文章摘要
克氏原螯虾Hox基因家族鉴定、进化与表达分析
Identification, evolution and expression analyses of the Hox family in Procambarus clarkii
投稿时间:2024-08-29  修订日期:2024-10-11
DOI:
中文关键词: 克氏原螯虾  Hox基因  基因鉴定  表达分析
英文关键词: Procambarus clarkii  Hox family  gene identification  expression analyses
基金项目:湖北省第四批现代农业产业技术体系水产产业技术体系项目(2023HBSTX4-05)、江西省渔业种业联合育种攻关项目(2023yyzygg-07)
作者单位邮编
魏啸宇 华中农业大学水产学院 430070
胡倩 华中农业大学水产学院 
顾泽茂 华中农业大学水产学院 
李艳和* 华中农业大学水产学院/农业农村部淡水生物繁育重点实验室/长江经济带大宗水生生物产业绿色发展教育部工程研究中心 430070
摘要点击次数: 166
全文下载次数: 0
中文摘要:
      Hox基因家族是一类与真核生物形态发育密切相关的重要基因。为解析克氏原螯虾(Procambarus clarkii)Hox基因的表达模式以及参与形态发育调控的功能和机制,本研究基于克氏原螯虾基因组和转录组数据,结合生物信息学的方法对Hox基因家族进行鉴定,并对其序列结构、蛋白理化性质、亚细胞定位预测、物种间共线性情况、系统发育、选择压力、早期发育表达模式和组织分布特征进行了初步分析。结果显示,在克氏原螯虾中鉴定出同一染色体上成簇排列的8个Hox基因(lab、pb、Dfd、Scr、Antp、Ubx、abd-A和Abd-B),除Abd-B基因外,其它基因编码的Hox蛋白均具有一个含YPWM的motif和一个高度保守的Homeodomin结构域;克氏原螯虾Hox蛋白均为亲水性蛋白和不稳定蛋白;亚细胞定位预测显示,克氏原螯虾Hox蛋白主要定位于细胞核;Hox基因家族的不同成员在虾蟹类物种中具有不同的系统发育历史;克氏原螯虾Hox基因主要经历了纯化选择,且不同的Hox基因在甲壳类物种间存在不同的进化速率;Hox基因家族不同成员在克氏原螯虾早期发育不同时期和成虾不同组织的相对表达量有所差异,且雌虾不同组织的相对表达量普遍高于雄虾不同组织的相对表达量。研究结果丰富了甲壳类动物Hox基因的研究,为克氏原螯虾形态发育和进化研究提供了基础资料。
英文摘要:
      Homeobox genes are ubiquitous in eukaryotic genomes and can be transcribed into a homeodomain of about 60 amino acids. Hox genes are currently the most studied class of homeobox genes. They are usually clustered on chromosomes and play important regulatory roles in embryonic development, cell differentiation, body pattern determination, and tissue and organ formation of organisms. It has also been shown to be associated with the formation of cancer in vertebrates. In order to fully understand the distribution, evolution and function of the Hox gene family in the genome of Procambarus clarkii, based on the genome and transcriptome data of P. clarkii, the Hox gene family were identified by bioinformatics methods, and their sequence structure, protein physicochemical properties, motif composition, phylogenetic characteristics and adaptive evolutionary features were analyzed. The expression of Hox genes in different developmental stages of P. clarkii and different tissues of adult crayfish were studied by fluorescence quantitative PCR, so as to explore the possible biological function of Hox genes and provide theoretical basis for analyzing the morphological development mechanism of P. clarkii. The results showed that eight Hox genes on the same chromosome were identified in the genome of P. clarkii, namely lab、pb、Dfd、Scr、Antp、Ubx、abd-A和Abd-B. Hox proteins are composed of a YPWM-containing motif and a highly conserved homeodomain, and the homologous domains of Hox proteins are highly similar among different species.The analysis of physicochemical properties of Hox proteins showed that the amino acid sequence length of Hox proteins ranged from 278 to 608, the molecular weight ranged from 31130.52 to 64355.33 Da, and the isoelectric point ranged from 6.73 to 9.51. All Hox proteins were hydrophilic and unstable proteins, and located in the nucleus. Motif composition analysis showed that the Hox genes clustered into the same cluster were conservative. Motif1 was located in the homologous domain and existed in all Hox genes. Conserved domain analysis showed that Hox proteins contained Homeodomin domain, and abd-A protein also contained Abdominal-A domain. The analysis of genomic collinearity between species showed that there was collinearity between multiple chromosomes of P. clarkii and Portunus trituberculatus, and the Hox genes (pb, lab and Dfd ) on the LG30 chromosome where the Hox gene cluster of P. clarkii was located and the Hox gene on chromosome 49 of P. trituberculatus were collinearity.The results of phylogenetic analysis showed that different members of the Hox gene family were clustered into one branch. On the branches of pb, Dfd, Scr, lab and Antp genes, crayfish and crabs were first clustered into one branch, and then clustered into one branch with prawns. On the branches of abd-A and Abd-B genes, crabs and prawns were first clustered into one branch, and then clustered into one branch with crayfish. On the branch of the Ubx gene, the crayfish first clustered with the prawns, and then clustered with the crabs. This indicates that different members of the Hox gene family have different phylogenetic histories in shrimp and crab species. The results of adaptive evolution analysis showed that the Hox genes of crustaceans were mainly subjected to purification selection, and the evolutionary rates of Abd-B (P = 0.0098 ) and Dfd (P = 0.0000 ) genes were significantly different between P. clarkii and other crustaceans (P < 0.01 ). Positive selection sites with posterior probability greater than 0.95 were detected in pb and Ubx genes. The relative expression of Hox genes in different developmental stages of P. clarkii showed that except abd-A and Dfd genes, the expression levels of other Hox genes were the highest in the zoea stage, and all showed a trend of increasing first and then decreasing. Among them, abd-A, Antp and Ubx genes were lowly expressed in the gastrula stage and nauplii stage, and then highly expressed. The distribution of Hox genes in different tissues of P. clarkii showed that the relative expression levels of different Hox gene family members vary across various tissues in adult crayfish. In addition to lab gene, the relative expression of Hox genes in different tissues of female crayfish was generally higher than that in different tissues of male crayfish. In summary, this study used bioinformatics methods to perform genome-wide identification, protein structure analysis, amino acid sequence analysis, physical and chemical properties analysis, subcellular localization prediction, collinearity analysis, phylogenetic analysis, adaptive evolution analysis, and expression analysis of Hox genes in early developmental stages and different tissues of adult crayfish. The results showed that eight Hox genes clustered on the same chromosome were identified in P. clarkii. The amino acid sequences and protein physicochemical properties of different Hox genes were different, but except for the Abd-B gene, they all had a YPWM-containing motif and a highly conserved Homeodomin domain, and the protein structure was similar. Phylogenetic analysis showed that different members of the Hox gene family had different phylogenetic histories in shrimp and crab species. The results of adaptive evolution analysis showed that Abd-B, Dfd, pb and Ubx genes had different evolutionary rates among crustacean species. The expression analysis of Hox genes in early development stages and different tissues of adult crayfish showed that lab and Dfd genes may be involved in the differentiation of head, chest and abdomen of P. clarkii in the early stage of embryonic development. The expression differences of abd-A, Ubx and Antp genes between shrimp, crayfish and crab may be the potential factors causing the morphological differences of tails of them. This study can provide a reference for further functional research and analysis of the morphological development mechanism of P. clarkii.
附件
View Fulltext   查看/发表评论  下载PDF阅读器
关闭