鱼粉替代研究的关键问题。同时,新型蛋白源鱼溶浆粉由于含有较多寡肽,游离氨基酸、牛磺酸及保留了鱼粉特有的未知生长因子,具有提高生物体生长等作用(罗其刚等, 2015),但鱼溶浆粉在海水鱼配合饲料中的应用还未见报道。本研究在综合考虑氨基酸平衡及适口性等基础上,采用来源广泛且实际生产中常用的豆粕、花生粕、鸡肉粉和鱼溶浆粉为复合蛋白源,在补充限制性氨基酸和牛磺酸的条件下,相互复合搭配(2:1:3:2),用其部分替代大菱鲆配合饲料中的不同水平鱼粉,对大菱鲆幼鱼生长性能、体成分及生理生化指标进行研究,旨在尽可能的替代更多鱼粉,为大菱鲆新型蛋白源的开发研究提供理论依据。

1 材料与方法 1.1 实验饲料

实验用蛋白源为鱼粉、酪蛋白、豆粕、花生粕、鸡肉粉及鱼溶浆粉,鱼油为脂肪源。原料营养和氨基酸组成见表 1。鱼溶浆粉购自荣成海圣饲料有限公司,其工艺为:新鲜鱼经洗涤去杂,蒸煮压榨后,酶解处理,真空干燥至水分为40%~50%,最后喷雾干燥至成品。其他原料均由山东升索渔用饲料研究中心提供。实验设置5组等氮等能(粗蛋白为53%,能量为25 kJ/g)饲料,以60%的鱼粉组作为对照(D1),豆粕:花生粕:鱼溶浆粉:鸡肉粉(2:1:3:2)复合替代40% (D2)、50% (D3)、60% (D4)和70% (D5)的鱼粉,根据鱼粉对照组必需氨基酸组成,添加晶体氨基酸L-赖氨酸和L-蛋氨酸平衡各处理组必需氨基酸。具体饲料配方见表 2。饲料氨基酸组成见表 3

表 1 饲料原料氨基酸组成及主要营养成分 Tab.1 Amino acid and nutrient contents of dietary ingredient
表 2 饲料配方和主要营养成分(%干物质) Tab.2 Formulation and proximate chemical composition of the tested diets (% dry matter)
表 3 饲料氨基酸组成 Tab.3 Amino acid of the tested diets

饲料原料粉碎过80目筛,按照饲料配方逐级扩大混匀,将鱼油均匀加入原料中,混合均匀,然后加水搓匀,经螺旋挤压机加工成直径为3.0 mm的硬颗粒饲料,60℃烘干12 h,密封保存于-20℃备用。

1.2 实验用鱼和实验条件

实验用大菱鲆购自山东蓬莱宗哲养殖有限公司,养殖实验在山东省海洋资源与环境研究院全封闭水循环系统进行。实验开始之前,实验鱼暂养7 d,使其适应养殖环境。驯化结束后,禁食24 h,挑选健康、规格均一的大菱鲆幼鱼[初重(53.0±0.2) g]随机分配到15个绿色圆柱形塑料养殖桶中(直径70 cm×高80 cm,水深50 cm)。每个处理3个重复,每个重复30尾鱼。整个实验期间,微水流循环水养殖,控制水温为(16±1)℃,pH为7.8~8.0,盐度为27~28,溶解氧>8 mg/L,氨氮 < 0.01 mg/L,亚硝酸盐 < 0.01 mg/L。养殖周期为84 d,每天投喂2次(08:00, 16:30),投喂量为鱼体重的1.5%~2%,投喂结束之后从系统自带的排水口将残饵排出,数颗粒计数。

1.3 样品采集

养殖实验结束时,禁食24 h,以桶为单位称重量,记录每桶实验鱼的尾数和重量,计算成活率、增重率和饲料系数。每桶随机选择9尾幼鱼,用氨基苯甲酸乙酯甲磺酸盐(MS-222)麻醉,2尾作为全鱼分析,剩余7尾尾静脉采血,之后取背肌和内脏团,称重,然后,分离肝脏和肠道分别称重,计算肝体比和肠体比。血样4℃静置4 h,4000 r/min离心10 min,取血清。将所有样品保存于-20℃,待测。

