摘要: |
以象山港网箱养殖区2000~2006年的监测数据作为训练数据,结合专家知识采用基于免疫进化的贝叶斯网络结构增量式学习算法,构建了海底网箱转移的贝叶斯网络预测模型。该模型能有效的揭示出网箱养殖环境各个指标之间的因果关系,进而可以对指定的网箱养殖的网箱转移周期进行预测和决策。结果表明,评价的准确性是91.7%,证明该方法是有效可行的。 |
关键词: 转移周期 网箱养殖 贝叶斯网络 免疫进化算法 增量学习 |
DOI: |
分类号: |
基金项目:国家科技部项目(2007DFA21300)和宁波市海洋渔业局项目(甬海办2005/331 6)共同资助 |
|
Predicting the shift cycle of the net-cage by the Bayesian network based on immune evolutionary algorithms |
|
Abstract: |
By taking the monitoring data of Xiangshan Bay from the year of 2000 to 2006 as the training data and referring to the prior knowledge, a Bayesian network was constructed through the incremental learning based on the immune heredity algorithm. The model can effectively express the causal relationship among the various indicators in the net-cage aquaculture environment, and the shift cycle of the net-cage aquaculture at Xiangshan can be predicted. The result showed that the appraisal accuracy reached 91.7%, which meant that this method is feasible. |
Key words: Shift cycle Aquaculture Bayesian network Immune evolutionary algorithm Incremental learning |