文章摘要
莫翠琴,黄凯,曹鑫盛,江林源,于凯,郭睿婕,王超男.饲料脂肪水平对克氏原螯虾幼虾生长性能及肌肉品质的影响.渔业科学进展,2023,44(2):214-223
饲料脂肪水平对克氏原螯虾幼虾生长性能及肌肉品质的影响
Effects of dietary lipid levels on growth performance and muscle quality of juvenile Procambarus clarkii
投稿时间:2021-11-23  修订日期:2021-12-23
DOI:
中文关键词: 克氏原螯虾  脂肪水平  生长性能  肌肉品质  营养成分
英文关键词: Procambarus clarkii  Lipid level  Growth performance  Meat quality  Nutritional content
基金项目:
作者单位
莫翠琴 广西大学动物科学技术学院 广西 南宁 530004 
黄凯 广西大学动物科学技术学院 广西 南宁 530004 
曹鑫盛 天津赞兰科技有限公司 天津 300000 
江林源 广西壮族自治区水产技术推广站 广西 南宁 530000 
于凯 广西大学动物科学技术学院 广西 南宁 530004 
郭睿婕 广西大学动物科学技术学院 广西 南宁 530005 
王超男 广西大学动物科学技术学院 广西 南宁 530006 
摘要点击次数: 633
全文下载次数: 420
中文摘要:
      本研究旨在探讨饲料脂肪水平对克氏原螯虾(Procambarus clarkii)幼虾生长性能和肌肉品质的影响。实验选取600尾初始体重为(4.00±1.00) g的克氏原螯虾幼虾,随机分为5组(L1、L2、L3、L4和L5组),分别投喂脂肪水平为2.86%、5.11%、7.67%、10.19%和13.02%的等氮实验饲料,养殖周期为60 d。结果显示,随着脂肪水平的升高,特定生长率(SGR)呈先升高后降低的趋势(P<0.05),饲料系数(FCR)呈先降低后升高的趋势(P<0.05),L3组的FCR显著低于其余组(P<0.05);对SGR进行折线回归分析,得出最适脂肪含量为6.82%。饲料脂肪水平对克氏原螯虾肌肉的水分、粗蛋白和粗灰分含量无显著影响(P>0.05);随着饲料脂肪水平的增加,肌肉的蒸煮损失率、粗脂肪含量、总多不饱和脂肪酸(∑PUFA)和总氨基酸(∑TAA)含量呈上升趋势,L5组的二十碳五烯酸(EPA)显著高于其余组,L5组的二十二碳六烯酸(DHA)含量显著高于L1和L2组(P<0.05);随着饲料脂肪水平的增加,肌肉硬度、弹性、凝聚性和黏性呈下降趋势,且L1~L3组间均无显著差异(P>0.05),L5组的总鲜味氨基酸(∑FAA)、丙氨酸(Ala)及天门冬氨酸(Asp)的含量显著低于L1组(P<0.05)。综上所述,适宜的饲料脂肪含量可以提高克氏原螯虾幼虾的生长性能和肌肉的营养品质,在本实验条件下,克氏原螯虾幼虾饲料中脂肪的建议添加量为6.82%~10.19%。
英文摘要:
      Procambarus clarkii Girard is an economically important cultured shrimp in China, and lipids are an important component of its raw feed materials. Studies have shown that adequate lipid content in feed can promote the health of aquatic animals, improve the utilization efficiency of feed protein, save protein, reduce feed costs, and reduce nitrogen emissions. Insufficient lipid content in feed leads to metabolic disorders in breeding animals, reduces the utilization rate of feed protein, and is accompanied by a deficiency of fat-soluble vitamins and essential fatty acids. However, a high fat content inhibits feeding and growth and leads to excessive fat deposition in the fish body, which decreases disease resistance and is not conducive to feed processing and storage. At present, studies on the dietary lipid content of P. clarkii have mainly focused on growth performance, biochemical indices, and conventional nutritional components of muscle; however, studies on muscle quality, amino acid composition, and content have not yet been reported. This study investigated the growth performance, muscle texture indices, nutritional components, and food flavor of P. clarkii by determining the effect of dietary lipid content on the growth performance and muscle quality of juveniles. The aim of this study was to provide a reference for the development of compound feed for juvenile P. clarkii and to provide a theoretical and scientific basis for rationally evaluating the effects of fat on the muscle quality of the species. Five experimental diets with lipid levels of 2.86%, 5.11%, 7.67%, 10.19%, and 13.02% were prepared using fishmeal, soybean meal, and rapeseed meal as the main protein sources, and a mixture of fish oil and soybean oil in a ratio of 1:1 as the lipid source. A total of 600 juvenile P. clarkii with an initial body weight of (4.00±1.00) g was randomly divided into five groups (L1, L2, L3, L4, and L5 groups) with three replicates per group and 40 shrimps per replicate. They were fed five groups of experimental diets at 6:00 and 19:30 each day and cultured for 60 days. The experiment was carried out in an aquaculture pond (square, 1.0 m × 1.0 m × 0.6 m) at the Guangxi University. The results showed that as the dietary lipid level increased, the specific growth rate (SGR) and survival rate (SR) of juvenile P. clarkii first increased and then decreased and were the highest when the dietary lipid level was 7.67%. The feed conversion ratio (FCR) at first decreased before increasing again and that of the L3 group was significantly lower than that of the other groups (P<0.05). Using the specific growth rate as an evaluation index, through broken-line analysis, the optimal dietary lipid level of juvenile P. clarkii was estimated as 6.82%. Dietary lipid levels had no significant effect on the moisture, crude protein, and ash contents in the muscle (P>0.05). With the increase in dietary lipid levels, the cooking loss (CL) and crude lipid, polyunsaturated fatty acids (∑PUFA), and total amino acid (∑TAA) contents of the muscle showed an increasing trend. The content of eicosapentaenoic acid (EPA) in the L5 group was significantly higher than that in the other groups, and the docosahexaenoic acid (DHA) content in the L5 group was significantly higher than that in the L1 and L2 groups (P<0.05). With increasing dietary lipid levels, muscle hardness, elasticity, cohesiveness, and gumminess decreased and there were no significant differences between the L1 and L3 groups (P>0.05), whereas dietary lipid levels showed no significant difference in muscle saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) contents (P>0.05). The contents of umami amino acids (∑FAA), alanine (Ala), and aspartate (Asp) in the L5 group were significantly lower than those in the L1 group (P < 0.05). Under the conditions of this study, within a suitable range of fat content, growth performance increased with increased fat content; however, the addition of excessive fat cannot promote growth. According to the broken-line regression analysis of the specific growth rate, the optimal dietary lipid level was 6.82%. When the dietary lipid level was higher than 10.19%, the deposition and efficiency of muscle fat, muscle fat content, and nutrient loss increased, and the muscle texture index and Asp and Ala contents significantly decreased. The nutritional value, taste, delicious degree, and flavor of the muscle of P. clarkii were significantly decreased. As it does not affect the muscle quality of the shrimp, the dietary lipid content should not exceed 10.19%. Based on the analysis of various factors, the optimal dietary lipid content is beneficial to the healthy growth of juvenile P. clarkii and improves nutritional value and muscle quality. It is suggested that the dietary lipid supplemental level of juvenile shrimp should be 6.82%~10.19%. This study provides a theoretical basis for the scientific optimization of feed preparation for P. clarkii juvenile.
附件
查看全文   查看/发表评论  下载PDF阅读器
关闭