1.4 测定指标和方法

实验原料、饲料及实验鱼组织水分测定采用105℃烘干恒重法测定(GB/T 6435-2006);粗蛋白采用凯氏定氮法测定(GB/T 6432-2006);脂肪采用索氏抽提法测定(GB/T 6433-2006);粗灰分采用550℃灼烧法测定(GB/T 6433-2007);能量采用燃烧法(IKA, C6000, Germany);实验原料、饲料及实验鱼组织氨基酸采用全自动氨基酸测定仪(Hitachi L-8900, 日本)测定。

生长性能指标及计算公式:

存活率(Survival rate, SR, %)=终末尾数/初始尾数×100

增重率(Weight gain rate, WGR, %)=(鱼体末重-鱼体初重)/鱼体初重×100

摄食率(Feed intake, FI, %/d)=(摄食饲料量/[(鱼体初重+鱼体末重)/2]/养殖天数]×100

饲料系数(Feed conversion ratio, FCR, %)=摄食饲料量/鱼体增重×100

肥满度(Condition factor, CF)=鱼体重/鱼体长3×100

脏体比(Viscerosomatic index, VSI, %)=内脏重/鱼体末重×100

肝体比(Hepatosomatic index, HSI, %)=肝脏重/鱼体末重×100

肠体比(Intestinesomatic index, ISI, %)=(肠重/鱼体末重)×100

血清丙氨酸转移酶(Alanine aminotransferase, ALT)、天冬氨酸转移酶(Aspartate transaminase, AST)、总蛋白(Totol protein, TP)、白蛋白(Albumin, ALB)、碱性磷酸酶(Alkaline phosphatase, AKP)、葡萄糖(Glucose, GLU)、甘油三酯(Triglyceride, TG)、总胆固醇(Total cholesterol, TCHO)、高密度脂蛋白胆固醇(High density lipoprotein cholesterol, HDL-C)和低密度脂蛋白胆固醇(Low density lipoprotein cholesterol, LDL-C)均采用生化分析仪(7020, 日立, 日本)测定, 试剂盒购于北京利德曼生化股份有限公司。酶活力单位参照试剂盒说明书。

1.5 数据统计与分析

采用SPSS17.0对所得数据进行单因素方差分析(One-way ANOVA),差异显著,则采用Duncan’s进行多重检验,显著水平为0.05,统计数据以平均值±标准差(Mean±SD)形式表示。

2 结果与分析 2.1 复合蛋白源替代鱼粉对大菱鲆幼鱼生长性能和饲料利用率的影响

表 4可知,养殖结束后,各组间成活率无显著差异(P>0.05);与对照组(D1)相比,D4和D5组鱼体末重显著降低(P < 0.05);增重率随替代比例的升高呈降低趋势,D4和D5组显著低于对照组(P < 0.05),D2、D3组与对照组之间无显著差异(P>0.05);各组间摄食率和饲料系数均无显著差异(P>0.05)。

表 4 复合蛋白替代鱼粉对大菱鲆幼鱼生长性能和饲料利用的影响(n=3; x±SD) Tab.4 Effect of replacement of fishmeal by compound proteins on growth indices and feed utilization of juvenile turbot(n=3; x±SD)
2.2 复合蛋白源替代鱼粉对大菱鲆幼鱼形体指标的影响

表 5可知,随着替代比例的升高,肥满度呈先上升后下降趋势,在D2组达到最高值,与对照组无显著差异(P>0.05),但是显著高于D3、D4和D5组(P < 0.05)。脏体比、肝体比和肠体比均随着替代比例的升高呈先下降后上升趋势,均在D2组达到最低值,D5组达到最高值,且D2与D5之间差异显著(P < 0.05)。

表 5 复合蛋白替代鱼粉对大菱鲆幼鱼形体指标的影响(n=3; x±SD) Tab.5 Effect of replacement of fishmeal by compound proteins on somatic indices of juvenile turbot (n=3; x±SD)
2.3 复合蛋白源替代鱼粉对大菱鲆幼鱼体成分的影响

表 6可知,动植物复合蛋白源替代鱼粉对大菱鲆幼鱼全鱼水分和粗蛋白含量均无显著性影响(P> 0.05)。各替代组粗脂肪含量均显著高于对照组(P < 0.05)。灰分呈降低趋势,在D5组达到最低值,与对照组差异显著(P < 0.05)。复合动植物蛋白源替代鱼粉对大菱鲆幼鱼背肌水分、粗蛋白、粗脂肪和灰分含量均无显著影响(P>0.05)。

