引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 5073次   下载 6576 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于免疫进化算法的贝叶斯网络预测网箱转移周期
邬华俊1, 耿冰1, 滕丽华1
浙江万里学院生物与环境学院,宁波 315100
摘要:
以象山港网箱养殖区2000~2006年的监测数据作为训练数据,结合专家知识采用基于免疫进化的贝叶斯网络结构增量式学习算法,构建了海底网箱转移的贝叶斯网络预测模型。该模型能有效的揭示出网箱养殖环境各个指标之间的因果关系,进而可以对指定的网箱养殖的网箱转移周期进行预测和决策。结果表明,评价的准确性是91.7%,证明该方法是有效可行的。
关键词:  转移周期  网箱养殖  贝叶斯网络  免疫进化算法  增量学习
DOI:
分类号:
基金项目:国家科技部项目(2007DFA21300)和宁波市海洋渔业局项目(甬海办2005/331 6)共同资助
Predicting the shift cycle of the net-cage by the Bayesian network based on immune evolutionary algorithms
Abstract:
By taking the monitoring data of Xiangshan Bay from the year of 2000 to 2006 as the training data and referring to the prior knowledge, a Bayesian network was constructed through the incremental learning based on the immune heredity algorithm. The model can effectively express the causal relationship among the various indicators in the net-cage aquaculture environment, and the shift cycle of the net-cage aquaculture at Xiangshan can be predicted. The result showed that the appraisal accuracy reached 91.7%, which meant that this method is feasible.
Key words:  Shift cycle  Aquaculture  Bayesian network  Immune evolutionary algorithm  Incremental learning