2. 普渡大学森林与自然资源系 美国 西拉法叶市 47907
2. Department of Forestry and Natural Resources, Purdue University, West Lafayette 47907, USA
鱼粉因其营养丰富、氨基酸配比均衡、适口性好、维生素和矿物质丰富和易于被消化吸收等优点,长期以来一直是水产饲料中的重要蛋白源。近年来,随着养殖品种的增加和养殖规模扩大以及工厂化水产养殖业的快速发展,对鱼粉的需求量增加;另一方面,由于全球变暖和环境污染加剧,导致海洋资源减少,鱼粉的产量波动幅度较大,使鱼粉价格不断飙升,不但增加了养殖户的饲料成本,而且极大地限制了鱼粉在水产饲料中的使用量,直接影响了水产养殖业的可持续发展(钱妤等, 2020; 周歧存等, 2005; Henry et al, 2015; 王成强等, 2021)。因此,寻求廉价、安全、来源广泛且环境友好型的鱼粉替代蛋白源已成为当前水产养殖业亟待解决的问题(Hardy, 2010; Tacon et al, 2008)。
蟋蟀(Gryllulus)属无脊椎动物(Invertebrate)、昆虫纲(Insecta)、直翅目(Orthoptera)、蟋蟀科(Gryllidae)。世界上已定名的蟋蟀约有1 400种以上,我国有30种以上且已被定名,在全国都有分布(马俊等, 2019)。蟋蟀具有食性杂,环境适应性强、繁殖快且容易饲养等特点。在种类繁多的蟋蟀中,双斑蟋蟀(Gryllus bimaculatus)是在亚洲、非洲和欧洲的热带和亚热带地区发现的数量最多的蟋蟀物种之一。目前,一些国家已经进行了蟋蟀的大规模人工养殖,并形成了一定的产业链(Magara et al, 2020; Verneau et al, 2021)。如泰国从1997年开始人工饲养蟋蟀,在2010年全国的年产量已达7 500 t (Halloran et al, 2016)。研究表明,双斑蟋蟀水分含量为71.0%,干重时的粗蛋白、粗脂肪、粗纤维和灰分含量分别为58.60%、28.90%、7.23%和4.93%,远高出其他昆虫粗蛋白的含量,且含有维生素B12、铁元素、丰富的钙、高不饱和脂肪酸等(何钊等, 2021; Moreki et al, 2012),被认为是新型优质昆虫蛋白源之一。Taufek等(2016)研究表明,用蟋蟀粉替代饲料中(含35%粗蛋白) 75%和100%的鱼粉能改善非洲鲶(Clarias gariepinus)幼鱼的生长性能,表明蟋蟀粉能作为鱼类养殖中可替代鱼粉的蛋白源。Kilburn等(2020)研究表明,蟋蟀粉亦能作为一种高蛋白源添加在宠物饲料中,而且24%的添加量对成年宠物狗的生长无不利影响。
黄颡鱼(Pelteobagrus fulvidraco)俗称“黄骨鱼、黄嘎牙和黄辣丁”等,是我国江河水域中分布较广的一种广温性淡水经济鱼类。因其肉质细嫩、味道鲜美、无肌间刺和营养价值高等特点,深受消费者的喜爱,现已成为主要的名特优鱼类品种之一(王秀娟等, 2019)。黄颡鱼是一种杂食偏肉食性鱼类,且幼鱼饲料对鱼粉需求量较大,所占比例超过35% (Ye et al, 2009)。目前,蟋蟀粉替代鱼粉在黄颡鱼饲料中的应用研究未见报道。本研究以黄颡鱼幼鱼为研究对象,通过蟋蟀粉替代饲料中不同比例的鱼粉,研究对其生长性能、肌肉成分以及血清生化指标的影响,旨在探讨蟋蟀粉在黄颡鱼饲料中替代鱼粉的可行性,为今后昆虫蛋白源在水产饲料中的开发应用提供科学依据。
1 材料与方法 1.1 实验鱼实验用黄颡鱼为河南洛阳吉利区某渔场的同一批鱼苗,体质量约为(2.0±0.13) g。选择体质健壮的实验幼鱼450尾,用杀菌盐水(盐度为3)消毒后,放入暂养池中养殖。
1.2 实验蟋蟀粉和饲料实验用双斑蟋蟀购自安徽亳州中药材批发市场,烘干并粉碎后于低温保存备用。经测定,蟋蟀粉的粗蛋白、粗脂肪和粗灰分含量分别为63.40%、15.50%和7.36%;以鱼粉、血粉和豆粕为主要蛋白源,鱼油和豆油混合油为主要脂肪源,高筋面粉为糖源配制基础饲料(含40.00%的鱼粉)。在此基础上,用蟋蟀粉分别代替基础饲料中0、15%、30%、45%和60%的鱼粉,配制成5组等氮(粗蛋白含量为44.0%)和等能(19.00 MJ/kg)的实验饲料,命名依次为T0组(0替代)、T15组(15%替代)、T30组(30%替代)、T45组(45%替代)和T60组(60%替代)。实验饲料配方及营养组成见表 1,鱼粉、蟋蟀粉和各组饲料中氨基酸组成见表 2。饲料原料粉碎后80目过筛,按比例称量鱼粉和蟋蟀粉,混匀后加入一定比例的蒸馏水,使用QRLS-400型电动绞肉机制成粒径为2.5 mm颗粒饲料,烘干并在阴凉处冷却后再装入白色透明密封袋,4 ℃冰箱中存储备用。