表 6 复合蛋白替代鱼粉对大菱鲆幼鱼体成分的影响[(n=3; x ±SD; %湿重(FW)] Tab.6 Effect of replacement of fishmeal by compound proteins on proximate composition of the whole body and muscle of juvenile turbot (n=3; x ±SD; wet weight)

背肌氨基酸组成见表 7,复合动植物蛋白替代鱼粉对鱼体肌肉非必需氨基酸和必需氨基酸总量无显著影响(P>0.05);随着复合动植物蛋白替代鱼粉水平的升高,Cys呈先上升后稳定的趋势,各替代组均显著高于对照组(P < 0.05);Tyr含量在D4替代组达到最高值,显著高于对照组和D2组;各替代组Val和Met含量显著高于对照组(P < 0.05)。

表 7 复合蛋白替代鱼粉对大菱鲆幼鱼背肌氨基酸组成的影响(g/100 g)(n=3; x±SD) Tab.7 Effect of replacement of fishmeal by compound proteins on amino acid of muscle in juvenile turbot (g/100 g) (n=3; x±SD)
2.4 复合蛋白源替代鱼粉对大菱鲆幼鱼血清生理指标的影响

复合蛋白替代鱼粉显著影响了大菱鲆幼鱼部分生理指标(表 8)。与对照组相比,各替代组ALT浓度显著升高;AST浓度在D4和D5组显著高于对照组、D2和D3组;TP浓度在D2组达到最高值,显著高于D4和D5组(P < 0.05),但是与对照组差异不显著(P> 0.05);各组之间ALB浓度和ALP浓度差异不显著(P>0.05);GLU浓度随替代比例的升高呈先下降后上升趋势,在D2和D3组显著低于对照组、D4和D5组(P < 0.05);TG浓度在D3、D4和D5组显著低于对照组和D2组(P < 0.05);CHO、HDL-C和LDL-C浓度均随替代比例的升高呈下降趋势,与对照组相比,各替代组CHO和LDL-C浓度均显著降低(P < 0.05);HDL-C浓度在D3、D4和D5组显著低于对照组和D2组(P < 0.05)。

表 8 复合蛋白替代鱼粉蛋白对大菱鲆幼鱼血清生理指标的影响(n=3; x±SD) Tab.8 Effect of replacement of fishmeal by compound proteins on serum physiological indices of juvenile turbot
3 讨论 3.1 复合蛋白源替代鱼粉对大菱鲆幼鱼生长性能、饲料利用率和形体指标的影响

在本研究条件下,复合动植物蛋白源替代不同水平的鱼粉对大菱鲆幼鱼成活率没有显著影响,这表明本研究饲料对大菱鲆幼鱼的健康没有产生不利影响。已有研究表明,复合植物蛋白替代大菱鲆饲料中30%的鱼粉会显著降低鱼体生长性能(陈超等, 2012),复合动物蛋白也只能替代大菱鲆饲料40%的鱼粉(李会涛等, 2007),但在本研究中,以增重率为评价指标,复合动植物蛋白替代50%的鱼粉与对照组无显著差异,这表明鱼溶浆粉在饲料蛋白源替代中具有一定的潜力,动植物蛋白与鱼溶浆粉复合达到了互补作用,提高了蛋白利用率。但是鱼粉替代比例超过50%会抑制鱼体生长,可能的原因是随着替代比例的升高,复合植物蛋白中的多种抗营养因子导致饲料中蛋白利用率降低(Fournier et al, 2004),从而降低了幼鱼生长。

已有研究表明,动植物蛋白源替代鱼粉引起生长下降的原因是适口性低引起的(Yigit et al, 2006; Kader et al, 2010),但是在本研究中各组之间摄食率和饲料系数均无显著差异,可能原因是本研究饲料中复合蛋白源中含有的鱼溶浆粉含有较多寡肽、牛磺酸及一些特有的未知因子等(罗其刚等, 2015),改善了饲料的适口性,保证了在高水平动植物蛋白替代鱼粉后,大菱鲆幼鱼仍保持较高的摄食率。

