渔业科学进展  2023, Vol. 44 Issue (2): 196-204  DOI: 10.19663/j.issn2095-9869.20220207001
0

引用本文 

孙文波, 周明瑞, 侯梦丹, 文露婷, 杜雪松, 翟旭亮, 李虹, 林勇, 罗辉. 稻田和池塘养殖禾花鲤肌肉营养与品质分析[J]. 渔业科学进展, 2023, 44(2): 196-204. DOI: 10.19663/j.issn2095-9869.20220207001.
SUN Wenbo, ZHOU Mingrui, HOU Mengdan, WEN Luting, DU Xuesong, ZHAI Xuliang, LI Hong, LIN Yong, LUO Hui. Comparing the Effects of Pond and Rice Field Culture Methods on Muscle Quality of Rice Flower Carp[J]. Progress in Fishery Sciences, 2023, 44(2): 196-204. DOI: 10.19663/j.issn2095-9869.20220207001.

基金项目

广西科技重大专项(桂科AA17204095-3)、国家自然科学基金(31960730)、重庆市水产科技创新联盟项目(2022)和生态渔技术体系项目(2020)共同资助

作者简介

孙文波,E-mail: 2877372196@qq.com

通讯作者

林勇,研究员,E-mail: linnn2005@126.com
罗辉,副教授,E-mail: luohui2629@126.com

文章历史

收稿日期:2022-02-07
收修改稿日期:2022-04-07
稻田和池塘养殖禾花鲤肌肉营养与品质分析
孙文波 1,4, 周明瑞 1,4, 侯梦丹 1,4, 文露婷 2, 杜雪松 2, 翟旭亮 3,4, 李虹 3,4, 林勇 2, 罗辉 1,4     
1. 西南大学水产学院 重庆 402460;
2. 广西壮族自治区水产科学研究院 广西 南宁 530021;
3. 重庆市水产技术推广总站 重庆 400020;
4. 重庆市水产科技创新联盟 重庆 400020
摘要:为评估不同养殖环境对禾花鲤(Cyprinus carpio)肌肉营养与品质的影响,采用国标法检测稻田和池塘2种养殖环境下禾花鲤肌肉常规营养成分、质构特性、氨基酸和脂肪酸组成。结果显示,池塘组禾花鲤肌肉粗蛋白和粗脂肪含量显著高于稻田组(P < 0.05),水分含量显著低于稻田组(P < 0.05),灰分含量2组差异不显著(P > 0.05);池塘组肌肉粘性显著高于稻田组(P < 0.05),内聚性和剪切力显著低于稻田组(P < 0.05),其他质构指标2组间差异不显著(P > 0.05);肌肉氨基酸测定结果显示,池塘组氨基酸总量(ƩTAA)、鲜味氨基酸(DAA)、必需氨基酸(EAA)、非必需氨基酸(NEAA)显著高于稻田组(P < 0.05),ƩEAA/TAA和ƩEAA/NEAA显著低于稻田组(P < 0.05),2组禾花鲤必需氨基酸构成比例均符合FAO/WHO标准;在鲜味氨基酸含量方面,池塘组主要的4种呈味氨基酸含量均显著高于稻田组(P < 0.05)。根据氨基酸评分(AAS)和化学评分(CS)标准,2组禾花鲤肌肉第一、二限制性氨基酸均分别为色氨酸(Trp)和缬氨酸(Val);在脂肪酸测定结果中显示,池塘组单不饱和脂肪酸(∑MUFA)含量显著高于稻田组(P < 0.05),但多不饱和脂肪酸(∑PUFA)、EPA+DHA和∑n-3PUFA/∑n-6PUFA显著低于稻田组(P < 0.05)。综上所述,池塘和稻田养殖条件下,禾花鲤均为优质的蛋白质来源,但不同养殖环境对禾花鲤肌肉营养与品质有显著影响。从常规营养成分、氨基酸评分方面看,池塘养殖条件下禾花鲤肌肉营养价值更高;从脂肪酸角度来看,稻田养殖禾花鲤肌肉具有较高的EPA+DHA含量以及n-3/n-6多不饱和脂肪酸比例,更适合高血脂和心血管疾病等患者食用,从质构性来看,稻田养殖环境下禾花鲤肌肉更具嚼劲。
关键词禾花鲤    稻田养殖    池塘养殖    肌肉品质    
Comparing the Effects of Pond and Rice Field Culture Methods on Muscle Quality of Rice Flower Carp
SUN Wenbo 1,4, ZHOU Mingrui 1,4, HOU Mengdan 1,4, WEN Luting 2, DU Xuesong 2, ZHAI Xuliang 3,4, LI Hong 3,4, LIN Yong 2, LUO Hui 1,4     
1. College of Fisheries, Southwest University, Chongqing 402460, China;
2. Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China;
3. Chongqing Fishery Technology Extension Station, Chongqing 400020, China;
4. Chongqing Aquatic Science and Technology Innovation Alliance, Chongqing 400020, China
Abstract: Rice flower carp (Cyprinus carpio rubrofuscus) has high economic value because of its tender meat. However, a comprehensive scientific evaluation of the meat quality and nutritional value of rice flower carp is still needed. At the same time, because of its fast growth and strong disease resistance, rice flower carp is widely popularized in rice field culture but without any research comparing its quality with the pond culture method. Although rice farming has high ecological value, the fish yield is low and its specifications are abnormal, which cannot guarantee the stability and safety of the commercial fish supply and limit the potential rice flower carp industrial benefits. In addition, some studies have shown that fish muscle quality can be affected by environmental conditions. This study aimed to comprehensively evaluate the muscle quality and nutritional value of the rice flower carp and investigate the relationships between the nutritional values and its culture conditions, providing data to increase the rice flower carp yield, economic efficiency, and farmed varieties available. Therefore, 6 000 Quanzhou rice flower carp (2.35±0.08 g) were randomly divided into ponds and rice field groups for the experiment (three replicates per group, with a density of 15 000/hm2). The pond culture group was fed with 3% of the commercially established everyday food per fish weight, while the rice field group was not fed. After 12 weeks, the fish were submitted to a 24 h period without food and anesthetized using MS-222 (USA, Sigma). The length and weight of 100 fish were measured for each treatment. For the rice field group and pond group, respectively, the lengths were (13.56±0.49) cm and (14.10±0.23) cm, and the weights