养殖实验在河南科技大学动物科技学院水生生物实验室循环水养殖系统中进行。养殖系统由15个120 cm×35 cm×40 cm的长方体玻璃纤维鱼缸组成,养殖实际水容量为150~170 L,养殖用水为已曝气的自来水。黄颡鱼幼鱼用基础饲料(粤海饲料)驯养2周后再分组,正式实验开始前,禁食24 h。挑选状态良好,体表无伤的黄颡鱼幼鱼450尾,随机分为5个处理组,每个处理组3个重复,每个重复30尾鱼,测定初始体质量与体长;分别投喂对照组T0和蟋蟀粉替代鱼粉组T15、T30、T45和T60饲料,投食观察直至幼鱼饱食,每天投喂2次(08:00和17:30)。养殖周期为10周,为保持水质良好,每天换水1次,换水量为总体积的1/3。实验期间保持水温为25.0~30.0 ℃,pH为7.8~8.0,溶解氧>5.0 mg/L,氨氮<0.05 mg/L,亚硝酸盐<0.1 mg/L。
1.4 样品采集养殖实验结束后,禁食24 h,用丁香酚(1∶10 000)麻醉后,称量鱼体总重,测量体长并计数,计算生长性能。每个缸随机抽取6尾幼鱼,采用1 mL无菌注射器在尾静脉取血,随后,在冰上解剖分离内脏团和肝脏并称重;抽取的血液静置3 h后,离心(4 000 r/min) 15 min,取上清液,于−80 ℃超低温冰箱中保存,用于后续血清生化指标的测定;取幼鱼同侧背肌,于−80 ℃超低温冰箱中保存,用于后续氨基酸组成测定。
1.5 常规成分和氨基酸组成测定蟋蟀粉和饲料的水分、粗灰分、粗蛋白质和粗脂肪分别采用恒温常压干燥法(GT/T 6435-2014)、550 ℃马弗炉灼烧法(GB/T 6438-2007)、凯氏定氮法(GB/T 6432- 2018)和索氏抽提法(GB/T 6433-2006)进行测定。蟋蟀粉、鱼粉、饲料和肌肉氨基酸组成用盐酸水解法前处理后用氨基酸自动分析仪(日立L-8900型, 日本)测定。
1.6 生长性能指标与计算公式成活率(survival rate, SR, %)=Nt/N0×100%;
增重率(weight gain, WG, %)=(Wt−W0)/W0×100%;
特定生长率(specific growth rate, SGR, %/d)=(lnWt−ln W0)/t×100%;
饲料系数(feed conversion ratio, FCR)=F/(Wt−W0);
肝体比(hepatopancreas somatic index, HSI, %)=Wh/W×100%;
脏体比(viscerosomatic index, VSI, %)=Wv/W×100%;肥满度(condition factor, CF)=Wt/Lt3×100;
摄食量(feed intake, FI, g/尾)=投饲总量/[(N0+Nt)/2]。
式中,N0为实验初始各组鱼的尾数;Nt为实验终末各组鱼的尾数;W0为实验初始各组鱼的体质量(g);Wt为实验终末各组鱼的体质量(g);t为养殖实验天数(d);F为饲料摄入量(g);Lt为实验结束时鱼的体长(cm);W为鱼体质量(g);Wh为鱼体肝脏质量(g);Wv为鱼体内脏团质量(g)。
1.7 血清生化指标测定血清生化指标采用日立7100全自动生化分析仪测定。测定指标有谷丙转氨酶(alanine aminotransferase, ALT)、谷草转氨酶(aspartate transaminase, AST)、总蛋白(total protein, TP)、尿氮(urea nitrogen, UN)、葡萄糖(glucose, GLU)、甘油三酯(triglyceride, TG)、总胆固醇(total cholesterol, TCHO)和丙二醛(malondialdehyde, MDA)含量(由河南科技大学第一附属医院新区医院检验中心测定完成)。
1.8 数据统计分析实验数据首先使用Excel 2016软件进行整理,然后采用SPSS 20.0软件进行单因素方差分析(one-way ANOVA),若有组间差异,再采用Duncan´s检验法进行多重比较,数据用平均值±标准差(Mean±SD)表示,P<0.05为差异显著。
2 结果与分析 2.1 蟋蟀粉替代鱼粉对黄颡鱼幼鱼生长性能的影响由表 3可知,与T0相比较,T15~T60组的脏体比、摄食量、肥满度和成活率在黄颡鱼幼鱼间均无显著差异(P>0.05)。T30组的终末体质量、增重率和特定生长率与T0组相比增加显著(P<0.05),与之相反,饲料系数显著降低(P<0.05);T15、T45和T60组的终末体质量、增重率和特定生长率与T0组差异不显著(P>0.05)。与T0和T15组相比,T30组的肝体比显著增加(P<0.05),而与T45和T60组差异不显著,但呈降低趋势(P>0.05)。
蟋蟀粉的营养成分见表 4。由表 4可知,必需氨基酸中的赖氨酸和蛋氨酸含量略低于鱼粉;而精氨酸含量较鱼粉高。对黄颡鱼幼鱼肌肉进行氨基酸成分测定(表 4),共检测出9种必需氨基酸和8种非必需氨基酸。蟋蟀粉替代不同比例的鱼粉对黄颡鱼幼鱼肌肉中的必需氨基酸:组氨酸、苏氨酸、蛋氨酸、苯丙氨酸、异亮氨酸、亮氨酸和赖氨酸以及必需氨基酸的总量和总非必需氨基酸的含量均无显著影响(P>0.05);而T60组中的精氨酸和缬氨酸含量显著高于T0和T15组(P<0.05)。在非必需氨基酸中,各实验组肌肉中谷氨酸含量与T0组相比差异不显著(P>0.05),除T60组含量显著低于T0组外(P<0.05),其他非必需氨基酸含量在各组间差异不显著(P>0.05)。此外,蟋蟀粉替代不同比例鱼粉对黄颡鱼幼鱼肌肉中的天冬氨酸、甘氨酸和丙氨酸以及总氨基酸的含量也均未产生显著影响(P>0.05)。