代伟伟等(2016)研究表明,在营养发生改变时,鱼体的内脏重量也会发生一定的变化。在本研究中,当复合蛋白替代比例在40%时,脏体比和肝体比均显著低于对照组,表明复合动植物蛋白替代鱼粉后使大菱鲆形体发生了一定程度的改变,这与刘运正等(2016)研究结果一致。

3.2 复合蛋白源替代鱼粉对大菱鲆幼鱼体成分的影响

本研究结果表明,动植物复合蛋白替代鱼粉后,各组之间全鱼水分和粗蛋白含量均无显著差异。已有研究表明,当复合植物蛋白替代鱼粉时,会降低鱼体粗脂肪含量(代伟伟等, 2016; Kader et al, 2012),但本研究中动植物复合蛋白替代鱼粉后却增加了全鱼粗脂肪含量。出现此结果的原因,可能是随着复合蛋白源替代鱼粉比例的升高,蛋白质效率逐渐降低,用于合成鱼体蛋白的能量降低,则用于合成脂肪的能量逐渐增加(于继英, 2018),从而使饲料中的脂肪消化吸收率升高,影响了脂肪在鱼体的累积代谢率,使其脂肪含量随复合动植物蛋白源的升高而升高(Sheng, 1994),具体作用机理还需进一步研究。关于复合蛋白源替代鱼粉对鱼体灰分的影响,不同的实验得出的结果亦不同。在已有的大菱鲆、牙鲆和黄颡鱼(Pelteobagrus fulvidraco)的研究中发现,复合蛋白替代鱼粉对鱼体灰分含量无显著影响(董纯等, 2015; 罗嘉翔等, 2017; Deng et al, 2006),但在本研究中,鱼体灰分含量随着替代比例的升高呈下降趋势,出现此现象的原因,可能是复合动植物蛋白源中含有的抗营养因子能与Zn2+、Ca2+、Cu2+和Fe2+等金属离子鳌合形成稳定的不溶性络合物(苗雪霞, 1999),从而降低鱼体对矿物质的消化吸收率,进而导致鱼体灰分含量降低。

本研究表明,复合动植物蛋白替代鱼粉对大菱鲆幼鱼背肌水分、粗蛋白、粗脂肪和灰分含量均无显著影响,这与动植物蛋白在海水鱼上的研究结果一致(Kadera et al, 2012; Turker et al, 2005)。从氨基酸角度分析,动植物复合蛋白替代鱼粉对肌肉非必需氨基酸总量和必需氨基酸总量均无显著影响,这表明本研究饲料复合动植物蛋白配比没有降低肌肉氨基酸品质。与对照组相比,替代组Cys、Tyr、Val和Met含量均有升高趋势,可能原因是蛋白源的不同导致了组织氨基酸代谢库的变化,不同氨基酸的消耗与沉积发生了相应的变化(代伟伟等, 2015),具体机理还需进一步研究。

3.3 复合蛋白源替代鱼粉对大菱鲆幼鱼血清生化指标的影响

饲料蛋白的来源组成会影响鱼体血液生化指标的变化(Lim et al, 2011)。Ye等(2011)研究表明,即使动植物蛋白替代鱼粉对鱼体蛋白含量没有显著影响,但是在一定程度上会影响鱼体血液生化指标。本研究结果表明,ALT和AST随着替代比例的升高均呈升高趋势,说明随着复合动植物蛋白替代鱼粉水平的升高,对鱼体肝脏造成了一定胁迫,导致ALT和AST大量游离到血液(Kouba et al, 2014)。血清TP浓度在D2组达到最高值,各组间ALB浓度无显著性差异,表明本研究中复合动植物蛋白替代鱼粉后对鱼体蛋白代谢并未产生负面影响,这与Lee等(2012)的研究结果相似。TG、CHO、HDL-C和LDL-C是检测鱼体脂类代谢的重要指标(Geurden et al, 2008)。本研究中,血清TG、CHO、HDL-C和LDL-C浓度均随替代水平的变化而降低,与已有的复合植物蛋白或者复合动植物蛋白替代鱼粉,会导致血清脂类代谢酶活下降(Dias et al, 2005; 代伟伟等,2016)的相关研究结果一致。其原因可能是随着复合蛋白替代鱼粉比例的升高,饲料蛋白源发生变化导致了鱼体脂类平衡的改变(Panserat et al, 2008; Nagel et al, 2012),从而影响了血清脂类代谢酶活的变化。