were (73.19±7.02) g and (101.20±4.57) g. The muscle quality of 30 fish from each treatment was measured, including basic nutritional components, texture characteristics, and amino acid and fatty acid compositions. The nutritional level was compared between the pond and rice field groups using the FAO/WHO amino acid score, whole egg protein comparison, protein amino acid score (AAS), chemical score (CS), and essential amino acid index (EAAI). Moreover, no significant differences between the two culture methods were observed in relation to the total ash (P > 0.05). The crude protein and crude fat contents in the rice field group were significantly lower than in the pond group (P < 0.05), while moisture was significantly higher (P < 0.05). The viscosity of the rice field group was significantly lower than that of the pond group (P < 0.05), but the cohesion and shear force were significantly higher than those of the pond group (P < 0.05). There was no significant difference in the other texture indexes (P > 0.05). Essential amino acids (EAA) in both groups met the FAO/WHO standard. Among the 18 amino acids measured, the total amino acids (TAA), delicious amino acids (DAA), essential and nonessential amino acids (NEAA) were significantly lower in rice field conditions than in pond (P < 0.05), while the EAA/TAA and EAA/NEAA ratios were significantly lower in the pond group (P < 0.05). According to the amino acid score (AAS) and chemical score (CS), glutamic acid (Glu) was the most common amino acid in both groups, while the first and second limiting amino acids were tryptophan (Trp) and valine (Val). Among the 22 fatty acids observed, the contents of tridecanoic, pentadecanoic, palmitoleic, heptadecanoic, and docosatetraenoic acids were not significantly different between the two groups (P > 0.05). In contrast, the contents of linoleic, linolenic, and arachidonic acids in the pond group were significantly higher than those in the rice field group (P < 0.05), while 14 other fatty acids showed significantly lower contents in the pond group (P < 0.05). The monounsaturated fatty acid (MUFA) contents in the pond group were significantly higher (P < 0.05), while the EPA+DHA and n-3PUFA/n-6PUFA were significantly lower than those in the rice field group (P < 0.05). Overall, the contents of four main flavor amino acids (glutamic acid, glycine, alanine, and aspartic acid) in the rice field group were significantly lower than those in the pond group (P < 0.05). In conclusion, rice flower carp reared in both pond and rice field is a high-quality protein source. However, different cultural environments significantly influence the rice flower carp muscle nutritional value and quality, wherein a higher nutrient composition and amino acid score were observed in the pond environment. Concerning the fatty acids content, the muscle of rice flower carp reared in rice fields had higher EPA+DHA content and N-3/N-6 polyunsaturated fatty acid ratio, which is more suitable for people with hyperlipidemia and cardiovascular diseases. In addition, in terms of texture, the muscle of rice flower carp is chewier under the rice field rearing condition. Nevertheless, N-3PUFA shortages were observed in both culture conditions. Besides, fish in the pond group had better muscle nutrition than the rice field group. Different culture conditions can change rice flower carp's fatty acid composition and content to a certain extent, but none of the two conditions tested here could completely allay the lower N-3PUFA problem. Therefore, increasing the N-3PUFA content of rice flower carp is the key to improving its nutritional value, and pond culture conditions make this process easier to be manually controlled.
Key words: Rice flower carp    Rice filed culture    Pond culture    Muscle quality    

禾花鲤(Cyprinus carpio)为鲤科(Cyprinidae)、温水性小型鱼类,鱼体呈半透明的紫褐色,鳞细肉嫩,味道鲜美,早在乾隆盛世时就成为宫廷“贡品”(蒋云龙等, 2009)。禾花鲤生长快、食性杂、繁殖力和抗病力强,常见于广西桂北山区。目前,普遍认为禾花鲤是一种典型的稻田养殖地方鱼类(汪婷等, 2019),其主要天然饵料有底栖动物、浮游植物[绿藻(Chlorophyta)、金藻(Chrysophyta)、硅藻(Diatom)、微藻(Microalgae)等]和浮游动物(卤虫、桡足类无节幼体等)(邱楚雯等, 2018; 彭辉辉, 2019)。