由表 5可知,与T0组相比,随着蟋蟀粉替代比例的升高,各替代组的谷丙转氨酶、谷草转氨酶、总蛋白、尿氮和甘油三酯含量无显著差异(P>0.05)。T30组的葡萄糖含量与T0组相比显著增加(P<0.05),但与T15、T45和T60差异不显著(P>0.05)。此外,T30组的总胆固醇含量显著低于对照组T0(P<0.05),但其含量在各替代组间均无显著差异(P>0.05);丙二醛含量在所有组间无显著差异(P>0.05)。
当前,其他蛋白源作为鱼粉的替代品在黄颡鱼或其他养殖鱼的应用研究已有相关报道,如黄粉、蝇蛆、家蚕、磷虾粉和黑水虻(Hermetia illucens)的替代(贲玲芝等, 2022; 陈晓瑛等, 2019; 吉红等, 2016; 饶远等, 2019; 文远红等, 2013; 谢凯等, 2022; Su et al, 2017)。然而,蟋蟀粉作为昆虫蛋白源替代鱼粉在黄颡鱼幼鱼中的研究鲜有报道。蟋蟀粉是一种营养价值较高的昆虫蛋白源,具备成为功能食品和饲料蛋白源的潜力(Barroso et al, 2014; Maiyo et al, 2022; Makkar et al, 2014)。增重率和特定生长率是养殖鱼类生产中重要的参考指标,在不影响生长性能的前提下,本研究养殖10周结束时,蟋蟀粉替代基础饲料中鱼粉的30%时,黄颡鱼幼鱼的终末体质量、增重率、特定生长率、饲料系数和肝体比均显著增加;而当替代比例为45%和60%时,终末体质量、增重率、特定生长率、饲料系数和肝体比与对照组相比有下降趋势,但均无显著影响。蟋蟀粉替代鱼粉后也并不影响幼鱼的成活率,表明实验黄颡鱼能很好的适应蟋蟀粉替代鱼粉的饲料。值得注意的是,随着蟋蟀粉替代比例的增加,黄颡鱼幼鱼的终末体质量、增重率和特定生长率均呈现先上升后下降趋势,这可能与蟋蟀粉中含有几丁质而影响饲料的消化吸收有关。研究结果与Taufek等(2016)的研究不一致。Taufek等(2016)研究发现,利用蟋蟀粉分别替代非洲鲶饲料中75%和100%的鱼粉,饲养7周后,75%和100%替代的特定生长率较对照组全鱼粉组差异显著(P<0.05),且特定生长率随着蟋蟀粉替代量的增加呈显著上升趋势,而饲料系数无显著差异。产生这种结果的原因可能有3种:第一,研究所用的蟋蟀粗蛋白、粗脂肪、粗灰分以及粗纤维含量不同。如家蟋蟀(Acheta domesticus)的粗蛋白和粗纤维要低于双斑蟋蟀(Gryllus bimaculatus);而粗脂肪和粗灰分则要高(Champika et al, 2022);第二,不同种鱼类的营养代谢机理不同,因而对蟋蟀粉的耐受能力也不同,导致蟋蟀粉在不同鱼类饲料中添加的适宜比例不同;第三,蟋蟀粉中含有的几丁质以及未知的抗营养因子,替代后饲料的适口性可能发生改变,影响机体对饲料的消化吸收(Alegbeleye et al, 2012; Finke et al, 1987; Wang et al, 2005)。针对这一现象,具体机理有待后续深入研究。本实验室前期研究表明,在蟋蟀粉替代大口黑鲈(Micropterus salmoides)幼鱼饲料中鱼粉(基础饲料中鱼粉含量为60%)的比例≤45%时,对终末体质量、增重率、特定生长率和饲料系数并无显著影响(Wang et al, 2022),该研究也表明蟋蟀粉替代鱼粉饲喂后能影响不同种类鱼的生长性能。肝体比随蟋蟀粉替代鱼粉比例的升高而逐渐升高,替代比例为30%组的肝体比显著高于对照组,推测这可能与蟋蟀脂肪含量较高有关。研究表明,饲料中脂肪含量的高低显著影响鱼类的肝体比(Lee et al, 2002; Rueda-Jasso et al, 2004),具体研究仍需要进一步开展。
3.2 蟋蟀粉替代鱼粉对黄颡鱼幼鱼肌肉氨基酸组成的影响动物肌肉品质是和其本身的营养成分含量与组成密切相关,氨基酸是蛋白质的基本组成单位,他们的组成、种类和所占比例共同决定了肌肉蛋白质的营养价值。Jahan等(2021)研究表明,动物组织氨基酸含量主要受饲料中粗蛋白和氨基酸含量的影响。本研究对黄颡鱼幼鱼肌肉氨基酸进行了测定,鉴定出9种必需氨基酸和8种非必需氨基酸。进一步研究发现,蟋蟀粉替代不同比例的鱼粉对黄颡鱼幼鱼肌肉中大部分必需氨基酸和非必需氨基酸以及总呈味氨基酸、总必需氨基酸和总非必需氨基酸含量无显著影响。就必需氨基酸而言,在蟋蟀粉替代60%鱼粉的时候,精氨酸和缬氨酸含量均显著高于对照组,结果表明,高比例的蟋蟀粉替代鱼粉能影响部分幼鱼肌肉的氨基酸的组成。值得注意的是,第一限制性氨基酸的蛋氨酸在蟋蟀粉中的含量较鱼粉低,是否会对机体的氨基酸平衡产生影响(韩星星等, 2020),仍有待于深入研究。同样在非必需氨基酸中,替代比例≤45%时,谷氨酸含量无明显变化。分析产生差异的原因可能是与饲料中鱼粉和蟋蟀粉含量呈正相关。谷氨酸为鲜味氨基酸,本研究中鱼粉和蟋蟀粉中谷氨酸的含量都显著高于其他氨基酸。此外,推测还可能与黄颡鱼幼鱼个体的增长、对饲料消化吸收的利用能力有关。本研究中,各实验组间总呈味氨基酸的含量无显著差异,表明蟋蟀粉替代鱼粉对黄颡鱼幼鱼的肌肉总氨基酸组成未产生显著影响;而且饲料中蟋蟀粉高比例替代不影响黄颡鱼幼鱼生长性能的原因可能是蟋蟀粉中含有精氨酸、蛋氨酸和赖氨酸等必需氨基酸。研究表明,这些必需氨基酸缺乏,则会降低水产动物的生长性能(Rossi et al, 2012),因为精氨酸、蛋氨酸和赖氨酸等参与众多机体代谢过程,亦是合成胆碱和胱氨酸的前体物质(Goff et al, 2004; Kasper et al, 2000)。当前有关昆虫粉在水产动物中的氨基酸吸收与代谢机制尚不清楚。
