文章摘要
龙珍满,朱峰跃,郭杰,俞立雄,郑永华,段辛斌.捕食胁迫对“四大家鱼”幼鱼生理反应的影响.渔业科学进展,2023,44(3):111-123
捕食胁迫对“四大家鱼”幼鱼生理反应的影响
Effects of predation stress on the physiological responses of juvenile four major Chinese carp
投稿时间:2022-02-21  修订日期:2022-03-17
DOI:
中文关键词: 捕食胁迫  皮质醇  血液生化指标  四大家鱼
英文关键词: Predation stress  Cortisol  Serum biochemical parameters  The four major Chinese carps
基金项目:
作者单位
龙珍满 中国水产科学研究院长江水产研究所 湖北 武汉 430223西南大学水产学院 重庆 400715 
朱峰跃 中国水产科学研究院长江水产研究所 湖北 武汉 430223 
郭杰 中国水产科学研究院长江水产研究所 湖北 武汉 430223 南京农业大学无锡渔业学院 江苏 无锡 214081 
俞立雄 中国水产科学研究院长江水产研究所 湖北 武汉 430223 
郑永华 中国水产科学研究院长江水产研究所 湖北 武汉 430224 
段辛斌 中国水产科学研究院长江水产研究所 湖北 武汉 430225 
摘要点击次数: 457
全文下载次数: 378
中文摘要:
      本研究选取乌鳢(Channa argus)和南方大口鲶(Silurus soldatovi meridionalis)为捕食者,青鱼(Mylopharyngodon piceus)、草鱼(Ctenopharyngodon idellus)、鲢(Hypophthalmichthys molitrix)、鳙(Aristichthys nobilis)幼鱼为猎物鱼,比较了在无捕食(空白对照)、低捕食(隔网胁迫)和高捕食(直接胁迫)压力下,胁迫0、7、14 d后,“四大家鱼”幼鱼血清皮质醇(COR)水平和血液生化指标的变化。结果显示,不同捕食胁迫水平下,“四大家鱼”幼鱼的血液生化指标和COR水平变化程度不同,但变化趋势一致。“四大家鱼”幼鱼的COR水平随着捕食胁迫程度和胁迫时长的增加显著升高,表现为无捕食组<低捕食组<高捕食组,0 d<7 d<14 d。在血液生化指标中,血清蛋白浓度和总胆固醇(CHO)浓度较为稳定,各组相比无显著变化;血糖(GLU)浓度和碱性磷酸酶(ALK)在捕食胁迫下升高,甘油三酯(TG)则相反,呈下降趋势。研究表明,“四大家鱼”幼鱼会根据捕食风险来增强自身生存能力的方式及调整生理反应。捕食胁迫处理后,“四大家鱼”幼鱼均产生了应激反应,与隔网捕食相比,直接捕食对鱼体生理反应影响更为显著,且随着胁迫时长的增加应激程度也随之增加。各检测指标中,血清蛋白和CHO可能不是捕食胁迫下鱼类应激的敏感指标;COR和GLU的变化最为显著,这可能是为了弥补应激期间机体对能量需求的增大。
英文摘要:
      As low-level aquatic vertebrates, fish are highly dependent on the water environment, and general activities such as growth, foraging, and reproduction are easily affected by changes in the external environment. Changes in environmental factors can lead to different degrees of stress response in fish, and trigger a series of physiological changes, which then affect the stability of the organism's internal environment. Predation is one of the main environmental factors affecting the survival of individuals. In nature, almost all species face the risk of predation. Brief encounters with predators can reduce feeding and other health-related activities in prey fish and/or trigger primary and secondary stress responses, including the release of stress substances into the bloodstream. In predation stress, after initially sensing stress, fish initiate a stress response to overcome the stress and restore homeostasis. The degree of physiological stress depends primarily on the intensity and duration of the stress. If the appearance of predators is intermittent, then the physiological state of the prey fish returns to normal quickly, which allows the stress response to promote physiological changes in the prey fish to better adapt to the environment. However, repeated or persistent and unavoidable stress situations cause the normal physiological response mechanisms of prey fish to become compromised. Physiological stress may have long-term negative effects on the immune system, growth, or reproduction, and may reduce the adaptability and survivability of prey fish in the environment. Many studies have confirmed that predation stress can cause physiological stress in fish. Different species of fish and even different groups of the same species vary greatly in the degree of stress and stress mode. More species-specific studies are required to determine the effects of different levels of predation stress on physiological stress in fish. Black carp (Mylopharyngodon piceus), grass carp (Ctenopharyngodon idellus), silver carp (Hypophthalmichthys molitrix), and bighead carp (Aristichthys nobilis) are known as the four major Chinese carps. As common fish species in Chinese inland watersheds, the four major Chinese carps are ecologically and economically valuable. Over the years, many reasons such as hydraulic construction, environmental pollution, and overfishing have led to sharp declines in wild populations. In addition, the prevalence of predators in natural waters also threaten population growth. It remains unclear how the juveniles of the four major Chinese carps adjust their physiological processes to cope with predation stress. We investigate the physiological and energy metabolism adaptations by black carp, grass carp, silver carp, and bighead carp to predatory stress. We selected the common local enemies of natural waters, the snakehead carp (Channa argus) and the southern catfish (Silurus meridionalis) as predators. The levels of serum cortisol and biochemical parameters in the juveniles of the four major Chinese carps under the stress of no-predation (control), low-predation (indirect stress) and high-predation (direct stress) over 0 d, 7 d, and 14 d were investigated. Changes in the biochemical parameters were analyzed. The effects of different predation stress levels on serum cortisol and biochemical parameters were also analyzed. The results showed: (1) under different levels of predation stress, the biochemical parameters and serum cortisol levels of juveniles of the four major Chinese carps varied to different degrees but the trends were consistent; (2) the serum cortisol levels of juveniles of the four major Chinese carps increased significantly with the degree of predation stress and the stress duration, and showed the following patterns: non-predation group < low predation group < high predation group, 0 d < 7 d < 14 d. (3) Among the biochemical parameters, serum total protein concentration and cholesterol concentration were relatively stable and did not vary significantly. Glucose concentration and alkaline phosphatase increased with predation stress, while triglyceride had a decreasing trend. The results showed that juveniles of the four major Chinese carps adjust their physiological responses to enhance their own survivability according to the predation risk. After the predation stress treatment, the juveniles of the four major Chinese carps all underwent a stress response. Compared with indirect predation, direct predation had a more significant effect on the physiological response of fish, and the degree of stress increased with the stress duration. Among the detection parameters, serum total protein and cholesterol may not be sensitive parameters for stress in fish under predation stress. The most significant changes were in cortisol and glucose and may compensate for the increased energy demand by the organism during stress. The adaptation of physiological stress and energy metabolism to predation stress in juveniles of the four major Chinese carps under predation stress conditions provides a theoretical basis for the stress responses of an organism to environmental changes, and can also provide a scientific reference for exploring the ecological interactions between predator and prey.
附件
查看全文   查看/发表评论  下载PDF阅读器
关闭