稻田养殖是一种生态循环农业发展的养殖模式,能有效防治病害、改善水质、改良稻田水体群落,是国家大力支持发展的一种水产养殖模式(马冬梅等, 2019)。养殖户通过稻田养殖禾花鲤获得了较好的经济效益,但随着消费者生活水平的不断提高,稻田养殖禾花鲤已经难以满足市场需求。池塘养殖作为一种传统的人工养殖模式,也是我国最重要的淡水养殖模式(张婧怡, 2020),2020年池塘养殖产量占全国淡水养殖鱼的73.80% (农业农村部渔业渔政管理局, 2020)。改用池塘养殖禾花鲤对其肌肉营养价值是否会产生影响,目前相关的研究还鲜有报道。另外,国内外对禾花鲤肌肉品质的研究也较少,仅有杨四秀等(2009)对全州县稻田禾花鲤的肌肉组分营养价值做了初步分析。因此,本研究拟通过对稻田和池塘养殖环境下禾花鲤肌肉营养与品质进行科学评估,以补充常见食用鱼肌肉品质的基础数据,同时为禾花鲤池塘养殖的推广提供数据资料。

1 材料与方法 1.1 实验材料

实验用禾花鲤由广西农业良种海南南繁育种基地孵化,选择同一批孵化的禾花鲤幼鱼(2.35±0.08) g 6000尾,随机将其分为池塘和稻田(广西绿淼生态农业有限公司) 2个实验组,密度为15000尾/hm2,每组3个重复。池塘养殖采用通威饲料有限公司生产的商品饲料(粗蛋白≥32%,粗脂肪≥3.0%),日投喂率为体重的3%,稻田养殖不投喂,养殖周期为12周。

1.2 样品采集

养殖实验结束后,禁食24 h。从稻田养殖组和池塘养殖组中随机捞取100尾鱼,经MS-222 (Sigma,美国)麻醉后用干毛巾擦拭鱼体,测定形体指标,然后2组各随机选取30尾剪取背部两侧肌肉。样品保存于–80℃冰箱中待测。

1.3 测定方法

采用直接干燥法(GB 5009.3-2016)测定水分含量,灼烧称量法(GB 5009.4-2016)测定粗灰分含量,凯氏定氮法(GB 5009.5-2016)测定粗蛋白含量,索氏提取法(GB 5009.6-2016)测定粗脂肪含量。使用氨基酸自动分析仪(GB/T5009.124-2016)测定氨基酸组成(色氨酸除外),按照尤晓蒙(2015)所用方法,碱水解后用高效液相色谱法测定色氨酸。脂肪酸组成及含量测定参照GB 5009.168-2016《食品中脂肪酸的测定》的方法进行。

将鱼肉沿肌肉纤维方向切成1.5 cm×1.5 cm×1.5 cm的块状,用TA-XTPlus质构仪测定肌肉质构指标。测定条件:探头P/36R,模式TPA,压缩比50%,测前、测中和返回速率均为1 mm/s,2次下压的时间间隔为5 s,下压距离6 mm,触发力设定Auto 5 g。每组样品6个平行。选取硬度、粘性、弹性、咀嚼性、内聚力、回复性和剪切力7个指标进行分析。

1.4 营养价值及肌肉品质的评价方法

根据联合国粮农组织/世界卫生组织(FAO/WHO)建议的氨基酸评分标准模式和全鸡蛋蛋白的氨基酸模式进行比较(杨月欣, 2019; 罗辉等, 2021)。蛋白质的氨基酸评分(AAS)、化学评分(CS)和必需氨基酸指数(EAAI)计算公式:

$ \begin{array}{l} {\rm{AAS}} = 待评蛋白质氨基酸含量({\rm{mg}}/{\rm{g}})/{\rm{FAO}}评分模 式氨基酸含量({\rm{mg}}/{\rm{g}});\\ {\rm{CS}} = 待评蛋白质氨基酸含量({\rm{mg}}/{\rm{g}})/全鸡蛋蛋白 质中同种氨基酸含量({\rm{mg}}/{\rm{g}});\\ {\rm{EAAI}} = {[(100\mathit{A}/{\rm{AE}}) \times (100\mathit{B}/{\rm{BE}}) \times (100\mathit{C}/{\rm{CE}}) \times \cdots \times (100H/{\rm{HE}})]^{1/n}} \end{array} $

式中,n为比较的必需氨基酸个数,ABC、…、H为样品中各必需氨基酸含量(mg/g);AE、BE、CE、…、HE为全鸡蛋蛋白质相对应的必需氨基酸含量(mg/g)。

1.5 数据处理

所有测定数据采用Excel 2010进行整理后用SPSS 20.0进行单因素方差分析(one-way ANOVA)和独立样本T检验,结果用平均值±标准误(Mean±SE)表示。

2 结果与分析 2.1 常规营养成分的比较

本研究选用的实验鱼稻田组体长为(13.56±0.49) cm,体重为(73.19±7.02) g;池塘组体长为(14.10±0.23) cm,体重为(101.20±4.57) g。2种养殖条件下禾花鲤常规营养成分结果显示(表 1),2组禾花鲤肌肉粗蛋白、粗脂肪和水分存在显著差异(P < 0.05),粗灰分含量组间差异不显著(P > 0.05)。其中,池塘养殖禾花鲤粗蛋白和粗脂肪含量均显著高于稻田养殖禾花鲤(P < 0.05),水分含量显著低于稻田养殖组(P < 0.05)。

