李苗,单秀娟,王伟继,丁小松,戴芳群,吕丁,吴欢欢.环境DNA在水体中存留时间的检测研究——以中国对虾为例.渔业科学进展,2020,41(1):51-57 |
环境DNA在水体中存留时间的检测研究——以中国对虾为例 |
Studying the retention time of Fenneropenaeus chinensis eDNA in water |
投稿时间:2018-09-06 修订日期:2018-12-05 |
DOI:10.19663/j.issn2095-9869.20180906005 |
中文关键词: 环境DNA 存留时间 中国对虾 |
英文关键词: Environmental DNA Retention time Fenneropenaeus chinensis |
基金项目: |
|
摘要点击次数: 3868 |
全文下载次数: 3597 |
中文摘要: |
精确地掌握物种的分布与种群动态是保护生物学的基础。然而,对于某些具有特殊生活史的物种以及群体数量非常少的种群而言,物种分布检测极其困难。DNA条形码技术与环境DNA(Environmental DNA, eDNA)的结合使以上困难得以解决。鉴于eDNA易降解、在环境中含量低的特性,探究其在环境中的持续存留时间对于后续准确进行定性与定量分析至关重要。本研究以中国对虾(Fenneropenaeus chinensis)为研究对象,结合实时荧光定量PCR定量分析了水环境中eDNA随时间的降解情况,基于赤池信息准则(Akaike Information Criterion, AIC),选择了最适于eDNA随时间降解的统计模型。结果显示,当eDNA的释放源头被去除后,eDNA在水体中的含量与时间呈负相关关系,其在环境中的存留时间为30 d左右。本研究旨在为合理规划物种的定性检测与定量评估提供理论依据,以期将人为因素造成的实验误差降到最低。 |
英文摘要: |
Accurate knowledge of species distribution and population dynamics is the basis of conservation biology. However, for certain species that have a special life history and very few populations, species distribution detection becomes extremely difficult. The combination of DNA barcode technology and environmental DNA (eDNA) has solved these difficulties. Currently, this method has been applied successfully to biological testing, biodiversity assessment, biomass assessment, fish migration, and other research. Given the ease of degradation of eDNA and its low level in the environment, exploring its persistence in the environment is critical for accurate qualitative and quantitative analysis. In this study, Fenneropenaeus chinensis was used as the research subject. The degradation of eDNA in a water environment was quantitatively analyzed by real-time fluorescent quantitative PCR. The relationship between eDNA degradation rate and time was explored. The most suitable eDNA was selected based on Akaike Information Criterion (AIC). A statistical model of degradation of eDNA over time was used. The experimental results showed that the level of eDNA in water is negatively correlated with time. After the source of eDNA was removed, its residence time in the environment was about one month. The aim of this research was to provide a theoretical basis for the qualitative detection and quantitative assessment of rationally planned species, with a view to minimizing experimental error caused by human factors. |
附件 |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|