3.3 蟋蟀粉替代鱼粉对黄颡鱼幼鱼血清生化指标的影响血清生化指标可直观地反映鱼类生理机能和营养代谢状态。本研究中,蟋蟀粉替代鱼粉后,与对照组相比,其他各组血清中的谷丙转氨酶、谷草转氨酶、总蛋白、尿氮和甘油三酯含量均无显著变化。血清中谷丙转氨酶和谷草转氨酶含量可间接反映肝脏损伤状况。本研究中,所有组的谷丙转氨酶和谷草转氨酶含量都无显著变化,但略呈降低趋势,表明蟋蟀粉替代鱼粉后对鱼体肝脏并无负面的应激作用或者产生组织损伤现象。血清总蛋白是在肝中合成,其含量是反映机体内蛋白质代谢和营养健康的重要指标(孙宏等, 2014)。本研究中,黄颡鱼幼鱼血液总蛋白浓度在各组间无显著变化,说明蟋蟀粉替代不同比例鱼粉对鱼体的蛋白质营养与代谢无不利影响。血清甘油三酯含量在各组间也无显著变化,说明蟋蟀粉替代部分鱼粉不影响黄颡鱼幼鱼机体的脂质代谢。在蟋蟀粉替代30%~60%鱼粉时,葡萄糖含量无显著变化,但显著高于对照组,在替代30%鱼粉时达最大值,推测蟋蟀粉适量比例的替代鱼粉可能会提高黄颡鱼幼鱼肝脏的糖原合成能力,进而增加血清中葡萄糖的含量。随着蟋蟀粉比例的增加,总胆固醇呈降低趋势,与对照组相比,替代30%、40%和60%鱼粉时,总胆固醇显著降低。这与Magalhães等(2017)在黑水虻虫粉替代鱼粉饲喂欧洲鲈(Dicentrarchus labrax)能降低血浆中胆固醇含量的研究结果相一致。血清中总胆固醇主要源于肝脏,其含量的升高说明动物机体肝脏细胞功能发生障碍或损伤,机体脂质代谢发生紊乱。推测可能是蟋蟀粉胆固醇含量低于鱼粉,造成替代饲料中的胆固醇含量降低,从而引起黄颡鱼幼鱼血清胆固醇水平降低(王淑雯等, 2015)。
4 结论在本研究条件下,蟋蟀粉替代不同比例的鱼粉不影响黄颡鱼幼鱼的生长性能和肌肉氨基酸含量,且能增加血清中葡萄糖和降低总胆固醇含量,以30%的蟋蟀粉替代鱼粉比例黄颡鱼幼鱼生长最佳。
ALEGBELEYE W O, OBASA S O, OLUDE O O, et al. Preliminary evaluation of the nutritive value of the variegated grasshopper (Zonocerus variegatus L. ) for African catfish Clarias gariepinus (Burchell. 1822) fingerlings. Aquaculture Research, 2012, 43(3): 412-420 |
BARROSO F G, DE HARO C, Sánchez-Muros M J, et al. The potential of various insect species for use as food for fish. Aquaculture, 2014, 422/423: 193-201 DOI:10.1016/j.aquaculture.2013.12.024 |
BEN L Z, SHI X Y, GUO J L, et al. Effects of replacement of fish meal with full-fat Hermetia illucens larvae on culture performance, physiological metabolism, and skin color in turbot. Progress in Fishery Sciences, 2022, 43(2): 80-88 [贲玲芝, 史雪莹, 郭金龙, 等. 全脂黑水虻幼虫粉替代鱼粉对大菱鲆养殖性能、生理代谢及体色的影响. 渔业科学进展, 2022, 43(2): 80-88 DOI:10.19663/j.issn2095-9869.20210713001] |
CHAMPIKA PERERA G S, BHUJEL R C. Replacement of fishmeal by house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus) meals: Effect for growth, pigmentation, and breeding performances of guppy (Poecilia reticulata). Aquaculture Reports, 2022, 25: 101260 DOI:10.1016/j.aqrep.2022.101260 |