表 1 2种养殖条件下禾花鲤常规营养成分分析(%湿重) Tab.1 Analysis of conventional nutrients of rice flower carp in two culture modes (% wet matter)
2.2 质构指标的比较

2组禾花鲤肌肉质构特性显示(表 2),池塘禾花鲤肌肉粘性显著高于稻田养殖(P < 0.05),而稻田养殖组内聚性和剪切力显著高于池塘养殖组(P < 0.05)。2种养殖条件下禾花鲤的硬度、弹性、咀嚼性和回复性差异不显著。

表 2 2种养殖条件下禾花鲤肌肉质构指标分析 Tab.2 Analysis of muscle texture indexes of rice flower carp in two culture modes
2.3 氨基酸组成比较

2种养殖条件下禾花鲤肌肉中18种氨基酸含量测定结果显示(表 3),池塘养殖条件下禾花鲤肌肉氨基酸总量(TAA)显著高于稻田禾花鲤。除蛋氨酸、色氨酸无显著差异外,其他6种人体必需氨基酸均为池塘组显著高于稻田组(P < 0.05)。2种半必需氨基酸、4种鲜味氨基酸均为池塘禾花鲤显著高于稻田禾花鲤(P < 0.05)。但稻田养殖组∑EAA/TAA和∑EAA/NEAA显著高于池塘养殖组(P < 0.05),而F值和∑DAA/TAA无显著差异(P > 0.05)。

表 3 2种养殖条件下禾花鲤肌肉氨基酸组成和含量(%湿重) Tab.3 Amino acid composition and contents in muscle of Rice flower carp in two culture modes (% wet matter)
2.4 肌肉营养价值评估

肌肉营养价值评估结果显示(表 4),2种养殖条件下除缬氨酸和色氨酸外,其余必需氨基酸含量均高于FAO/WHO标准;从鸡蛋蛋白标准来看,除赖氨酸外,其余必需氨基酸含量均低于鸡蛋蛋白标准,表明禾花鲤肌肉可作为人体优质的赖氨酸源;根据AAS和CS评分可知,2种养殖条件下禾花鲤第一限制性氨基酸均为色氨酸,第二限制性氨基酸均为缬氨酸;2种养殖条件下禾花鲤肌肉EAAI都接近80。

表 4 2种养殖条件下禾花鲤肌肉必需氨基酸组成评估 Tab.4 Evaluation of essential amino acid composition in muscle of rice flower carp in two culture modes
2.5 脂肪酸成分分析

在禾花鲤肌肉中共检测出22种脂肪酸(表 5),其中,包含8种饱和脂肪酸、5种单不饱和脂肪酸和9种多不饱和脂肪酸。2种养殖条件下,除十三烷酸、十五烷酸、棕榈一烯酸、十七碳一烯酸、二十二碳四烯酸、∑n-3PUFA无显著差异(P > 0.05),其余脂肪酸都存在显著差异(P < 0.05)。池塘养殖禾花鲤肌肉中亚油酸、亚麻酸、花生酸、∑n-6PUFA和∑PUFA均显著高于稻田养殖组(P < 0.05),其他脂肪酸则是稻田养殖组显著高于池塘养殖组(P < 0.05)。

表 5 2种养殖条件下禾花鲤肌肉脂肪酸组成和含量(%) Tab.5 Fatty acid composition and contents in muscle of rice flower carp in two culture modes (%)
3 讨论 3.1 肌肉基本营养成分

蛋白质和脂肪等营养成分含量对鱼类肌肉营养品质的评价起着重要作用(郑福麟, 1994; 尹洪滨等, 1999)。本研究结果显示,池塘养殖禾花鲤蛋白质含量(19.83%)、脂肪含量(3.76%)显著高于稻田养殖禾花鲤蛋白含量(18.72%)、脂肪含量(2.37%),表明禾花鲤是一种低脂蛋白源,且池塘养殖条件下禾花鲤肌肉营养价值更高。本研究在脂肪含量方面与马冬梅等(2018)对稻田和池塘养殖华南鲤肌肉营养成分比较分析中的结果一致,但与叶香尘等(2020)对池塘和稻田养殖模式下金边鲤(Cyprinus carpio var. Jinbian)和建鲤(Cyprinus carpio var. Jian)肌肉品质的研究结果不同,产生差异的原因可能除了与品种有关之外,还与实验条件有关。本研究中,稻田养殖禾花鲤脂肪含量低的原因可能是2种养殖模式下的饵料组成差异大,稻田养殖采用粗放式非投喂养殖模式,主要以藻类等天然饵料为食,而池塘投喂人工全价饲料,其营养价值更加丰富,有利于肌肉沉积脂肪(黄世蕉等, 1992)。另外,也有可能是稻田养殖环境更接近自然环境,未进行人工投喂,需要禾花鲤消耗更多能量寻找食物,增加运动量,促进脂肪的代谢,导致鱼体脂肪含量低(朱志明, 2014; 熊铭等, 2016)。宋红梅等(2020)研究表明,鱼肉中的脂肪含量在3.5%~4.5%为宜。稻田养殖的禾花鲤脂肪含量(2.37%)过低,而池塘养殖禾花鲤脂肪含量(3.76%)适宜,因此,池塘养殖禾花鲤在肌肉营养方面更具优势,同时,要想提高稻田禾花鲤肌肉营养品质可以适当地在稻田养殖环境中投喂配合饲料。

