引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 3441次   下载 1757 本文二维码信息
码上扫一扫!
分享到: 微信 更多
长牡蛎(Crassostrea gigas)壳宽快速生长选育群体遗传多样性及遗传结构的微卫星标记分析
张荣良,王卫军,冯艳微,杨建敏,唐海田,纪仁平
1.上海海洋大学水产与生命学院 上海 201306;2.山东省海洋资源与环境研究院 山东省海洋生态修复重点实验室 烟台 264006;3.国家海洋局烟台海洋环境监测中心站 烟台 264006
摘要:
为了监测长牡蛎(Crassostrea gigas)在选育过程中的遗传变异、分析选育对其遗传结构的影响,本研究以选育目标为壳宽快速生长的长牡蛎为实验材料,利用微卫星(Simple Sequence Repeats)标记技术,对长牡蛎基础群体(P0)和连续两代选育群体(F1和F2)进行遗传多样性评估。结果发现,所有微卫星位点在3个群体中都表现出了较高的多态性,P0、F1和F2代群体的平均等位基因数分别为16.5、12.2和12.8;P0、F1和F2代群体多态性信息含量(Pic)的平均数值分别为0.9068、0.8982和0.8836。所有群体10个位点的观测杂合度值(Ho)均小于期望杂合度值(He),观测杂合度平均值的大小范围为0.5775–0.6484,期望杂合度范围为0.8594–0.9279。哈迪-温伯格平衡(HWE)结果显示,3个群体在10个位点上有24个群体的位点组合显著偏离HWE(P<0.05),说明人工选育对选育群体的遗传结构有一定的影响。3个群体在10个位点上的Fis值均为正值,平均范围为0.1541–0.2341,表明群体内各位点上的杂合子比例有所下降;各群体间Fst值范围为0.0093–0.0245,遗传分化程度较弱。此研究表明,以壳宽快速生长为选育目的,长牡蛎连续选育群体仍具有很高遗传多样性,人工选育过程中保持一定选择压力,仍然会使长牡蛎的优良生长性状得到不断提高。
关键词:  长牡蛎  微卫星  遗传结构  遗传多样性
DOI:10.11758/yykxjz.20150526004
分类号:
基金项目:国家自然基金青年项目(31402298)和山东省农业良种工程项目—大宗经济贝类新品种选育及应用共同资助
Assessment of Genetic Variability and Microsatellite Analysis of Pacific Oyster (Crassostrea gigas) After Artificial Selection of the Shell Width
ZHANG Rongliang1,2, WANG Weijun3, FENG Yanwei3, YANG Jianmin3, TANG Haitian4, JI Renping1,2
1. College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306;2. Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai 264006;3.Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai 264006;4.Yantai Marine Environment Monitoring Central Station, State Oceanic Administration, Yantai 264006
Abstract:
In this study we investigated how mass selection would affect the genetic properties of the successive strains such as the fast growth in the shell width. Ten polymorphic microsatellite loci were analyzed to examine the genetic variation within a population, in one base stock, and in two successive mass selection lines of Pacific oyster (Crassostrea gigas). All microsatellite loci in the three groups showed high polymorphism, demonstrated by a large number of alleles per locus (NF0=16.5; NF1=12.2; NF2 =12.8) and high polymorphism information contents (Pic F0 = 0.9068, Pic F1 = 0.8982, Pic F2 = 0.8836). In all population-locus cases (3 populations × 10 loci), the observed heterozygosity values (Ho) of the 10 loci were lower than the expected values (He) (He=0.8954-0.9297, Ho=0.5775-0.6484). Twenty-four cases deviated from the Hardy-Weinberg equilibrium (P<0.05). The values of Fis ranged from 0.152 to 0.233, resulting in heterozygote deficiencies at the 10 loci in each population. Fst ranged from 0.0093 to 0.0245, indicating a weak genetic differentiation among the populations. The results suggested that the successive selection for rapid growing shell width might not reduce the genetic diversity. Therefore, the growth traits of C. gigas could be improved over generations under successive selection strains
Key words:  Crassostrea gigas  Microsatellite  Genetic structure  Genetic diversity