引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 3327次   下载 3663 本文二维码信息
码上扫一扫!
分享到: 微信 更多
桑沟湾浮游植物粒径结构及其与环境因子的关系
李凤雪1,2, 蒋增杰3,4, 高亚平3, 杜美荣3, 王晓芹3, 李文豪1,2, 侯兴1,2, 董世鹏1,2, 王军威5, 张义涛5
1.上海海洋大学水产与生命学院 上海 201306;2.中国水产科学研究院黄海水产研究所 农业农村部海洋渔业可持续发展重点实验室 青岛 266071;3.中国水产科学研究院黄海水产研究所 农业农村部海洋渔业可持续发展重点实验室 青岛 266071;4.青岛海洋科学与技术试点国家实验室 海洋渔业科学与食物产出过程功能实验室 青岛 266071;5.荣成楮岛水产有限公司 荣成 264312
摘要:
于2017年4、7、11月和2018年1月4个航次调查了桑沟湾浮游植物粒径结构的时空分布,并分析了粒径结构与主要环境因子的关系。结果显示,桑沟湾海域表、底层Chl-a浓度的年变化范围分别为0.743.27和0.813.66 µg/L,平均值分别为(1.90±1.28)和(2.01±1.29) µg/L,存在极显著的季节差异(P<0.01)和空间分布的不均匀性。从粒径结构来看,小型浮游植物是春季表、底层浮游植物的主要贡献者,贡献率分别为54.05%和58.08%,夏、秋和冬季均是微型浮游植物占优势地位。冬季和春季微微型浮游植物的贡献率较小,但夏季和秋季的贡献率显著增多,夏季表、底层贡献率分别达24.46%和20.70%;秋季表、底层贡献率分别达35.88%和40.77%。冗余分析(Redundancy analysis, RDA)结果表明,温度(T)是影响浮游植物粒径结构的主要环境因子。溶解氧(DO)对微微型浮游植物占总浮游植物的比例有显著影响;微型浮游植物所占比例受亚硝酸盐(NO2)、铵盐(NH4)等影响显著;小型浮游植物对总浮游植物的贡献主要受温度影响,呈正相关。研究结果为深入认识桑沟湾养殖生态系统浮游植物的粒径结构、准确评估滤食性贝类的养殖容量提供了基础数据。
关键词:  叶绿素a  粒径结构  冗余分析  桑沟湾
DOI:10.19663/j.issn2095-9869.20181015004
分类号:
基金项目:
Distribution of size-fractionated phytoplankton and its relationship with environmental variables in Sanggou Bay
LI Fengxue,JIANG Zengjie,GAO Yaping,DU Meirong,WANG Xiaoqin,LI Wenhao,HOU Xing,DONG Shipeng,WANG Junwei,ZHANG Yitao
1.College of Fishers and Life Sciences, Shanghai Ocean University, Shanghai 201306;2.Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071;3.Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071;4.Rongcheng Chudao Aquaculture Corporation, Rongcheng 264312
Abstract:
Surveys have been conducted to investigate the spatial and temporal distribution of size-fractionated phytoplankton and other environmental variables in Sanggou Bay in four seasons for the period covering April 2017 until January 2018. Results showed that chlorophyll a concentration in the surface and bottom layers ranged from 0.74 to 3.27 µg/L and from 0.81 to 3.66 µg/L, respectively, with average values of (1.90±1.28) and (2.01±1.29) µg/L, respectively. There were significant differences in chlorophyll a concentration (P<0.01) and spatial distribution between seasons. In spring, microphytoplankton was the most abundant, accounting for 54.05% and 58.08% of the total phytoplankton in the surface and bottom layers, respectively. In summer, picophytoplankton was the most abundant, accounting for 24.46% and 20.70% of total cholorophyll a in the surface and bottom layers, respectively. In autumn, picophytoplankton accounted for 35.88% and 40.77% of total chlorophyll a in the surface and bottom layers, respectively. The contribution of picophytoplankton was low in winter and spring but increased significantly in summer and autumn. Redundancy analysis (RDA) results show that temperature is the main environmental factor affecting the size structure of phytoplankton. Dissolved oxygen had a significant effect on the percentage of picophytoplankton to total phytoplankton. The percentage of nanophytoplankton correlated with NO2 and NH4. There was a significant positive correlation between temperature and the percentage of microphytoplankton. This study provides basic knowledge for understanding the size structure of phytoplankton and estimating the carrying capacity of filter-feeding shellfish in the aquaculture ecosystem in Sanggou Bay.
Key words:  Chlorophyll-a  Size fraction  Redundancy analysis  Sanggou Bay