3.2 质构特性分析

质构是目前用于评价水产品肉质最广泛的方法之一。质构仪模拟食物被咀嚼过程,把质地感官知觉与力学性能、几何特性相结合,通过形成一系列数据客观评价食物的品质特性(Cheng et al, 2014; 赵何勇等, 2018)。剪切力主要是模拟牙齿切割肌纤维的方式对样品进行一次切割,再通过电脑输出测试曲线进行分析,在一定范围内其剪切力越高,口感越好。而内聚力反映的是肌肉细胞间结合力大小。粘性是鱼肉在外力作用下流动性的反映,粘性越低,则内聚力越高,其口感更好(王俏仪等, 2011)。研究表明,鱼肉的质构特性受肌肉脂肪含量和运动情况的影响(董立学等, 2021)。肌肉中粗脂肪含量降低时促使肌束间的摩擦力增大,从而使肌肉的咀嚼性增强,肌肉中低脂肪含量可以促使肌束间的摩擦力增大,增大咀嚼性(Johnston et al, 2004)。另外,稻田更接近自然水域环境,禾花鲤运动强度大,引起肌纤维直径变小、密度变大,从而改善禾花鲤口感(刘婧懿等, 2020)。本研究中,稻田养殖条件下禾花鲤肌肉内聚力和剪切力显著高于池塘组,而肌肉粘性显著低于池塘养殖,再结合稻田养殖禾花鲤脂肪含量显著低于池塘养殖,可以得出稻田养殖环境下禾花鲤肉质更具嚼劲。

3.3 氨基酸组成及其营养价值评估

蛋白质的营养价值由氨基酸种类、组成、比例及必需氨基酸的含量共同决定(Buchtova et al, 2009)。本研究中,2种养殖条件下禾花鲤的∑EAA/TAA均高于40%,∑EAA/NEAA都在80%以上,均符合FAO/WHO建议的优质蛋白质模式标准(陈涛等, 2016)。结合AAS和CS可以看出,2种养殖条件下色氨酸均为第一限制性氨基酸,缬氨酸为第二限制性氨基酸。但池塘养殖条件下缬氨酸含量显著高于稻田组,说明池塘养殖可在一定程度上增加限制性氨基酸含量,提升蛋白质营养价值。EAAI表示样品中必需氨基酸含量与标准蛋白质的相符程度,常用于评价食物营养价值高低。本研究中,禾花鲤在2种养殖条件下肌肉EAAI都在80分左右,这与鸡蛋蛋白中相对应必需氨基酸的含量相接近,表明其可以作为一种优质的蛋白质来源,且不受养殖环境影响。

肌肉中的鲜味氨基酸主要有谷氨酸、甘氨酸、丙氨酸和天冬氨酸等4种,其含量的高低决定了鱼肉的鲜美程度(钟鸿干等, 2017)。本研究中,池塘养殖下的禾花鲤鲜味氨基酸的总量显著高于稻田组,而肌肉脂肪含量决定着肌肉的多汁性和风味浓度,结合池塘养殖环境下禾花鲤肌肉脂肪含量高于稻田养殖环境禾花鲤,表明池塘养殖禾花鲤的鲜味更好,但鱼体的鲜美程度除了受呈味氨基酸等风味前体物的影响,还受其他挥发性风味物质的影响。因此,全面了解鱼肉品质的鲜美程度需从其他风味物质方面进行进一步研究。

3.4 脂肪酸组成分析

脂肪酸的种类和含量往往决定着鱼肉的营养和商业价值(常玲玲, 2011)。单不饱和脂肪酸具有调节血脂、血压、葡萄糖水平,增加胰岛素敏感性,预防肥胖,降低心血管疾病、胆固醇、代谢综合征风险,防治冠心病等生理功能(Gillingham et al, 2011)。多不饱和脂肪酸对中枢神经和视神经具有保健作用,尤其对神经系统的抗肿瘤功能以及对精神疾病的防治具有很大作用(崔和平等, 2012)。较高的多不饱和脂肪酸可以增加肌肉的鲜香味,能够反映出肌肉的多汁性(徐革锋等, 2013)。本研究中,池塘养殖禾花鲤多不饱和脂肪酸(30.32%)显著高于稻田禾花鲤(24.83%),与池塘养殖禾花鲤肌肉的风味和口感好于稻田养殖的结果一致。多不饱和脂肪酸主要分为n-3和n-6 2个系列,二者相互协调、相互制约,共同调节人体的生命活动。本研究结果显示,池塘养殖条件下n-6系列多不饱和脂肪酸含量显著高于稻田养殖,可能与池塘养殖的禾花鲤摄食的配合饲料中含有n-6多不饱和脂肪酸的植物性油脂(如大豆油)有关。n-3系列中的EPA和DHA在促进儿童智力发育、降低血液甘油三脂含量、抗肿瘤等方面具有重要作用(Manson et al, 2019; Mozaffari et al, 2020)。本研究结果发现,稻田养殖条件下EPA+DHA含量显著高于池塘养殖条件,这可能与禾花鲤主要摄食藻类有关。研究发现,稻鲤综合种养条件下,水体含有大量硅藻、金藻,它们可为禾花鲤提供丰富的DHA和EPA (曾蓓蓓等, 2014; 彭辉辉, 2019; 刘晓璐等, 2022)。较高的n-3/n-6多不饱和脂肪酸比例更能有效降低血脂、抑制血小板凝集、降低心血管疾病的发病率(Kalscheur et al, 1997; Monteiro et al, 2014),WHO推荐日常膳食比为0.17~0.25 (蒋瑜等, 2016),稻田养殖条件下n-3/n-6多不饱和脂肪酸比例(0.13)显著高于池塘养殖(0.1),但2种养殖条件下,n-3/n-6多不饱和脂肪酸比例均小于0.17,饵料组成和养殖条件或许在一定程度上可调节n-3/n-6多不饱和脂肪酸比例,因此,提高禾花鲤肌肉n-3PUFA含量是改善禾花鲤肌肉品质的关键。