4 结论

在84 d养殖时间内,使用复合动植物蛋白源可有效替代饲料50%的鱼粉而不影响大菱鲆生长性能,饲料利用和蛋白沉积;对肌肉氨基酸品质无显著影响;但是,复合动植物蛋白源的使用影响了鱼体脂类代谢,表现为降低了血清TG、CHO、HDL-C和LDL-C浓度。综上所述,以增重率为评价指标,当用比例为,豆粕:花生粕:鱼溶浆粉:鸡肉粉=2:1:3:2的复合蛋白源替代鱼粉时,最佳替代比例为50%。

参考文献
Chen C, Chen JH. Effects of taurine and compound crystalline amino acid on feed intake, growth and feed utilization of turbot (Scophthalmus maximus L.). Chinese Agricultural Science Bulletin, 2012, 28(23): 108-112 [ 陈超, 陈京华. 牛磺酸、晶体氨基酸对大菱鲆摄食、生长和饲料利用率的影响. 中国农学通报, 2012, 28(23): 108-112]
Dias J, Alvarez MJ, Arzel J, et al. Dietary protein source affects lipid metabolism in the European seabass (Dicentrarchus labrax). Comparative Biochemistry Physiology, Part A, 2005, 142(1): 19-31 DOI:10.1016/j.cbpb.2005.07.005
Dai WW, Mai KS, Xu W, et al. Effects of replacing fish meal with plant-based protein on growth, physiological and biological indices, and intestinal histology in tongue sole, Cynoglossus semilaevis Güntuer. Journal of Fishery Sciences of China, 2016, 23(1): 125-137 [ 代伟伟, 麦康森, 徐玮, 等. 复合植物蛋白源替代鱼粉对半滑舌鳎生长、生理生化指标和肠组织结构的影响. 中国水产科学, 2016, 23(1): 125-137]
Deng JM, Mai KS, Ai QH, et al. Effects of replacing fish meal with soy protein concentrate on feed intake and growth of juvenile Japanese flounder, Paralichthys olivaceus. Aquaculture, 2006, 258(1-4): 503-513 DOI:10.1016/j.aquaculture.2006.04.004
Dong C, Zhou HH, Mai KS, et al. Replacement of fishmeal in juvenile turbot diets with compound proteins: Effects on growth performance, whole body composition and apparent digestibility coefficient. Periodocal of Ocean University of China(Natural Science), 2015, 45(4): 27-34 [ 董纯, 周慧慧, 麦康森, 等. 复合蛋白源替代鱼粉对大菱鲆幼鱼生长、体组成和表观消化率的影响. 中国海洋大学学报(自然科学版), 2015, 45(4): 27-34]
Dai WW, Mai KS, Xu W, et al. Effects of lysine-arginine interaction on growth performance, body composition, and muscle amino acid levels of juvenile turbot (Scophthalmus maximus L.). Journal of Fisheries of China, 2015, 39(6): 876-887 [ 代伟伟, 麦康森, 徐玮, 等. 饲料中赖氨酸和精氨酸含量对大菱鲆幼鱼生长、体成分和肌肉氨基酸含量的影响. 水产学报, 2015, 39(6): 876-887]
Fournier V, Huelvan C, Desbruyeres E. Incorporation of a mixture of plant feedstuffs as substitute for fish meal in diets of juvenile turbot (Psetta maxima). Aquaculture, 2004, 236(1-4): 451-465 DOI:10.1016/j.aquaculture.2004.01.035
Fan T, Liu Y, Ming W, et al. Effects of substituting fishmeal with earthworm (Eisenia foetida) meal on growth, muscle composition, serum biochemistry index and immunity performance in the loach Paramisgurnus dabryanus. Journal of Fishery Sciences of China, 2016, 23(6): 1320-1331 [ 范涛, 刘毅, 明伟, 等. 蚯蚓粉替代鱼粉对大鳞副泥鳅生长、肌肉成分、血清生化指标及免疫性能的影响. 中国水产科学, 2016, 23(6): 1320-1331]
Geurden I, Kaushik S, Corraze G. Dietary phosphatidylcholine affects postprandial plasma levels and digestibility of lipid in common carp (Cyprinus carpio). British Journal of Nutrition, 2008/, 100(3): 512-517 DOI:10.1017/S0007114508904396
Kaushik SJ, Coves D, Dutto G, et al. Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture, 2004, 230(1): 391-404
Kader MA, Koshio S, Ishikawa M. Supplemental effects of some crude ingredients in improving nutritive values of low fishmeal diets forred sea bream, Pagrus major. Aquaculture, 2010, 308(3-4): 136-144 DOI:10.1016/j.aquaculture.2010.07.037
