引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2783次   下载 3032 本文二维码信息
码上扫一扫!
分享到: 微信 更多
LED光源在海水养殖水体中传播特征解析
张延青1,2, 秦菲1,2, 费凡1,3, 李笑天1, 黄滨1, 赵奎峰4, 刘宝良1,5
1.中国水产科学研究院黄海水产研究所 农业农村部海洋渔业可持续发展重点实验室 青岛市海水鱼类种子工程与生物技术重点实验室 青岛 266071;2.青岛理工大学 青岛 266033;3.大连海洋大学 辽宁省水产设施养殖与装备工程技术研究中心 大连 116023;4.山东东方海洋科技股份有限公司 烟台 264000;5.青岛海洋科学与技术试点国家实验室海洋渔业科学与食物产出过程功能实验室
摘要:
光是影响水生动物生长和发育的重要环境因子,其在养殖水体中的传播特征仍未明确。本研究选取红光(波峰为645 nm)、绿光(510 nm)、蓝光(445 nm)、UVA(355 nm)以及全光谱(蓝光激发硅酸盐荧光粉辐射的白光波长范围可达400~800 nm)5种LED光源,调整辐射照度为60 W/m2,研究其在不同养殖水质环境中的传播规律,为满足室内工厂化水产养殖对象的光生物学需求,实现养殖光环境标准化调控提供参考。结果显示,5种不同光谱特征的LED光源在深井海水中的透光率随水深增加呈降低趋势,不同光源间变化趋势存在差异。当透光水深为10 cm时,绿光透光率最大,为(46.01±4.03)%,UVA最小,为(26.01±2.53)%;当透光水深为150 cm时,各光色透光率均小于1.5%;5种不同光色的光源在水体中的透光率衰减曲线均符合乘幂函数。水体对LED光的吸收在不同的光谱区域是不同的,具有明显的选择性,水对光谱中红外部分的吸收最为强烈,对可见光谱波段中的红色、黄色和绿色光谱区段的吸收也十分显著;LED光源在养殖水体中衰减严重,水深是影响LED光源在水体中传播的主要因素(P<0.01),其次是总悬浮物(TSS)和化学需氧量(COD),但不同光源在养殖水体中受TSS和COD含量的影响程度不同。光在水体中的衰减由水对光的吸收以及散射作用引起,且光在不同波段的衰减率主要由水生介质的吸收光谱决定。
关键词:  LED光源  养殖水体  传播特征  辐射照度  透光率
DOI:
分类号:
基金项目:
Analysis of propagation characteristics of LED light source in aquaculture water
ZHANG Yanqing1,2, QIN Fei1,2, FEI Fan1,3, LI Xiaotian1, HUANG Bin1, ZHAO Kuifeng4, LIU Baoliang1,5
1.Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Key Laboratory of Marine Fish Seed Engineering and Biotechnology, Qingdao 266071;2.Qingdao University of Technology, Qingdao 266033;3.Dalian Ocean University, Liaoning Provincial Aquatic Facilities Breeding and Equipment, Dalian 116023;4.Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai 264000;5.Marine Science and Technology Pilot National Laboratory (Qingdao), Function Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao 266071
Abstract:
Light is an important environmental factor affecting the growth and development of aquatic animals, and its propagation characteristics in aquaculture waters are still unclear. In this experiment, five light emitting diode (LED) light sources were selected: red (peak at 645 nm), green (510 nm), blue (445 nm), UVA (355 nm), and full spectrum (the wavelength of white light emitted by blue light excited silicate phosphor can reach λ400~800 nm). The radiation irradiance was adjusted to 60 W/m2, and the propagation law of irradiance was studied under different breeding water quality environments to provide references in order to meet the photobiological requirements of indoor factory aquaculture and the standardization control of aquaculture environment. The experimental results showed that the transmittance of five different LED light sources decreases with the increase in water depth. The variation trends of different light sources were different. When the water depth was 10 cm, the green light showed the largest transmittance (46.01%±4.03%), whereas UVA showed the lowest value (26.01%±2.53%). When the water depth was 150 cm, the light transmittance of all five light sources was less than 1.5%. The attenuation curves of light transmittance in water of five different light colors all agree with power function. The absorption of LED lights by water was discrepant in different spectral regions and has obvious selectivity. Most of the infrared and ultraviolet parts of the spectrum were absorbed by water. The absorption of the red, yellow, and green spectra in the visible spectrum band is also significant. LED light is severely attenuated in aquaculture water, and water depth is the main factor affecting LED light propagation (P<0.01), followed by total suspended solids (TSS) and chemical oxygen demand (COD). However, the extent to which different light sources are affected by TSS and COD content in aquaculture water varies. The attenuation of light in water is caused by the absorption and scattering of light by water, and the attenuation rate of light in different wave bands is mainly determined by the absorption spectrum of aquatic media.
Key words:  Light source  Aquaculture water  Propagation characteristics  Irradiance  Transmittance