4 结论

禾花鲤在2种养殖环境下肌肉基本营养成分存在显著性差异,但都可作为优质的低脂蛋白源;池塘养殖环境下禾花鲤肌肉常规营养成分、总氨基酸含量及鲜味氨基酸含量高于稻田养殖模式,说明池塘养殖环境下禾花鲤肌肉营养价值更高、鲜味更好。从质构性来看,稻田养殖禾花鲤肌肉更具嚼劲。从脂肪酸含量角度看,稻田养殖环境下禾花鲤肌肉EPA+DHA含量、单不饱和脂肪酸和n-3/n-6多不饱和脂肪酸比例显著高于池塘养殖,说明食用稻田养殖禾花鲤能更有效预防心血管疾病的发生。上述结果表明,池塘养殖环境并不会降低禾花鲤肌肉常规营养成分、氨基酸和脂肪酸等营养价值。为缓解禾花鲤市场需求量大的问题,可以推广池塘养殖禾花鲤。

参考文献
BUCHTOVA H, SVOBODOVA Z, KOCOUR M, et al. Amino acid composition in fillets of mirror crossbreds common carp (Cyprinus carpio, Linnaeus 1758). Acta Veterinaria Brno, 2009, 78(2): 337-344 DOI:10.2754/avb200978020337
Bureau of Fishery and Fishery Administration, Ministry of Agriculture and Rural Affairs, National Aquatic Technology Extension Station, China Fisheries Society. 020 China fisheries statistics yearbook. Beijing: China Agriculture Press, 2020 [农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2020年中国渔业统计年鉴. 北京: 中国农业出版社, 2020]
CHANG L L. Variation of fatty acids in Chinese Holstein milk and its association analysis with fatty acid synthesis-related genes. Master′s Thesis of Yangzhou University, 2011 [常玲玲. 中国荷斯坦牛乳中脂肪酸变化规律及其与脂肪酸合成相关基因的关联分析. 扬州大学硕士研究生学位论文, 2011]
CHEN T, LI W F. Analysis of muscle nutrient composition of red snapper. Transactions of Oceanology and Limnology, 2016(6): 67-72 [陈涛, 李伟峰. 红鳍笛鲷肌肉营养成分分析. 海洋湖沼通报, 2016(6): 67-72 DOI:10.13984/j.cnki.cn37-1141.2016.06.009]
CHENG J H, SUN D W, HAN Z, et al. Texture and structure measurements and analyses for evaluation of fish and fillet freshness quality: A review. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(1): 52-61] DOI:10.1111/1541-4337.12043
CUI H P, GUO X F. Research progress of polyunsaturated fatty acids on human nervous system health care. Journal of Henan University of Technology (Natural Science), 2012, 33(3): 97-102 [崔和平, 郭兴凤. 多不饱和脂肪酸对人体神经系统保健作用研究进展. 河南工业大学学报(自然科学版), 2012, 33(3): 97-102 DOI:10.16433/j.cnki.issn1673-2383.2012.03.005]
DONG L X, YU Y L, MAO T, et al. Analysis of muscle quality variations of Ictalurus punctatus reared in internal-circulation pond aquaculture. Journal of Fishery Sciences of China, 2021, 28(7): 914-924 [董立学, 喻亚丽, 毛涛, 等. 池塘内循环流水养殖斑点叉尾肌肉品质的分析. 中国水产科学, 2021, 28(7): 914-924]
GILLINGHAM L G, HARRIS J S, JONES P J H. Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids, 2011, 46(3): 209-228 DOI:10.1007/s11745-010-3524-y
HUANG S J, HUANG Q Y. Effects of feeding green feed and additives on growth and fat metabolism of grass carp (Ctenopharyngodon idellus). Journal of Shanghai Fisheries University, 1992, 1(1/2): 20-26 [黄世蕉, 黄琪琰. 投喂青料和添加剂对草鱼生长和脂肪代谢的影响. 上海水产大学学报, 1992, 1(1/2): 20-26]
JIANG Y L, YAN X Q. Talking about the history, current situation and industrialization of farming of graminaceae in rice fields in Quanzhou County. Fisheries Getting Rich Guide, 2009(16): 20-21 [蒋云龙, 闫晓琼. 浅谈全州县稻田养殖禾花鱼的历史、现状及如何向产业化发展. 渔业致富指南, 2009(16): 20-21]
JIANG Y, XIONG W K, YIN J L, et al. Research progress of dietary omega-3 and omega-6 polyunsaturated fatty acid intake and cardiovascular health. Crop and Oils, 2016, 29(11): 1-5 [蒋瑜, 熊文珂, 殷俊玲, 等. 膳食中ω-3和ω-6多不饱和脂肪酸摄入与心血管健康的研究进展. 粮食与油脂, 2016, 29(11): 1-5]
JOHNSTON I A, MANTHRI S, BICKERDIKE R. Growth performance, muscle structure and flesh quality in out-of-season Atlantic salmon (Salmo salar) smolts reared under two different photoperiod regimes. Aquaculture, 2004, 237(1/2/3/4): 281-300