Kader MA, Koshio S. Effect of composite mixture of seafood by-products and soybean proteins in replacement of fishmeal on the performance of red sea bream, Pagrus major. Aquaculture, 2012(368-369): 95-102
Kadera MA, Bulbul M, Koshio S, et al. Effect of complete replacement of fishmeal by dehulled soybean meal with crude attractants supplementation in diets for red sea bream, Pagrus major. Aquaculture, 2012(350-353): 109-116
Kouba A, Velíšek J, Stará A, et al. Supplementation with sodium selenite and selenium-enriched microalgae biomass show varying effects on blood enzymes activities, antioxidant response, and accumulation in common barbel (Barbus barbus). BioMed Research International, 2014, 2014(1): 143-146
Lei JL. Farming techniques of turbot. Shanghai: Shanghai Scientific & Technical Publishers, 2003: 8 [ 雷霁霖. 大菱鲆养殖技术. 上海: 上海科学技术出版社, 2003: 8]
Lee J, Choi IC, Kim KT, et al. Response of dietary substitution of fishmeal with various protein sources on growth, body composition and blood chemistry of olive flounder (Paralithchtys olivaceus, Temminck & Schlegel, 1846). Fish Physiology and Biochemidtry, 2012, 38(3): 735-744 DOI:10.1007/s10695-011-9555-3
Li XL, Wang JY, Song ZD, et al. Research on partial replacement of fishmeal by two kinds of soybean meal inthe feed of juvenile ♀ Epinephelus fuscoguttatus ×♂ Epinephelus lanceolatus. Journal of Shanghai Ocean University, 2017, 26(5): 716-725 [ 李学丽, 王际英, 宋志东, 等. 两种豆粕部分替代鱼粉在珍珠龙胆石斑鱼幼鱼饲料中的研究. 上海海洋大学学报, 2017, 26(5): 716-725]
Li ZS, Wu LX, Li SM, et al. Effects of replacing fish meal with poultry by-product meal on growth performance and body composition of juvenile turbot (Scophthalmus maximus). Fisheries Science, 2016, 35(5): 486-491 [ 李宗升, 吴立新, 李思萌, 等. 鸡肉粉替代鱼粉对大菱鲆生长和体组成的影响. 水产科学, 2016, 35(5): 486-191]
Luo QG, Ye YT, Cai CF, et al. Effects of adding stickwater meal and fish oil into basal diets on grass carp (Ctenopharyngodon idellus) growth, liver fat content and serum indicators. Journal of Fisheries of China, 2015, 39(6): 888-898 [ 罗其刚, 叶元土, 蔡春芳, 等. 日粮中添加鱼溶浆粉和鱼油对草鱼生长、肝脏脂肪含量和血清理化指标的影响. 水产学报, 2015, 39(6): 888-898]
Li HT, Mai KS, Ai QH, et al. Apparent digestibility of selected protein ingredients for larger yellow croaker Pseudosciaena crocea. Acta Hydrobiologica Sinica, 2007, 31(3): 370-376 [ 李会涛, 麦康森, 艾庆辉, 等. 大黄鱼对几种饲料蛋白原料消化率的研究. 水生生物学报, 2007, 31(3): 370-376 DOI:10.3321/j.issn:1000-3207.2007.03.011]
Liu YZ, He G, Mai KS, et al. Effect of partial replacement of dietary fishmeal with an animal and plant protein mixture on the growth performance and muscle texture of juvenile turbot (Scophthalmus maximus L.). Periodocal of Ocean University of China (Natural Science), 2016, 46(1): 33-39 [ 刘运正, 何艮, 麦康森, 等. 新型复合动植物蛋白源部分替代鱼粉对大菱鲆幼鱼生长和肉质的影响. 中国海洋大学学报(自然科学版), 2016, 46(1): 33-39]
Luo JX, Huang WW, Yuan Y, et al. Effects of fish meal replacement with poultry by-product meal on growth performance, feed utilization, digestive enzyme activities and antioxidant capacity of juvenile yellow catfish (Pelteobagrus fulvidraco). Chinese journal of animal nutrition, 2017, 29(11): 141-150 [ 罗嘉翔, 黄文文, 袁野, 等. 鸡肉粉替代鱼粉对黄颡鱼幼鱼生长性能、饲料利用、消化酶活性及抗氧化能力的影响. 动物营养学报, 2017, 29(11): 141-150]