CHEN X Y, HU J R, WANG G X, et al. Effects of fish meal replacement by black soldier fly (Hermetia illucens) larvae meal on growth performance, serum biochemical indices and meat quality of juvenile yellow catfish (Pelteobagrus fulvidraco). Chinese Journal of Animal Nutrition, 2019, 31(6): 2788-2799 [陈晓瑛, 胡俊茹, 王国霞, 等. 黑水虻幼虫粉替代鱼粉对黄颡鱼幼鱼生长性能、肌肉品质及血清生化指标的影响. 动物营养学报, 2019, 31(6): 2788-2799] |
FINKE M D, DEFOLIART G R, BENEVENGA N J. Use of a four-parameter logistic model to evaluate the protein quality of mixtures of Mormon cricket meal and corn gluten meal in rats. Journal of Nutrition, 1987, 117(10): 1740-1750 DOI:10.1093/jn/117.10.1740 |
GOFF J B, GATLINIII D M. Evaluation of different sulfur amino acid compounds in the diet of red drum, Sciaenops ocellatus, and sparing value of cystine for methionine. Aquaculture, 2004, 241(1/2/3/4): 465-477 |
HALLORAN A, ROOS N, FLORE R, et al. The development of the edible cricket industry in Thailand. Journal of Insects as Food Feed, 2016, 2(2): 91-100 DOI:10.3920/JIFF2015.0091 |
HAN X X, YE K, WANG Z Y, et al. Effect of substitution of fish meal with defatted black soldier fly larvae meal on growth, body composition, serum biochemical parameters, and antioxidant capacity of juvenile large yellow croaker (Larimichthys crocea). Journal of Fishery Sciences of China, 2020, 27(5): 524-535 [韩星星, 叶坤, 王志勇, 等. 脱脂黑水虻虫粉替代鱼粉对大黄鱼幼鱼生长、体成分、血清生化指标及抗氧化能力的影响. 中国水产科学, 2020, 27(5): 524-535] |
HARDY R W. Utilization of plant proteins in fish diets: Effects of global demand and supplies of fishmeal. Aquaculture Research, 2010, 41(5): 770-776 DOI:10.1111/j.1365-2109.2009.02349.x |
HE Z, SUN L, WANG C Y, et al. Nutritional composition analysis and evaluation of the two-spotted cricket Gryllus bimaculatus (Orthoptera: Gryllidae). Biotic Resources, 2021, 43(3): 303-308 [何钊, 孙龙, 王成业, 等. 双斑蟋营养成分分析及评价. 生物资源, 2021, 43(3): 303-308] |
HENRY M, GASCO L, PICCOLO G, et al. Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology, 2015, 203: 1-22 DOI:10.1016/j.anifeedsci.2015.03.001 |
JAHAN H, TUMPA I J, QASEM W A, et al. Evaluation of the partial replacement of dietary fish meal with fermented or untreated soybean meal in Juvenile Silver Barb, Barbonymus gonionotus. Frontiers in Nutrition, 2021, 8: 733402 DOI:10.3389/fnut.2021.733402 |