KALSCHEUR K F, TETER B B, PIPEROVA L S, et al. Effect of dietary forage concentration and buffer addition on duodenal flow of trans-C-18: 1 fatty acids and milk fat production in dairy cows. Journal of Dairy Science, 1997, 80(9): 2104-2114 DOI:10.3168/jds.S0022-0302(97)76156-3
LIU J Y, ZHAO Q C, CHENG S F, et al. Research progress on the influencing factors and determination methods of fish muscle texture. Journal of Food Safety and Quality, 2020, 11(9): 3035-3043 [刘婧懿, 赵前程, 程少峰, 等. 鱼肉质构的影响因素及测定方法研究进展. 食品安全质量检测学报, 2020, 11(9): 3035-3043]
LIU X L, SUN Z, ZHOU Z G. Heterotrophic and mixotrophic cultivation of microalgae for PUFA production and delivery to Artemia sp. Journal of Shanghai Ocean University, 2022, 31(6): 1373-1381 [刘晓璐, 孙诤, 周志刚. 微藻异养/兼养生产多不饱和脂肪酸以及向卤虫的传递. 上海海洋大学学报, 2022, 31(6): 1373-1381]
LUO H, CHEN L T, JING T S. Muscle nutrition analysis of four snail species. Journal of Fisheries of China, 2022, 46(11): 2177-2185 [罗辉, 陈李婷, 敬庭森. 田螺科四种螺的肌肉主要营养成分. 水产学报, 2022, 46(11): 2177-2185]
MA D M, ZHU H P, HUANG Z H, et al. Comparative analysis of nutrient composition in the muscles of South China carp cultured in rice fields and ponds. Southern Journal of Agricultural Sciences, 2018, 49(12): 2518-2524 [马冬梅, 朱华平, 黄樟翰, 等. 稻田和池塘养殖华南鲤肌肉营养成分比较分析. 南方农业学报, 2018, 49(12): 2518-2524]
MA D M, ZHU H P, Huang Z H, et al. Morphological characteristics and genetic analysis of the rice flower carp in the northern region of Guangdong Province. Progress in Fishery Science, 2019, 40(2): 33-42 [马冬梅, 黄樟翰, 朱华平, 等. 广东粤北地区禾花鱼的形态特征及遗传学分析. 渔业科学进展, 2019, 40(2): 33-42]
MANSON J E, COOK N R, LEE I M, et al. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. The New England Journal of Medicine, 2019, 380(1): 23-32
MONTEIRO J, LESLIE M, MOGHADASIAN M H, et al. The role of n-6 and n-3 polyunsaturated fatty acids in the manifestation of the metabolic syndrome in cardiovascular disease and non-alcoholic fatty liver disease. Food and Function, 2014, 5(3): 426
MOZAFFARI H, DANESHZAD E, LARIJANI B, et al. Dietary intake of fish, n-3 polyunsaturated fatty acids, and risk of inflammatory bowel disease: A systematic review and meta-analysis of observational studies. European Journal of Nutrition, 2020, 59(1): 1-17
PENG H H. A comparative study of rice-fish ecosystem and rice-monoculture ecosystem. Master′s Thesis of Tianjin Agricultural University, 2019 [彭辉辉. 稻田养鱼与常规稻田耕作模式生态系统比较研究. 天津农学院硕士研究生学位论文, 2019]
QIU C W, WANG H X. Research progress of bait algae. Aquatic Science and Technology Information, 2018, 45(3): 127-132 [邱楚雯, 王韩信. 饵料藻类的研究进展. 水产科技情报, 2018, 45(3): 127-132]
SONG H M, QU Z W, WANG X J, et al. Analysis and assessment for nutritional components of the muscle of Datnioides pulcher. Progress in Fishery Sciences, 2014, 41(5): 177-184 [宋红梅, 屈政委, 汪学杰, 等. 印尼拟松鲷肌肉营养成分分析与评价. 渔业科学进展, 2014, 41(5): 177-184]
WANG Q Y, DONG Q, LU S X, et al. The effect of frozen storage on the texture properties of tilapia muscle. Journal of Guangdong Ocean University, 2011, 31(4): 86-90 [王俏仪, 董强, 卢水仙, 等. 冷冻贮藏对罗非鱼肌肉质构特性的影响. 广东海洋大学学报, 2011, 31(4): 86-90]
