文章摘要
邬华俊,耿冰,滕丽华.基于免疫进化算法的贝叶斯网络预测网箱转移周期.渔业科学进展,2009,30(6):136-141
基于免疫进化算法的贝叶斯网络预测网箱转移周期
Predicting the shift cycle of the net-cage by the Bayesian network based on immune evolutionary algorithms
投稿时间:2008-08-02  修订日期:2008-11-10
DOI:
中文关键词: 转移周期  网箱养殖  贝叶斯网络  免疫进化算法  增量学习
英文关键词: Shift cycle  Aquaculture  Bayesian network  Immune evolutionary algorithm  Incremental learning
基金项目:国家科技部项目(2007DFA21300)和宁波市海洋渔业局项目(甬海办2005/331 6)共同资助
作者单位
邬华俊 浙江万里学院生物与环境学院宁波 315100 
耿冰 浙江万里学院生物与环境学院宁波 315100 
滕丽华 浙江万里学院生物与环境学院宁波 315100 
摘要点击次数: 5078
全文下载次数: 6590
中文摘要:
      以象山港网箱养殖区2000~2006年的监测数据作为训练数据,结合专家知识采用基于免疫进化的贝叶斯网络结构增量式学习算法,构建了海底网箱转移的贝叶斯网络预测模型。该模型能有效的揭示出网箱养殖环境各个指标之间的因果关系,进而可以对指定的网箱养殖的网箱转移周期进行预测和决策。结果表明,评价的准确性是91.7%,证明该方法是有效可行的。
英文摘要:
      By taking the monitoring data of Xiangshan Bay from the year of 2000 to 2006 as the training data and referring to the prior knowledge, a Bayesian network was constructed through the incremental learning based on the immune heredity algorithm. The model can effectively express the causal relationship among the various indicators in the net-cage aquaculture environment, and the shift cycle of the net-cage aquaculture at Xiangshan can be predicted. The result showed that the appraisal accuracy reached 91.7%, which meant that this method is feasible.
附件
查看全文   查看/发表评论  下载PDF阅读器
关闭