JI H, LI S L, XU X X. Research progress on the application of insects as feed resources in aquaculture feed. Feed Industry, 2016, 37(22): 1-9 [吉红, 李森林, 徐歆歆. 昆虫资源在水产饲料中的应用研究进展. 饲料工业, 2016, 37(22): 1-9] |
KASPER C S, WHITE M R, BROWN P B. Choline is required by tilapia when methionine is not in excess. The Journal of Nutrition, 2000, 130(2): 238-242 DOI:10.1093/jn/130.2.238 |
KILBURN L R, CARLSON A T, LEWIS E, et al. Cricket (Gryllodes sigillatus) meal fed to healthy adult dogs does not affect general health and minimally impacts apparent total tract digestibility. Journal of Animal Science, 2020, 98: 1-8 |
LEE S M, JEON I G, LEE J Y. Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rockfish (Sebastes schlegeli). Aquaculture, 2002, 211(1/2/3/4): 227-239 |
MA J, ZHANG Z H, LI J T. Large-scale artificial breeding technique of crickets. The Chinese Livestock and Poultry Breeding, 2019(9): 65-66 [马俊, 张泽华, 李进庭. 蟋蟀规模化人工养殖技术. 中国畜禽种业, 2019(9): 65-66] |
MAGALHãES R, SÁNCHEZ-LÓPEZ A, LEAL R S, et al. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture, 2017, 476: 79-85 DOI:10.1016/j.aquaculture.2017.04.021 |
MAGARA H J O, NIASSY S, AYIEKO M A, et al. Edible crickets (Orthoptera) around the world: Distribution, nutritional valve, and other benefits-A review. Frontiers in Nutrition, 2020, 7: 537915 |
MAIYO N C, KHAMIS F M, OKOTH M W, et al. Nutritional quality of four novel porridge products blended with edible cricket (Scapsipedus icipe) meal for food. Foods, 2022, 11: 1047 DOI:10.3390/foods11071047 |
MAKKAR H P S, TRAN G, HEUZÉ V, et al. State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 2014, 197: 1-33 DOI:10.1016/j.anifeedsci.2014.07.008 |
MOREKI J C, TIROESELE B, CHIRIPASI S C. Prospects of utilizing insects as alternative sources of protein in poultry diets in Botswana: A review. Journal of Animal Science Advances, 2012, 2(8): 649-658 |
QIAN Y, JIANG K J, WANG X T, et al. Sources and utilization of fish meal and fish oil in China. Fishery Information and Strategy, 2020, 35(2): 91-100 [钱妤, 蒋科技, 王希挺, 等. 中国鱼粉鱼油来源及利用. 渔业信息与战略, 2020, 35(2): 91-100] |