WANG T, HUANG K, SUN L L, et al. Nutrient composition analysis and safety evaluation of Hehua carp muscle. Southern Journal of Agricultural Sciences, 2019, 50(7): 1579-1586 [汪婷, 黄凯, 孙琳琳, 等. 禾花鲤肌肉营养成分分析与安全性评价. 南方农业学报, 2019, 50(7): 1579-1586]
XIONG M, WU Z L, LIN X D. Analysis of the quality characteristics of the fish meat of different farming models of rock seabream. Food Science, 2016, 37(3): 17-21 [熊铭, 吴祖亮, 林向东. 不同养殖模式斑石鲷的鱼肉品质特性分析. 食品科学, 2016, 37(3): 17-21]
XU G F, WAN Y Y, BAI Q L, et al. Analysis of nutritional components and quality evaluation of cod muscle. Journal of Animal Nutrition, 2013, 25(12): 3027-3032 [徐革锋, 王裕玉, 白庆利, 等. 江鳕肌肉营养成分分析与品质评价. 动物营养学报, 2013, 25(12): 3027-3032]
YANG S X, JIANG A Q. Analysis of the meat content and muscle nutrients of Cyprinus carpio. Journal of Hydroecology, 2009, 30(2): 154-157 [杨四秀, 蒋艾青. 禾花鲤含肉率与肌肉营养成分分析. 水生态学杂志, 2009, 30(2): 154-157]
YANG Y X. The first two volumes of the 6th edition of the Standard Edition of the Chinese Food Composition Table were published. Chinese Journal of Nutrition, 2019, 41(5): 426 [杨月欣. 《中国食物成分表》标准版第6版第一二册出版. 营养学报, 2019, 41(5): 426]
YE X C, ZOU H, LIU K, et al. The effect of pond and paddy field culture on the muscle quality of Jinbian carp and Jian carp. Journal of Fisheries, 2020, 44(8): 1296-1305 [叶香尘, 邹辉, 刘康, 等. 池塘和稻田养殖模式对金边鲤和建鲤肌肉品质的影响. 水产学报, 2020, 44(8): 1296-1305]
YIN H B, SHI L Y, LI L K. An analysis of the nutritive composition in muscle of Carassius auratus gibelio Bloch. Chinese Journal of Fisheries, 1999, 12(1): 54-57 [尹洪滨, 石连玉, 李丽坤. 方正银鲫肌肉营养成分分析. 水产学杂志, 1999, 12(1): 54-57]
YOU X M. Study on the HPLC method for the determination of amino acids in feed. Master′s Thesis of Hebei Agricultural University, 2015 [尤晓蒙. 饲料中氨基酸的HPLC检测方法研究. 河北农业大学硕士研究生学位论文, 2015]
ZENG B B, HUANG X X, WEI L K, et al. Suitable culture conditions and cellular biochemical composition of three diatoms from brackish water. Marine Fisheries, 2014, 36(4): 320-328 [曾蓓蓓, 黄旭雄, 危立坤, 等. 3种半咸水硅藻的适宜培养条件及其细胞生化成分. 海洋渔业, 2014, 36(4): 320-328]
ZHANG J Y. Analysis and study on the gut microbimes of tilapia in different species and culture environment. Master′s Thesis of Guangxi University, 2020 [张婧怡. 不同品种及不同养殖环境的罗非鱼肠道微生物分析研究. 广西大学硕士研究生学位论文, 2020]
ZHAO H Y, CHEN Z, XU H F, et al. Analysis of nutrient composition and quality characteristics of Guam red tilapia from seawater and freshwater culture. Southern Journal of Agricultural Sciences, 2018, 49(7): 1396-1402 [赵何勇, 陈诏, 徐鸿飞, 等. 海水和淡水养殖关岛红罗非鱼肌肉营养成分及品质特性分析. 南方农业学报, 2018, 49(7): 1396-1402]
ZHENG F L. A study on nutrition and physiological function of aquatic products. Modern Fisheries Information, 1994, 9(6): 16-19 [郑福麟. 关于水产品的营养与生理功能的探讨. 现代渔业信息, 1994, 9(6): 16-19]
ZHONG H G, MA J, JIANG F Y, et al. Comparative study on nutritive components and flesh quality of muscles of Oplegnathus punctatus cultivated under two different culture models. Jiangsu Agricultural Sciences, 2017, 45(1): 155-158 [钟鸿干, 马军, 姜芳燕, 等. 2种养殖模式下斑石鲷肌肉营养成分及品质的比较. 江苏农业科学, 2017, 45(1): 155-158]
ZHU Z M. Research of carbohydrate and lipid metabolism in muscles and liver in Barbodes schwanenfeldi during exercise training. Doctoral Dissertation of Jinan University, 2014 [朱志明. 运动训练下多鳞四须鲃(Barbodes schwanenfeldi)肌肉和肝脏糖、脂代谢研究. 暨南大学博士研究生学位论文, 2014]