Lim S, Lee K. A microbial fermentation of soybean and cottonseed meal increases antioxidant activity and gossypol detoxification in diets for Nile tilapia, Oreochromis niloticus. Journal of the World Aquaculture Society, 2011, 42(4): 494-503 DOI:10.1111/j.1749-7345.2011.00491.x
Mei L, Zhou HH, Mai KS, et al. Effects of dietary substitution of fishmeal by fermented silkworm pupae on the growth, feed intake, digestion and immunity of juvenile turbot (Scophthalmus maximus L.). Progress in Fishery Sciences, 2015, 36(3): 85-92 [ 梅琳, 周慧慧, 麦康森, 等. 蚕蛹蛋白替代鱼粉对大菱鲆(Scophthalmus maximus L.)幼鱼生长、饲料利用、消化代谢酶及免疫性能的影响. 渔业科学进展, 2015, 36(3): 85-92]
Miao XX, Chen HG, Li XL, et al. Effect of dietary phytase on growth and phosphorus utilization of broiler chicks. Acta Agriculture Universitatis Henanensis, 1999, 33(1): 68-71 [ 苗雪霞, 陈红歌, 李秀兰, 等. 植酸酶对肉鸡生长及磷利用率的影响. 河南农业大学学报, 1999, 33(1): 68-71 DOI:10.3969/j.issn.1000-2340.1999.01.015]
Nagel F, von Danwitz A, Tusche K, et al. Nutritional evaluation of rapeseed protein isolate as fish meal substitute for juvenile turbot (Pestta maxima L.) impact on growth performance, body composition, nutrient digestibility and blood physiology. Aquaculture, 2012, 356-357(4): 357-364
Panserat S, Kolditz C, Richard N, et al. Hepatic gene expression profiles in juvenile rainbow trout (Oncorhynchus mykiss) fed fishmeal or fish oil-free diets. British Journal of Nutrition, 2008, 100(5): 953-967 DOI:10.1017/S0007114508981411
Sheng HQ, He XQ. Effects of dietary animal and plant protein ratio and energy on growth and body composition of bream (Megalobrama skolkovii Dybowski). Aquaculture, 1994, 127(2-3): 189-196 DOI:10.1016/0044-8486(94)90425-1
Turker A, Yigit M, Ergun S. Potential of poultry by-product meal as a substitute for fishmeal in diets for black sea turbot Scophthalmus mseoticus: growth and nutrient utilization in winter. The Israeli Journal of Aquaculture- Bamidgeh, 2005, 57(1): 49-61
Wei JL, Wang JY, Song ZD, et al. Effects of the partial substitute for fish meal by hydrolyzed krill meal on growth performance, the body composition and the serum biochemical parameters of juvenile pearl gentian grouper. Progress in Fishery Sciences, 2016, 37(1): 100-110 [ 魏佳丽, 王际英, 宋志东, 等. 酶解磷虾粉替代鱼粉对珍珠龙胆石斑鱼幼鱼生长性能、体组成及血清生化的影响. 渔业科学进展, 2016, 37(1): 100-110]
Yu JY, Xu XJ, Zhang J, et al. Effects of lipid and protein metabolism on muscle flavor. Feed Research, 2018(1): 17-21 [ 于继英, 许小军, 张继, 等. 脂肪和蛋白质代谢对肉品风味的影响. 饲料研究, 2018(1): 17-21]
Yigit M, Erdem M, Koshio S, et al. Substituting fish meal with poultry by-product meal in diets for black Sea turbot Psetta maeotica. Aquaculture Nutrition, 2010, 12(5): 340-347
Ye JD, Liu XH, Wang ZJ, et al. Effect of partial fish meal replacement by soybean meal on the growth performance and biochemical indices of juvenile Japanese flounder Paralichthys olivaceus. Aquaculture International, 2011, 19(1): 143-153 DOI:10.1007/s10499-010-9348-1