RAO Y, XIANG X, HUANG X Z, et al. Effects of replacement of fish meal with silkworm powder on growth performance, feed intake, and body composition of juvenile black bass (Micropterus salmonides). Progress in Fishery Sciences, 2019, 40(4): 31-38 [饶远, 向枭, 黄先智, 等. 蚕粉替代鱼粉对加州鲈幼鱼生长、饲料利用及体成分的影响. 渔业科学进展, 2019, 40(4): 31-38] |
ROSSI W, DAVIS D A. Replacement of fishmeal with poultry by-product meal in the diet of Florida pompano Trachinotus carolinus L. Aquaculture, 2012, 338/339/340/341: 160–166
|
RUEDA-JASSO R, CONCEIçãO L E C, DIAS J, et al. Effect of dietary non-protein energy levels on condition and oxidative status of Senegalese sole (Solea senegalensis) juveniles. Aquaculture, 2004, 231(1/2/3/4): 417-433 |
SU J Z, GONG Y L, CAO S P, et al. Effects of dietary Tenebrio molitor meal on the growth performance, immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish and Shellfish Immunology, 2017, 69: 59-66 |
SUN H, YE Y B, YAO X H, et al. Effects of partial replacement of fish meal by fermented cottonseed meal on growth performance, body composition and plasma biochemical indices of juvenile black sea bream. Chinese Journal of Animal Nutrition, 2014, 26(5): 1238-1245 [孙宏, 叶有标, 姚晓红, 等. 发酵棉籽粕部分替代鱼粉对黑鲷幼鱼生长性能、体成分及血浆生化指标的影响. 动物营养学报, 2014, 26(5): 1238-1245] |
TACON A G, METIAN M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 2008, 285(1/2/3/4): 146-158 |
TAUFEK N M, ASPANI F, MUIN H, et al. The effect of dietary cricket meal (Gryllus bimaculatus) on growth performance, antioxidant enzyme activities, and haematological response of African catfish (Clarias gariepinus). Fish Physiology and Biochemistry, 2016, 42: 1143-1155 |
VERNEAU F, AMATO M, LA BARBERA F. Edible insects and global food security. Insects, 2021, 12(5): 472 |
WANG C Q, CAO T H, LI B S, et al. Effects of fish oil replacement by mixed microalgae on growth performance, body chemical composition and intestinal tract biochemical indices of juvenile turbot (Scophthalmus maximus). Progress in Fishery Sciences, 2022, 43(4): 158-170 [王成强, 曹体宏, 李宝山, 等. 混合微藻替代鱼油对大菱鲆幼鱼生长性能、体组成及肠道部分生化指标的影响. 渔业科学进展, 2022, 43(4): 158-170] |
