引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 597次   下载 535 本文二维码信息
码上扫一扫!
分享到: 微信 更多
鹰爪虾形态性状和体重的通径分析及灰色关联分析
张新明1,2, 程顺峰3
1.日照职业技术学院海洋工程学院 山东 日照 276826;2.日照市海洋生物工程技术研究中心 山东 日照 276826;3.青岛农业大学生命科学学院 山东 青岛 266109
摘要:
为探究鹰爪虾(Trachypenaeus curvirostirs)形态性状和体重的关系,本研究测定了体重(Y)及全长(X1)、体长(X2)、头胸甲长(X3)、头胸甲宽(X4)、头胸甲高(X5)、第1腹节长(X6)、第1腹节宽(X7)、第1腹节高(X8)、第6腹节长(X9)、第6腹节宽(X10)、第6腹节高(X11)、尾节长(X12)、尾扇长(X13) 13个形态性状,通过通径分析和灰色关联分析等方法研究了各性状之间的关系。结果显示,雌性鹰爪虾各生物学指标均大于雄性,雌、雄群体各性状之间均呈极显著正相关关系(P<0.01),体长(X2)与体重的相关系数均最大(分别为0.972和0.969);通径分析和决定系数分析发现,雌、雄群体体长(X2)对体重的直接影响和直接决定系数均最大(通径系数分别为0.443和0.519),雌、雄群体对体重间接作用最大的形态性状分别为第1腹节宽(X7) (作用系数之和为0.750)和尾节长(X12) (作用系数之和为0.887),雌性群体体长(X2)和头胸甲高(X5)的共同决定系数最大(0.167),雄性群体全长(X1)和体长(X2)的共同决定系数最大(0.248)。采用逐步回归法建立雌、雄群体形态性状与体重的多元回归方程分别为Y1= –14.563+0.133X2+0.374X7+0.282X5+0.225X13 (R2=0.978)、Y2= –7.947+0.092X2+ 0.309X4+0.203X10+0.036X1–0.087X12 (R2=0.980)。雌性群体形态性状与体重的关联系数平均值在0.868~0.941之间,雄性群体的平均值在0.793~0.906之间,从同一形态性状来看,雌性群体与体重关联系数的平均值均大于雄性群体。雌、雄群体体长(X2)与体重的关联度均为最高。通径分析结果和灰色关联分析结果并不完全相同,综合比较分析得出,在进行鹰爪虾选育时,雌、雄群体以体长(X2)作为主要选择性状,雌性群体辅助选择头胸甲高(X5)和第1腹节宽(X7);雄性群体辅助选择头胸甲宽(X4)和全长(X1)。
关键词:  鹰爪虾  形态性状  体重  通径分析  灰色关联分析
DOI:
分类号:
基金项目:
Path Analysis and Gray Correlation Analysis of Morphological Traits to Body Weight of Trachypenaeus curvirostirs
ZHANG Xinming,CHENG Shunfeng
1.Department of Marine Engineering, Rizhao Polytechnic, Rizhao, Shandong 276826, China;2.Rizhao Marine Biological Engineering Technology Research Center, Rizhao, Shandong 276826, China
Abstract:
Thirteen morphological traits: Total length (X1), body length (X2), carapace length (X3), carapace width (X4), carapace height (X5), first abdominal segment length (X6), first abdominal segment width (X7), first abdominal segment height (X8), sixth abdominal segment length (X9), sixth abdominal segment width (X10), sixth abdominal segment height (X11), tail segment length (X12), and tail fan length (X13) were measured to explore the relationship between the morphological traits and body weight (Y) of Trachypenaeus curvirostirs. The relationship between the traits was studied using path analysis and gray correlation analysis. The results showed that the biological indicators values of females were greater than those of males. There was a highly significant positive correlation between the traits of females and males (P<0.01), and the correlation coefficients of X2 to Y were the highest (0.972 and 0.969, respectively). Path analysis and determination coefficient analysis showed that X2 had the highest direct effect (path coefficients: 0.443 and 0.519, respectively) and direct determination coefficient on Y for the females and males, X7 (sum of indirect determination coefficients = 0.750) and X12 (0.887) had the highest indirect effect on Y for the females and males respectively. The co-determination coefficient of X2 and X5 was the highest (0.167) for the females, while that of X1 and X2 was the highest (0.248) for the males. The stepwise regression method was used to establish multiple regression equations for morphological traits and Y in both female and male populations. The equations were Y1=–14.563+0.133X2+0.374X7+0.282X5+0.225X13 (R2=0.978) and Y2=–7.947+0.092X2+0.309X4+0.203X10+0.036X1–0.087X12 (R2=0.980), respectively. The average correlation coefficient of morphological traits to Y for females was between 0.868 and 0.941, and that of the males was between 0.793 and 0.906. For the same morphological traits, the average value of the correlation coefficient and Y for the females was greater than that of the males. The correlation degree was the highest between X2 and Y for the males and females. The results of the path analysis and gray correlation analysis were not exactly the same. A comprehensive comparative analysis showed that during T. curvirostirs breeding, X2 can be used as the main selective trait for males and females. X5 and X7, X4 and X1 can be used as assisted selective traits for females and males, respectively.
Key words:  Trachypenaeus curvirostirs  Morphological traits  Body weight  Path analysis  Gray correlation analysis