WANG D, ZHAI S W, ZHANG C X, et al. Evaluation on nutritional value of field crickets as a poultry feedstuff. Asian-Australasian Journal of Animal Sciences, 2005, 18(5): 667-670 |
WANG K D, ZHANG L F, BROWN P B, et al. Effect of replacement of fish meal with cricket meal on growth performance, proximate composition, digestive enzyme activities, serum biochemical indices, and antioxidant capacity in largemouth bass (Micropterus salmoides). Aquaculture Research, 2022, 53: 5354-5364 |
WANG S W, HUANG X Z, LUO L, et al. Effects of replacement of fish meal with silkworm pupae on growth performance, body composition and serum biochemical indices of genetically improved farmed tilapia (Oreochromis niloticus). Chinese Journal of Animal Nutrition, 2015, 27(9): 2774-2783 [王淑雯, 黄先智, 罗莉, 等. 蚕蛹替代鱼粉对吉富罗非鱼生长性能、体成分及血清生化指标的影响. 动物营养学报, 2015, 27(9): 2774-2783] |
WANG X J, HU J W, WANG Y, et al. Research progress of nutritional requirement for largemouth bass (Micropterus salmoides). Feed Research, 2019, 8: 112-116 [王秀娟, 胡嘉雯, 王悦, 等. 大口黑鲈营养需求的研究进展. 饲料研究, 2019, 8: 112-116] |
WEN Y H, CAO J M, HUANG Y H, et al. Effects of fish meal replacement by maggot meal on growth performance, body composition and plasma biochemical indexes of juvenile yellow catfish (Peltobagrus fulvidraco). Chinese Journal of Animal Nutrition, 2013, 25(1): 171-181 [文远红, 曹俊明, 黄燕华, 等. 蝇蛆粉替代鱼粉对黄颡鱼幼鱼生长性能、体组成和血浆生化指标的影响. 动物营养学报, 2013, 25(1): 171-181] |
XIE K, SHI Y, HE H, et al. Effects of replacement of fish meal by Antarctic krill meal on growth performance, immune indexes and muscle quality of Pelteobagrus fulvidraco. Journal of Fisheries of China, 2022, 46(3): 410-419 [谢凯, 石勇, 何慧, 等. 南极磷虾粉替代鱼粉对黄颡鱼生长、免疫及肌肉品质的影响. 水产学报, 2022, 46(3): 410-419] |
YE W J, TAN X Y, CHEN Y D, et al. Effects of dietary protein to carbohydrate ratios on growth and body composition of juvenile yellow catfish, Pelteobagrus fulvidraco (Siluriformes, Bagridae, Pelteobagrus). Aquaculture Research, 2009, 40(12): 1410-1418 |
ZHOU Q C, MAI K S, LIU Y J, et al. Advances in animal and plant protein sources in place of fish meal. Journal of Fisheries of China, 2005, 29(3): 404-410 [周歧存, 麦康森, 刘永坚, 等. 动植物蛋白源替代鱼粉研究进展. 水产学报, 2005, 29(3): 404-410] |